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RESUME. Le tenseur de Hooke d’un matériau élastique (linéaire isotrope) dépend de deux para-
metres : le module d’Young E et le coefficient de Poisson v. Un probleme intéressant - du point
de vue médical - est de détecter des inhomogeénéités ou le module d’Young prend une valeur
différente du reste.

On propose ici une méthode pour reconstruire une approximation du module d’Young, en sup-
posant qu’il est constant sauf dans certaines régions ou il prend une valeur différente. L’outil
principal est une méthode générale pour les problemes inverses : il s’agit d’une implémentation
économe en mémoire et en calculs de la méthode de Gauss-Newton, basée sur I’utilisation de
la dérivation algorithmique en mode direct et en mode adjoint.

Cette méthode est validée par des résultats expérimentaux : la propriété de régularisation de
I’algorithme de Gauss-Newton permet de localiser les plus grosses inhomogénéités.

ABSTRACT. The Hooke tensor of a linear isotropic elastic material depends on two parameters :
the Young modulus E and the Poisson coefficient ». An interesting problem - from the medical
point of view - is to detect inhomogeneities where the Young modulus takes a different value
from the background.

A method is proposed here to reconstruct an approximation of the Young modulus, assuming it
is constant except in some regions where it takes a different value. The main tool is a general
method for inverse problems : it is an implementation of Gauss-Newton’s method that uses few
memory and few computations, based on the use of direct and adjoint derivative.

This method is validated with experimental results : the regularization property of Gauss-
Newton’s algorithm allows to locate the larger inhomogeneities.

MOTS-CLES : élastographie, imagerie médicale, optimisation topologique, probléme inverse, élas-
ticité, échographie.

KEYWORDS: elastography, medical imaging, topological optimization, inverse problems, elastic-
ity, echography.
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1. Introduction

Prostate and breast tumors can have a Young modulus much higher than the sur-
rounding safe tissue. Their detection by clinical palpation requires that the hard no-
dulus have to be big or near enough from the skin. Elastography was introduced by
J.Ophir et al. [OPH 91] to provide an elasticity image by comparison of two sono-
grams before and after a small external compression. The main drawback of this tech-
nique is that elastograms are noisy and difficult to read. A recent review article on
elastography is [OPH 02].

The inverse problem framework [KIR 96] is used to improve elastograms. Gauss
Newton algorithm is a regularization method for inverse problems, it chooses a solu-
tion of minimal norm. Indeed, it is shown here that the Gauss Newton method can be
implemented thanks to both forward and reverse modes of algorithmic differentiation.
This implementation of the Gauss Newton algorithm adds data from the physical mo-
del to go through the lack of measured data, it has the advantage of being no more
expensive than the gradient method and gives a better convergence.

In this paper, the direct problem for elasticity is recalled (section 2). We explain
then (section 3) the strategy of the inverse problem : reconstructing the Young modulus
from the radial displacement under known boundary conditions. The implementation
of Gauss-Newton algorithm using forward and reverse modes of algorithmic differen-
tiation is then splitted in short algorithms. In the last section, experimental results are
given.

2. Direct problem

Consider a smooth domain € in the plane. The boundary of €2 is divided into two
parts : 90 = 'y U T'p. The domain € is filled with an elastic material, subject to a
displacement u € L?(Q, R?). There are no volume forces, there is a known displa-
cement d on I'p and known forces f on I'y. The Lamé coefficients of the material
A = Az) = ME(z) and p = u(z) = poE(x) depend on the space variable (this is
equivalent to assuming the Poisson ratio v is constant, and the Young modulus E(x)
depends on the space variable).

The boundary values problem is to find a displacement field » and a stress field o
defined in 2 by :

o = Xre(w)l+2ue(u) Q
—dive = 0 Q
(BP) aon = f FN

u = d FD
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Perform a degree one finite elements method : the finite elements version of the
mixed boundary problem (BP) is equivalent to the linear system :

Ag=1b, [1]

where ¢ € R2" is the displacement vector, b € R>2" is defined by the boundary
conditions and A is the stiffness matrix.

The stiffness matrix A depends on the Young modulus distribution E, this matrix
is denoted A(E). Note that E — A(E) is an affine map. Let A be its linear part.

3. Inverseproblem

We look for inhomogeneities having Young modulus E» in a material having
Young modulus E; . The known measure is the radial displacement under known boun-
dary conditions, and the unknown is the location of the inhomogeneities.

The radial displacement at a point M is given by u,, = L.u, where L is a linear
operator. The n x 2n matrix of the discretized version of this operator can be easily
formed, this matrix is also denoted L.

We want to minimize the following quantity :

, 1 measura 1
§(E) = S L — wmess | = S| F(E)|?,

where F(E) = L.ug — ul*®", with ug solution of A(E)ug = b.

The idea is to apply one step of the Gauss-Newton algorithm, starting from an
homogeneous distribution £ = E; : we shall compute an iterate of Newton E + d
with d solution of :

DFTDFd = -DFTF.

The vector d will be searched by the conjugate gradient method. Indeed, the conjugate
gradient method needs only to know the product of the given matrix by a vector,
avoiding thus to compute the whole jacobian matrix, a matrix-matrix multiplication
and the use of memory to store a (non sparse) matrix.

For the computation of DFTDFx we use the algorithmic differentiation rules,
and proceed as follows :

1) Computing z = DFx

It is the directional derivative of a vectorial function : use forward differentiation.
2) Computing DFT 2

It is a scalar criterion : use reverse mode of algorithmic differentiation.

Proposition 1 (Computing z = DF'z)
z=1Ld
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where § is solution of the linear system

where A(z) = A(z) — A(0).

Proposition 2 (Computing DFT z) Let vy € R2™ be the solution of the linear sys-
tem

Aty = —LT2,

Then for any vector h € R™ :

(DFT)z.h = [D(FT2)].h = (X(h)uE | UE)

Corollary 1 (Computing DFTF) Letwg € R2" be the solution of the linear system
ATw = —-LTF, [2]

Then
Vhe R*, (DFT)F.h = (A(h)ug |wg).

Algorithm 1 : Finding the Young modulus distribution :

input : mesh, Ey, v, boundary conditions, umeasur-

e construct the matrix L from mesh data,

e compute the stiffness matrix A assuming homogeneous Young modu-
lus E = E,, compute the direct state u g,

e compute the adjoint state wg,

e compute DFT F using equation [2]

e solve for d the equation DFTDFd = —DF™ F using the conjugate
gradient method, the multiplication of a vector by DFT DF is given by
algorithm 2

o the estimated Young modulus distribution is E + d.

Algorithm 2: Computing y = DFT DFz for a given vector

input : mesh, v, stiffness matrix A(E), direct state u g, matrix L

e solve for & the equation A(E)S = —A(z)ug,

e compute z = L.§ (see proposition 1),

e solve for vg the equation ATvg = LTz,

e the components (y;) of y are given by y; = (A(e;)ur|ve) (see pro-
position 2).
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Le gradient

Figure1. The phantom experiment Figure 2. The gradient

4. Experimental results

We have applied the algorithm above to experimental data obtained by R.Souchon
[SOU 04] : inside a phantom of gelatin including six inhomogeneities (of different
sizes), a ball is inflated (see fig.1) : the measures are the radial displacements bet-
ween before and after inflation. The imaging system is based on an ultrasound scanner
(Combison 311, Kretz, Austria) equipped with a transrectal probe (IRW 77AK, Kretz,
Austria).

The data are treated as follows :

1) the boundary conditions are not exactly known, but reconstructed using an effi-
cient implementation of Gauss-Newton algorithm similar to the one explained above
(but simpler) : we look for Dirichlet conditions on the inner boundary, and Neumann
conditions on the outer boundary.

In order to show that the gradient of the cost functional gives no relevant infor-
mation, we show in fig. 2 the value of the gradient. The inhomogeneities are located
inside the gelatin, not on the boundary.

2) once the boundary conditions are estimated, algorithm 1 is applied to estimate
the Young modulus distribution. Indeed, a Tikhonov regularization term is added to
the cost functional : J(E) = L||F(E)||* + «||E||%.

The results are shown in fig.3. We can distinguish four among the inclusions, the
other two inclusions are smaller and do not appear on our results.
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estimation courante du contraste
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Figure 3. Estimation of the contrast
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