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Abstract

Fuzzy and inverse fuzzy transforms, introduced by I. Perfilieva, is an impor-
tant tool for signal and image fuzzy representation. It led to several variants,
as the natural least-squares minimization named fuzzy projection. We deal
with this transform, proposing first to show its simplicity and its easy nu-
merical implementation in any dimension of space. Secondly, we point out
that a key parameter permits to control its numerical robustness. Thirdly,
we show that this parameter also governs the stability of the representation
by fuzzy projection, when choosing different partitions of the space. We con-
clude in discussing linear representation; especially triangular representation
for signals and pyramidal representation for images.

Keywords: Fuzzy transform, fuzzy projection, signal representation, image
representation, stability, robustness.

1. Introduction

Fuzzy and inverse fuzzy transforms for the representation of signal and
images have been initiated by Irina Perfilieva in 2004 ([? ],[? ]) and has led
to many applications in their processing ([? ], [? ], [? ], [? ], [? ], [? ], [?
]). In their continuity the author of the present study introduced in 2010 the
operator of fuzzy projection for signals ([? ],[? ]). Independently, Giuseppe
Patanè ([? ]) proposed in 2011 a study of the fuzzy transform via least-
squares approximation that brought out the same operator. Fuzzy projection
(F-projection) proved to perform a good interpolation of the samples of a
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signal obtained by fuzzy transform (F-transform). In particularly it handles
correctly high frequencies, even in presence of an important noise ([? ]).

In this paper, we present and discuss of F-projection in higher dimension
of space. We propose to show it is a simple tool, very easy to implement nu-
merically, especially for image analysis. (We will deal in a future work ([? ])
with numerical experiments such as compression, denoising and restauration
of images, particularly a comparison with wavelet representation.)

Moreover, we point out that a key parameter permits to control the ro-
bustness of fuzzy projection, i.e. how much it is numerically well conditioned.
It also indicates its stability, say its sensitivity, when choosing different par-
titions of the space, i.e. different generic kernels of the fuzzy partition: the
effect of this choice does not modify significantly the representation process.
This parameter is simply the squared L2-norm of the generic kernel µ, gen-
erating the fuzzy partition in dimension 1: a = ‖µ‖2

2. As it measures, in any
dimension of space, how the generic kernel of the fuzzy partition is concen-
trated around the center of its supporting cell, we name it the ’localization
parameter’. Thanks to the parameter a, we discuss the linear representation
of the considered object. More precisely, we suggest that choosing a linear
fuzzy partition (a triangular one for signals, or a pyramidal one for images)
is a reasonable compromise between numerical robustness, stability of the
representation, and the requirements of a fuzzy representation of a signal or
a multi-dimensional object.

In section 2, we recall definitions and results necessary to present
F-projection in dimension 1 of space that are been presented and proved
in [? ]. In section 3, we highlight the natural analogy of these results in
dimension 2 of space. In section 4, a rapid generalization is made in any
dimension. Section 5 adresses a notion of stability for this representation,
highlighting it is controlled by the ’localisation parameter’. We conclude
with discussing the relevance of a linear fuzzy partition.

2. Fuzzy projection in dimension 1

Following the seminal work of Irina Perfilieva ([? ],[? ]) on direct and
inverse F-transform, we collect in this section the results on F-projection
that were proved in [? ] and [? ]. This will permit to introduce easily
multidimensional F-projection, and the role of the ’localization parameter’.
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2.1. Uniform fuzzy partition

A fuzzy partition P = {µk , k = 0 . . . p+ 1} of an interval is defined as
follows.

Definition 2.1.1. (fuzzy partition P)
Let S = {ωk = k∆ , k = 0 . . . p+ 1} be an uniform subdivision of [0, d] with

diameter ∆ = d/(p + 1). Let µ ∈ C0 ([−1, 1]), the generic kernel of the
partition, be an even continuous function such that µ(0) = 1, µ(1) = 0 and
µ(1− x) + µ(x) = 1 ,∀x ∈ [−1, 1]. Kernels µk of the partition P are defined
by µk(x) = µ

(
x−ωk

∆

)
, and have thus for support the cells Ωk = [ωk−1, ωk+1]

(with the convention that ω−1 = ω0 = 0 and ωp+2 = ωp+1 = d.)

Then, it is immediate to check that P is a partition of unity on [0, d]:

Property 2.1.1. (partition of unity)
i)

∀x ∈ [0, d] ,

p+1∑
k=0

µk(x) = 1 (1)

ii)

∀k = 0 . . . p+ 1 ,
1

∆

∫ d

0

µk =
1

∆

∫
Ωk

µk =

∫ 1

−1

µ = 1 (2)

2.2. Fuzzy transform

Denote L2 ([0, d]) the space of finite energy signals with norm ‖f‖2 =(∫ d
0
f 2
)1/2

and scalar product (f |g) =
∫ d

0
fg. Defined by Irina Perfilieva

([? ],[? ]) on the subspace C0 ([0, d]), the more general fuzzy transform we
consider in this study is the operator F : L2 ([0, d]) : 7→ Rp+2 such that:

Definition 2.2.1. (fuzzy transform F : sampling)

∀k = 0 . . . p+ 1, (Ff)k :=

∫ d
0
fµk∫ d

0
µk

=
1

∆
(f |µk) (3)

Fuzzy transform thus consists in taking a sequence of means, weighted
by kernels µk, of the signal f . Note that it maps constant functions to a
constant sampling with the same value. We also need to express its ad-
joint. Consider, for u = (u0, . . . , up+1) and v = (v0, . . . , vp+1), the scalar
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product in Rp+2: u.v = ∆
∑p+1

k=0 ukvk. For γ = (γ0, . . . , γp+1), γ.Ff =
∆
∑p+1

k=0 γk(Ff)k =
∑p+1

k=0 γk(µk|f) =
(
f |
∑p+1

k=0 γkµk
)

yields the expression
of F ∗ : Rp+2 7→ L2 ([0, d]):

Proposition 2.2.1. (adjoint fuzzy transform F ∗: interpolation)
For γ = (γ0, . . . , γp+1), the adjoint fuzzy transform is

F ∗γ =

p+1∑
k=0

γkµk (4)

and can be viewed as an interpolation of the finite sequence γ0, . . . , γp+1 by
kernels µk of the partition.

Remark 2.2.1. By ’interpolation’ we mean in this study the passage from
a discrete sampled representation of a signal (say Ff in our context) to a
continuous representation by mean of kernels functions µk of the partition
(say for instance F ∗Ff for the inverse fuzzy transform introduced by I. Per-
filieva). It is directly related to fuzzy projection that will be treated in the
following section, where the interpolation functions are different.

2.3. Fuzzy projection

Let us first define the p+2-dimensional sub-space Π of functions generated
by partition P , or, equivalently, the image of F ∗:

Definition 2.3.1. (projection sub-space Π)

Π =

{
p+1∑
k=0

γkµk , γ ∈ Rp+2

}
(5)

For f ∈ L2 ([0, d]), F-projection is defined by:

Definition 2.3.2. (F-projection P )

Pf = Argming∈Π‖f − g‖2 (6)

Computing Pf is thus equivalent to find

α = Argminγ∈Rp+2‖f − F ∗γ‖2 (7)

Its solution is given by the normal equation FF ∗α = Ff , so that F-projection
is the the classical pseudo-inverse projector ([? ]):
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Proposition 2.3.1. (pseudo-inverse)
The expression of the F-projection P : L2 ([0, d]) 7→ Π is the following:

Pf = F ∗ (FF ∗)−1 Ff (8)

It is established in [? ] uniform and quadratic convergence (when p → ∞,
i.e. ∆ = d

p+1
→ 0):

Theorem 2.3.1. (convergence)
i) Let f ∈ C0 ([0, d]). Then ∀ε > 0 , ∃∆ | ‖f − Pf‖∞ ≤ ε.

ii) Let f ∈ L2 ([0, d]). Then ∀ε > 0 , ∃∆ | ‖f − Pf‖2 ≤ ε.

Let us now define the announced control parameter with which we will
deal till the end of the present study.

Definition and Property 2.3.1. (localization parameter a)
We define

a = ‖µ‖2
2 =

∫ 1

−1

µ2 (9)

as the ’localization parameter’ for µ. The fact that a = 1/2+4
∫ 1/2

0
(µ−1/2)2

shows that it represents the degree of localization of µ in the central interval
[−1/2, 1/2] of its support [−1, 1]. It varies from 1/2 (limit case of the step
function with maximum overlap, µ = 1

2
χ[−1,1]) to 1 (limit case of the basic

step function with no overlap, µ = χ[−1/2,1/2]):

1

2
< a < 1 (10)

Remark 2.3.1. There exists, of course, an infinity of generic kernels pro-
viding a same parameter a. For instance, the triangle kernel, corresponding
to linear fuzzy sampling, verifies a = 2/3, and it is easy to construct other
ones with the same parameter a, but presenting oscillating shapes (even if
they strictly decrease on [0, 1], as demanded). Nevertheless, it is reasonable
to keep in view this most natural and simple kernel.

Let us now identify FF ∗ to its matrix M in the canonical basis of Rp+2.
Then, as proved in [? ], we can state the following result:
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Theorem 2.3.2. (expression of F-projection and role of a)
i) FF ∗ corresponds to a (p + 2)× (p + 2) (almost bistochastic) symmetrical
tridiagonal matrix

M =



a 1−a
2

1−a
2

a 1−a
2

(0)
1−a

2
a 1−a

2

. . .
. .

(0) 1−a
2

a 1−a
2

1−a
2

a


(11)

depending only on the localization parameter a.

ii) M is invertible and has p+ 2 simple eigenvalues

λk = a+ (1− a) cos
kπ

p+ 1
(12)

verifying 0 < 2a− 1 ≤ λk ≤ 1, k = 0 . . . p+ 1.

iii) The associated normalized eigenvectors are denoted vk and defined by

(vk)j =

(
2

d

) 1
2

cos

(
jkπ

p+ 1

)
(13)

They do not depend on the generic kernel.

iv) The set of functions

B =

{
fk =

1√
λk
F ∗vk , k = 0 . . . p+ 1

}
(14)

forms an orthonormal basis of the projection subspace Π. Thus, for any
f ∈ L2 ([0, d]) we have

Pf =

p+1∑
k=0

(f |fk) fk (15)

v) The functions

νk(x) =

p+1∑
j=0

M−1
j,k µj(x) (16)
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make Pf reads equivalently as the following interpolation - natural continuous
representation - of the fuzzy transform Ff :

Pf =

p+1∑
k=0

(Ff)k νk (17)

Remark 2.3.2.
1) The first point of the theorem comes from a computation that the reader
is invited to read in [? ]. Points ii) and ii) are then a classical property
of tridiagonal matrixes (see for instance [? ]). As FF ∗ is identified to the
matrix M with eigenvalues λk, point iv) is immediate.
2) The length d of the interval [0, d] where signals f are considered appears

in the formula (vk)j =
(

2
d

) 1
2 cos

(
jkπ
p+1

)
. This is due to the normalization of

those vectors with the weighted scalar product u.v = ∆
∑p+1

k=0 ukvk, where the
diameter of the subdivision verifies ∆ = d/(p+ 1).
3) Basis functions fk = 1√

λk
F ∗vk are the interpolations by F ∗ of the finite

sequence defined by (vk)j =
(

2
d

) 1
2 cos

(
jkπ
p+1

)
, j = 0 . . . p + 1. Thus, they look

like a Fourier basis, but with the shape of the generic kernel µ appearing in
F ∗ (for instance a piecewise linear sinus-like function for linear interpolation
with a triangular kernel.)
4) Pf(x) = F ∗M−1Ff(x) =

∑p+1
j=0 µj(x)

∑p+1
k=0 M

−1
j,k (Ff)k provides formula

(??) in point v).

Two important numerical requirements are that matrix M must be well
conditioned and that functions {νk} (that bring the discrete samples to a
continuous interpolation representation) have well localized supports: that
is what we call the ’robustness’ of the fuzzy representation.

Theorem 2.3.3. (numerical robustness and role of a)

i)

c := cond2 (M) =
max |λk|
min |λk|

=
1

2a− 1
(18)

ii) Each function νk(x) =
∑p+1

j=0 µj(x)M−1
j,k , that operates the interpolation

from the discrete sampling Ff to its continuous approximation Pf , is expo-
nentially decreasing in the sense that |M−1

j,k | ≤ |M
−1
k,k |r|k−j| for all indexes j
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and k. The speed of decrease around the diagonal 0 < r < 1 is given by

r =
1− a
3a− 1

(19)

Remark 2.3.3.
1) The fact that that |M−1

j,k | ≤ |M
−1
k,k |r|k−j|, for all indexes j and k, means

that the coefficient of the bounded and compactly supported kernels functions
µj in the expression of νk are exponentially decreasing. Thus, function νk
itself is also exponentially decreasing. An illustration is given in Figure ??
for triangular kernels.
2) In the limit case of µ = 1

2
χ[−1,1], we have a = 1/2, so that c = ∞ and

r = 1: this is the worst numerical situation.
3) In the limit case of µ = χ[−1/2,1/2], we have a = 1, so that c = 1 and r = 0:
this is the best numerical situation, but we will discuss this case in Section
??.
4) In the case of the classical triangular kernel µ = Tri[−1,1], we have a = 2/3,
so that c = 3 and r = 1/3: this is a good numerical situation; we will also
discuss this case in the last Section ??, as it is the situation we want to bring
out in this study.
5) In the case of the classical sinusoidal kernel : µ(x) = 1

2
(1 + cos(πx)), we

have a = 3/4, so that c = 2 and r = 1/5: this is an even better numerical
situation we will also comment Section ??.

Thus, while r = r(a) controls the localization of the interpolating func-
tions, the condition number c = c(a) controls the numerical sensibility of the
representation. This shows that the localization parameter a plays then a
key role in basic numerical requirements. Moreover, we can also note that a
governs the rapidity of the uniform convergence in Theorem ??, as shown by
its proof in [? ].

3. Fuzzy projection in dimension 2

This section is very analogous to the previous one. However, as it is
useful for image representation, we present all the results, following exactly
the same way. Most of their proofs are let to the reader, as they are nearly
the same that those in dimension 1 (presented in [? ]).
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Figure 1: Example of function νk for a triangular generic kernel µ = Tri[−1,1] (d = 10)

3.1. Uniform 2D fuzzy partition

Let us define a 2D fuzzy partition Q =
{
Mk,l , (k, l) ∈ [0 . . . p+ 1]2

}
of

the square in [0, d]2:

Definition 3.1.1. (2D fuzzy partition Q)
Let T =

{
(ωk, ωl) = (k∆, l∆) , (k, l) ∈ [0 . . . p+ 1]2

}
be an uniform subdi-

vision of [0, d]2. Still, ∆ = d/(p + 1) is called the diameter of the sub-
division. Recall that µ denotes the generic kernel in the 1D Definition
??. Kernels Mk,l of the partition T are then defined by Mk,l(x, y) =
µk(x)µl(y) := µ

(
x−ωk

∆

)
µ
(
y−ωl

∆

)
, and are supported in the cells Ωk,l =

[ωk−1, ωk+1] × [ωl−1, ωl+1]. The generic kernel is M(x, y) = µ(x)µ(y), sup-
ported in the unit square [−1, 1]2.

Again, it is easy to verify thatQ is a partition of unity on [0, d]2, precisely:

Property 3.1.1. (2D partition of unity)
i)

∀(x, y) ∈ [0, d]2 ,

p+1∑
k=0

p+1∑
l=0

Mk,l(x, y) = 1 (20)
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ii)

∀(k, l) ∈ [0 . . . p+ 1]2 ,
1

∆2

∫∫
[0,d]2

Mk,l =
1

∆2

∫∫
Ωk,l

Mk,l =

(∫ 1

−1

µ

)2

= 1 (21)

Remark 3.1.1. As an illustration, the classical 1D triangular generic ker-
nels yields a partition with square pyramids.

3.2. 2D F-transform

The 2D fuzzy transform F : L2 ([0, d]2) 7→ Rp+2 × Rp+2 is defined as
follows:

Definition 3.2.1. (2D F-transform F )

∀(k, l) ∈ [0 . . . p+ 1]2 , (Ff)k,l :=

∫∫
[0,d]2

fMk,l∫∫
[0,d]2
Mk,l

=
1

∆2
(f |Mk,l) (22)

Considering on Rp+2 × Rp+2 the scalar product u.v =
∆2
∑p+1

k=0

∑p+1
l=0 uk,lvk,l, we have similarly the adjoint fuzzy transform

F ∗ : Rp+2 × Rp+2 7→ L2 ([0, d]2):

Proposition 3.2.1. (2D adjoint F-transform F ∗)

F ∗γ =

p+1∑
k=0

p+1∑
l=0

γk,lMk,l (23)

3.3. 2D fuzzy projection

The (p + 2)2-dimensional sub-space Π generated by the partition Q is
now:

Definition 3.3.1. (projection sub-space Π)

Π =

{
p+1∑
k=0

p+1∑
l=0

γk,lMk,l , γ ∈ Rp+2 × Rp+2

}
(24)

This leads to the same definition, expression and convergence results for
F-projection:
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Definition 3.3.2. (2D F-projection P )

Pf = Argming∈Π‖f − g‖2 (25)

Proposition 3.3.1. (pseudo-inverse)
The expression of the 2D F-projection P : L2 ([0, d]2) 7→ Π is the following:

Pf = F ∗ (FF ∗)−1 Ff (26)

Theorem 3.3.1. (2D convergence)
i) Let f ∈ C0 ([0, d]2). Then ∀ε > 0 , ∃∆ | ‖f − Pf‖∞ ≤ ε.
ii) Let f ∈ L2 ([0, d]2). Then ∀ε > 0 , ∃∆ | ‖f − Pf‖2 ≤ ε.

Let us now identify Rp+2 ×Rp+2 to R(p+2)2 by the bijective map (k, l) 7→
k + l(p + 2). Then, the components of the fuzzy transform (Ff)k,l will be
stored in a (p+2)2-dimensional vector. Thus, operator FF ∗ can be identified
to a matrix N in the canonical basis of R(p+2)2 . This allows to get the
following result. (Notations are the same as in 1D Theorem ??; in particular
for a, λk, vk and matrix M , given in formula (??) in the 1D case.)

Theorem 3.3.2. (expression of

2D

F-projection and role of a)

i) FF ∗ corresponds to a (p+2)2× (p+2)2 (almost bistochastic) matrix which
is symmetrical block tridiagonal with symmetrical tridiagonal blocks:

N =



aM 1−a
2
M

1−a
2
M aM 1−a

2
M (0)

1−a
2
M aM 1−a

2
M

. . .
. .

(0) 1−a
2
M aM 1−a

2
M

1−a
2
M aM


(27)

depending only on the localization parameter a.
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ii) FF ∗ is invertible and has (p+ 2)2 simple eigenvalues

Λk,l(a) = λk(a)λl(a) =

(
a+ (1− a) cos

kπ

p+ 1

)(
a+ (1− a) cos

lπ

p+ 1

)
(28)

verifying 0 < (2a− 1)2 ≤ Λk,l ≤ 1, ∀(k, l) ∈ [0 . . . (p+ 1)]2.

iii) The associated normalized ’eigenvectors’ are Vk,l = vk ◦ vl with:

(Vk,l)j,m = (vk ◦ vl)j,m := (vk)j (vl)m =
2

d
cos

(
jkπ

p+ 1

)
cos

(
mlπ

p+ 1

)
(29)

Again, they do not depend on the generic kernel.

iv) The set of functions

B =

{
fk,l =

1√
Λk,l

F ∗Vk,l , (k, l) ∈ [0 . . . p+ 1]2

}
(30)

forms an orthonormal basis of the projection subspace Π. Thus,

Pf =

p+1∑
k=0

p+1∑
l=0

(f |fk,l) fk,l (31)

v) The functions

Nk,l(x, y) =

p+1∑
i=0

p+1∑
j=0

(FF ∗)−1
(i,j),(k,l)Mi,j(x, y) (32)

make Pf reads as the following interpolation of the fuzzy transform Ff :

Pf(x, y) =

p+1∑
k=0

p+1∑
l=0

(Ff)k,lNk,l(x, y) (33)

Basic numerical requirements are the same: operator FF ∗ (associated,
for numerical purposes, to the matrix N) must be well conditioned and in-
terpolation functions Nk,l well localized. Here is a slightly similar result,
point ii) being however more technical.

12



Theorem 3.3.3. (2D numerical robustness and role of a)
i)

C := cond2 (FF ∗) =
max |Λk,l(a)|
min |Λk,l(a)|

=
1

(2a− 1)2
(34)

ii) Interpolating function, Nk,l(x, y) =
∑p+1

i=0

∑p+1
j=0(FF ∗)−1

(i,j),(k,l)Mi,j(x, y)
are exponentially decreasing in the sense that, given the matrix N , there
exists a constant α > 0 such that:
a) |N−1

i,j | ≤ αRi, if i > j and i is large enough,

b) |N−1
i,j | ≤ αRj, if j > i and j is large enough.

The speed of decrease away from the diagonal 0 < R < 1 is given by

R =
1− a

a+
√

2a− 1
(35)

Proof of ii).
It is proved in [? ] that a block tridiagonal block toeplitz matrix of the form

T =


A B
B A B (0)

. . .
(0) . . B

B A


with the same dimensions as N verifies
a) |T−1

i,j | ≤ α|ρp+1|−i, if i > j and i is large enough,

b) |T−1
i,j | ≤ α|ρp+1|−j, if j > i and j is large enough,

where {ρk} are the 2(p + 1) eigenvalues, sorted in absolute value increasing
order, of the 2(p+ 1)× 2(p+ 1) matrix

U =

[
0 B

−B−1 B−1A

]
In our case, we have (Theorem ??) A = aM and B = 1−a

2
M . De-

note λk(A) and λk(B) the respective eigenvalues of A and B, and
recall that vk are their corresponding common eigenvectors. When

searching for eigenvectors of the form Vk =

[
αkvk
vk

]
we have that

UVk =

[
0 B

−B−1 B−1A

] [
αkvk
vk

]
=

[
λk(B)vk(

− αk
λk(B)

+ λk(A)
λk(B)

)
vk

]
. A necessary
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condition for Vk to be an eigenvector is then that αk = λk(B)/
(
λk(A)−αk
λk(B)

)
.

This yields a second degree equation for αk whose 2(p + 1)solutions are, for
k = 0 . . . p+ 1:

- α
(1)
k = 1

2

(
λk(A) +

√
λ2
k(A)− 4λ2

k(B)
)

- α
(2)
k = 1

2

(
λk(A)−

√
λ2
k(A)− 4λ2

k(B)
)

Then, as ρk, the 2(p + 1) eigenvalues of U , verify by definition

UVk = U

[
αkvk
vk

]
= ρk

[
αkvk
vk

]
, we have that ρkαk = λk(B). It

follows that, sorted in absolute value increasing order, they write, for
k = 0 . . . p:

- ρk = 2λk(B)/
(
λk(A) +

√
λ2
k(A)− 4λ2

k(B)
)

- ρp+1+k = 2λk(B)/
(
λk(A)−

√
λ2
k(A)− 4λ2

k(B)
)

In the case of A = aM and B = 1−a
2
M , the computation simply comes down

to ρp+1 = 2λ0(1−a
2
M)/

(
λ0(aM)−

√
λ2

0(aM)− 4λ2
0(1−a

2
M)
)

= 21−a
2

(2a −

1))/
(
a(2a− 1)−

√
(a(2a− 1))2 − 4(1−a

2
(2a− 1))2

)
= 1−a

a−
√

2a−1
= a+

√
2a−1

1−a .

Then, as R = 1/ρp+1, we have the expected result. �

Remark 3.3.1. Let us examine again the four limit and classical cases of
Section ??:
1) When µ = 1

2
χ[−1,1], a = 1/2 still yields C =∞ and R = 1: nothing can be

done numerically. This case corresponds to M(x, y) = 1
4
χ[−1,1](x)χ[−1,1](y),

the limit generic constant kernel with maximal 2D overlap.
2) When µ = χ[−1/2,1/2], a = 1 also still yields C = 1 and R = 0: this optimal
numerical situation will be discussed in Section ??. This case corresponds to
M(x, y) = χ[−1/2,1/2](x)χ[−1/2,1/2](y), the classical limit plateau kernel with
no overlap.
3) When µ = Tri[−1,1], we have a = 2/3, so that C = 9 and R = 1/(2 +√

3) ' 0.26 (instead of r ' 0.33 in dimension one): this situation remains
numerically very good, and the interpolating functions are more localized than
in 1D. This case will be examined in Section ??; it corresponds toM(x, y) =
Tri[−1,1](x)Tri[−1,1](y), the classical square pyramid.
4) For M(x, y) = 1

4
(1 + cos(πx))(1 + cos(πy)), corresponding to a = 3/4,

C = 4 and R = 1/(3 + 2
√

2) ' 0.17 (instead of r ' 0.2 in dimension one),
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we have a 2D sinus-like kernel which is still better numerically.
5) We observe that R < r: the speed of decrease of the matrix elements
around its diagonal is faster for N in 2D than for M in 1D. (R < r ⇔
2a− 1 <

√
2a− 1, which is true because 1/2 < a < 1⇔ 2a− 1 < 1.)

Thus, the localization parameter a, defined in the 1D case, plays the same
key role in the 2D case. It describes the F-transform in a simple manner,
as well as it governs the numerical robustness of the projection : how much
matrix N of the projection numerically well conditioned and interpolation
functions Nk,l(x, y) have a ’small’ support.

4. Fuzzy projection in higher dimension

The generalization to any dimension q of space is immediate, following
the link between formulas in dimension 1 and 2. With the same formalism we
establish, skipping all identical expressions and in the same way avoiding all
proofs, the analogous results. We chose, for simplicity, the same notations
as in one dimension of space, denoting in particular x = (x1, . . . , xq) and
k = (k1, . . . , kq).

A fuzzy partition P = {µk , k ∈ [0 . . . p+ 1]q} of the hypercube [0, d]q has
the following definition and property:

Definition 4.1. (qD fuzzy partition)
Let S = {ωk = k∆ , k ∈ [0 . . . p+ 1]q} be an uniform subdivision of [0, d]q.
Kernels µk of the partition P are then defined similarly by µk(x) =

Πi=1...qµ
(
xi−ωki

∆

)
and are supported in the q-dimensional hypercube Ωk =

Πi=1...q [ωki−1, ωki+1]. The generic kernel µ is supported in the unit square
[−1, 1]q and is the natural tensor product of the generic kernel µ defined in
dimension 1.

Property 4.1. (qD partition of unity)
i)

∀x ∈ [0, d]q ,
∑

k∈[0...p+1]q

µk(x) = 1 (36)

ii)

∀k ∈ [0 . . . p+ 1]q ,
1

∆q

∫
[0,d]q

µk =
1

∆q

∫
Ωk

µk =

(∫ 1

−1

µ

)q
= 1 (37)
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The q-dimensional fuzzy transform corresponds to the operator F :
L2 ([0, d]q) 7→ (Rp+2)

q
such that:

Definition 4.2. (fuzzy transform)

∀k ∈ [0 . . . p+ 1]q , (Ff)k :=

∫
[0,d]q

fµk∫
[0,d]q

µk
=

1

∆q
(f |µk) (38)

With the scalar product u.v = ∆q
∑

k∈[0...p+1]q ukvk on (Rp+2)
q

we
have the same expression for the adjoint fuzzy transform F ∗. Then, the
(p + 2)q-dimensional sub-space Π, F-projection on it, and also convergence
results are defined and established identically.

Identifying (Rp+2)
q

to R(p+2)q by the bijective map k 7→ k1 + k2(p+ 2) +
k3(p+2)2 + · · ·+kq(p+2)q, components of the fuzzy transform (Ff)k,l will be
now stored in a (p+ 2)q-dimensional vector. Operator FF ∗ is then identified
to a matrix M in the canonical basis of R(p+2)q , and this yields:

Theorem 4.1. (expression of qD F-projection and role of a))
i) FF ∗ corresponds to a (p+2)q×(p+2)q almost bistochastic matrix which is
symmetrical block tridiagonal with symmetrical tridiagonal blocks, themselves
defined in the same way by an induction process with length q−1, and starting
at M1 = M :

Mq =



aMq−1
1−a

2
Mq−1

1−a
2
Mq−1 aMq−1

1−a
2
Mq−1 (0)

1−a
2
Mq−1 aMq−1

1−a
2
Mq−1

. . .
. .

(0) 1−a
2
Mq−1 aMq−1

1−a
2
Mq−1

1−a
2
Mq−1 aMq−1


(39)

It still depends only on the 1D localization parameter a.

ii) FF ∗ is invertible and has (p+ 2)q simple eigenvalues λk such that

λk = Πq
j=1

(
a+ (1− a) cos

kjπ

p+ 1

)
(40)
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verifying 0 < (2a− 1)q ≤ λk ≤ 1.

iii) The associated normalized ”eigenvectors” are the vk such that

(vk)l =

(
2

d

) q
2

Πq
j=1 cos

(
ljkjπ

p+ 1

)
(41)

Again, they do not depend on the generic kernel.

iv) The set of functions

B =

{
fk =

1√
λk
F ∗vk

}
(42)

is an orthonormal basis of Π, so that

Pf =
∑
k

(f |fk) fk (43)

v) The functions

νk(x) =
∑
i

(FF ∗)−1
(i),(k)νi(x) (44)

make Pf reads as the following interpolation of the fuzzy transform Ff :

Pf(x) =
∑
k

(Ff)k νk(x) (45)

We have the analogous obvious result for the condition number of Mq.
Nevertheless, as shown in Theorem ??, the induction process generates a
matrix Mq whose blocks consist in a q − 1 times repeated structure of the
1D case matrix M . Even in the 3D case, we didn’t succeed in computing the
speed of decrease r of the interpolating functions νk.

Proposition 4.1. (qD numerical robustness and role of a)

c(a) := cond2 (FF ∗) =
1

(2a− 1)q
(46)
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All these results show that the overlap parameter a =
∫ 1

−1
µ2, even if de-

fined in dimension 1, plays the same central role in any dimension of space.
Both for describing the F-projection as for controlling its numerical robust-
ness. In the next section, we will see that it is also an indicator for its
stability.

5. Stability of multi-dimensional fuzzy projection and localization
parameter a

A question arising naturally is the following: when performing a represen-
tation of a signal by fuzzy projection with different generic kernel µ1 and µ2

can we measure the risk of deviation when choosing one or another? In other
terms, can we measure the stability, say the sensitivity, of the representation,
balancing from a projection P1 to another one, P2? This question is subject
to interpretation because it is not really well-posed. The sole purpose of the
following section is to propose tracks for this question.

5.1. Match between projection subspaces

Here is a way to characterize, in a general manner, the match between
two finite dimensional subspaces of an Hilbert space.

Let us consider two finite subspaces F1 and F2 of an Hilbert space,

with respective orthonormal basis B1 =
{
φ

(1)
i , i = 1 . . . n1

}
and B2 ={

φ
(2)
i , i = 1 . . . n2

}
. Call G, the n1 × n2 Gram matrix of scalar products:

G =
[(
φ

(1)
i |φ

(2)
j

)]
(47)

and its singular values {σk}, sorted in decreasing order.

Definition 5.1.1. (match between subspaces)
We call match between F1 and F2 the lowest singular value of the Gram
matrix of their respective basis:

Match (F1, F2) = min
k
{σk} ≤ 1 (48)

It has been proved that singular values correspond to the cosines of ’prin-
cipal angles’ between the two subspaces ([? ]), so that the lowest one is
the cosine of the highest angle. When the latter is (at worst) π/2, F1
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and F2 will be considered as ’distants’ in this sense, and it corresponds to
Match (F1, F2) = 0. On the contrary, we are interested in the situation where
Match (F1, F2) approches 1, but for somehow distant generic kernels.

Remark 5.1.1. There are other ways to model a criterion for this match,
say angle or distance. None is perfect, each depends on the nature of the
problem. For example finding a cut-off in the graph of {σk} will indicate
an incompatibility between the two subspaces, or a loss of robustness in the
model with which they are related.

Consider now, with the same notations and context as in section ??, two
fuzzy transforms F1 and F2 with kernels µ(1) and µ(2), and their correspond-
ing F-projections P1 and P2 on projection subspaces Π1 and Π2, i.e. the
subspaces that are used to provide the projection of the signal: their repre-
sentation by fuzzy sampling (Ff) followed by inverse inverse fuzzy transform:

interpolation by the adjoint transform F ∗. Denote λ
(i)
k = ai+(1−ai) cos kπ

p+1
,

the eigenvalues of Mi = FiF
∗
i , and ai = ‖µ(i)‖2

2, for i = 1, 2. Recall finally
that they are associated to the same eigenvectors vk (Theorem ??).

As in section ??, we define a localization parameter

a1,2 :=
(
µ(1)|µ(2)

)
(49)

called the ’cross localization parameter’ and that measures the overlap be-
tween the two kernels. Then, we have the following result:

Theorem 5.1.1. (match between subspaces and role of localization parame-
ters)
The (p+ 2)× (p+ 2) Gram matrix G related to Π1 and Π2 is diagonal, with
diagonal terms

Gk,k = σk =
λ

(1,2)
k√
λ

(1)
k λ

(2)
k

, k = 0, . . . , p+ 1 (50)

where λ
(1,2)
k = a1,2 + (1 − a1,2) cos kπ

p+1
are the eigenvalues of the symmetric

tridiagonal matrix F1F
∗
2 with diagonal term a1,2 =

(
µ(1)|µ(2)

)
and sub or

super diagonal term a1,2−1

2
(similarly to the case of M).

Moreover, σk form a decreasing sequence, so that

Match (Π1,Π2) = σp+1 =
2a1,2 − 1√

(2a1 − 1) (2a2 − 1)
(51)

19



Proof. Using respective basis of Π1 and Π2 in Theorem ??, we compute

Gk,l =
(
f

(1)
k |f

(2)
l

)
=

(
1√
λ
(1)
k

F ∗1 vk | 1√
λ
(2)
l

F ∗2 vl

)
= 1√

λ
(1)
k λ

(2)
l

F2F
∗
1 vk.vl. As the

matrix M1,2 = F2F
∗
1 = F1F

∗
2 has for elements

(
µ

(1)
k |µ

(2)
l

)
, it is also a sym-

metric tridiagonal matrix (as matrix M) with the property that its diagonal

terms are a1,2 and its sub or super diagonal terms are a1,2−1

2
(as both µ

(1)
k

and µ
(2)
k also define partitions of unity). Thus, its orthogonal eigenvectors

are the same as M , and its eigenvalues reads λ
(1,2)
k = a1,2 + (1− a1,2) cos kπ

p+1
.

Then, Gk,l = 1√
λ
(1)
k λ

(2)
l

λ
(1,2)
k vk.vl proves that G is diagonal and provides the

first result.

Now, we have to show that σk =
a1,2+(1−a1,2) cos kπ

p+1√
(a1+(1−a1) cos kπ

p+1)(a2+(1−a2) cos kπ
p+1)

form a

decreasing sequence. Then, as Match (F1, F2) := mink{σk} = σp+1, the sec-
ond result will be immediate.
An equivalent condition is that the function ϕ(x) = a1,2+(1−a1,2)x√

(a1+(1−a1)x)(a2+(1−a2)x)

is increasing on [−1, 1]. Its logarithmic derivative is ψ(x) = 1−a1,2
a1,2+(1−a1,2)x

−
1
2

(
1−a1

a1+(1−a1)x
+ 1−a2

a2+(1−a2)x

)
. As a1,2 ≤ ai for i = 1, 2, we immediately check

that 1−ai
ai+(1−ai)x ≤

1−a1,2
a1,2+(1−a1,2)x

for i = 1, 2. Thus ψ(x) ≥ 0 on [−1, 1] and ϕ is

increasing, which concludes the proof. �

Remark 5.1.2. (relations between localization parameters)
1) Direct computation yields the upper bounds a1,2 ≤ a1 and a1,2 ≤ a2.
2) Cauchy-Schwartz inequality provides a1,2 ≤

√
a1a2.

3) Note that if each ai verifies 1/2 < ai < 1, the ’cross localization parameter’
a1,2 can be lower than 1/2. For example, we have a1,2 = 1/3 for the choice
of the overlapping step and triangular generic kernels.

Again, we see that these quantities, a1, a2, and a1,2, play a central role
in analyzing the F-projection. We have now to take advantage of formula
(??) to highlight a form of stability in the representation by fuzzy projec-
tion. But choosing two parameter a1 and a2 is not enough for computing
a1,2 =

(
µ(1)|µ(2)

)
, as the only relation between them is the Cauchy-Schwartz

inequality a1,2 ≤
√
a1a2: we have to choose first µ(1) and µ(2). The natural

question is how to make this choice in a wide range of generic kernels that
also let the different computations and interpretations possible. To do this,

20



let us introduce a simple reasonable model for parametrizing kernels of fuzzy
partitions.

5.2. Illustration of the stability of the F-projection with a simple model:
power functions µ[α]

Definition 5.2.1. (power generic kernels)
For α ∈ R+ we define the generic kernel µ[α] such that µ[α](x) =
2α−1 (x+ 1)α , ∀x ∈ [−1,−1/2]. Then, according to definition ??, µ[α] is
defined on [−1, 0] by symmetry around the point (−1/2, 1/2), and completed
by parity on [−1, 1].

We give some examples of such kernels in Figure ?? for α ≥ 1.

Figure 2: Examples of power generic kernels for α = 1; 1.75; 6; 100.

Remark 5.2.1.
1) µ[0] is the overlapping step kernel: µ[0] = 1

2
χ[−1,1].

2) µ[1] is the triangular kernel: µ[1] = Tri[−1,1].
3) µ[∞] is the basic step kernel: µ[∞] = χ[−1/2,1/2].
4) The sinusoidal kernel µ[cos](x) = 1

2
(1 + cos(πx)) is very well approached

by µ[1.75], as ‖µ[1.75] − µ[cos]‖2/‖µ[cos]‖2 = 0.0077.
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These power functions thus seem to fit in a simple and efficient way
classical generic kernels. Moreover, a simple computation yields

a[α] := ‖µ[α]‖2
2 = 1− 1

1 + α
+

1

2(1 + 2α)
(52)

and

a[α,β] :=
(
µ[α]|µ[β]

)
= 1− 1

2(1 + α)
− 1

2(1 + β)
+

1

2(1 + α + β)
(53)

Thus, it becomes possible to deal with

Match (Π1,Π2) =
2a1,2 − 1√

(2a1 − 1) (2a2 − 1)

using a wide class of kernels.
In Figure ??, we show the match computed this way. We can estimate

that the zone indicating a good stability between two fuzzy partitions roughly
starts when a1, a2 ≥ 2

3
. This corresponds to the triangular kernel. Thus,

as those represented in Figure ??, generic kernels µ[α] seem to lead to a
good stability for α ≥ 1 (as a[1] = 2/3). In other terms, changing the
partition for the fuzzy projection does not imply an important deviation in
the representation when we consider kernels near to the triangular one.

Also, we point out that the match formula is the same in any dimension
of space q. According to equation(??), formula (??) becomes:

Proposition 5.2.1. (match in dimension q)

Match (Π1,Π2) = σ(p+1,...,p+1) =

(
2a1,2 − 1√

(2a1 − 1) (2a2 − 1)

)q

(54)

In particular, 2-dimensional kernels that should lead to a certain sta-
bility should be near the classical square pyramidal kernel. This stands in
any dimension of space, according a favor in the linear interpolation, when
considering that a fuzzy overlap between cells Ωk is necessary for a good
description or representation of the uncertainty of the considered signal or
multi-dimensional object.
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Figure 3: Match between projection subspaces according the localization parameters a1
and a2, using the power generic kernels µ[α].

6. Conclusion

Representation of signal and images by fuzzy and inverse fuzzy transforms
has led to interesting numerical applications, as mentioned in the introduc-
tion ([? ], [? ], [? ], [? ], [? ], [? ], [? ]). Fuzzy projection itself, introduced
in [? ],[? ], is a direct simple tool directly related to these techniques, and,
in addition to noise removal, has the advantage to take better into account
high frequency of signals.

In this study, we have shown that multi-dimensional fuzzy projection is
a very simple mathematical tool for representing multi-dimensional objects,
and is analogous to the 1D case for signals, so that it should present the
same numerical advantages. For instance, our next work ([? ]) will be to
use the 2D the fuzzy projection for simultaneous denoising and enhancement
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of very noisy images, in concurrence with classical and well-tested meth-
ods. A project is also to reconstruct 3D objects, taking benefit of the easy
implementation of the F-projection in any dimension.

In any case, F-projection is in practice easier to handle than a wavelet
or related transform representation, because it only demands the choice of
a generic kernel and its associated partition. Moreover, we have highlighted
the fact that a key parameter, the localization of the generic kernel in one
dimension of space, a = ‖µ‖2

2, permits to illustrate and control the represen-
tation in any dimension of space. It also governs its numerical robustness
(condition number of the matrix playing the central role in the projection)
and its stability - say its sensitivity when modifying the sampling partition.
Moreover, as studied in [? ],[? ], F-projection offers an interesting flexibility,
as soon as the kernel and the diameter of the partition can be locally mod-
ified in order to better represent some regions of the signal having different
behaviors (more oscillating ones for instance).

Another track for a future work is to show that, in a more precise manner,
or in a more specific context of application, the linear - triangular or pyrami-
dal - fuzzy projection is the most simple and natural one. Indeed, we have
highlighted the fact that the sensitivity of the representation with respect to
modifications of its generic kernel is low for the choice of the linear kernel.

For all these reasons, F-projection should be a good numerical compro-
mise between easy implementation, numerical robustness and stable repre-
sentation in the requirements of fuzzy representations.
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[15] M. Štěpnička, O. Polakovič, A neural network approach to the fuzzy
transform, Fuzzy Sets and Systems 160 (2009) 1037-1047.
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