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RÉSUMÉ. La technique MLIT (Moving Lagrangian Interface Technique) utilise un maillage 
fixe pour la résolution du problème de dynamique des fluides, l’interface entre les deux 
fluides étant modélisée par un ensemble de marqueurs mobiles. Toutefois, comme un schéma 
lagrangien est employé pour avancer la position de l’interface, la distribution des marqueurs 
varie au cours du calcul et peut nécessiter des remaillages. Nous proposons ici une technique 
de placement des nouveaux marqueurs, basée sur l’approximation diffuse de la courbure. La 
technique proposée intègre la contrainte de préservation du volume et tient compte des 
restrictions géométriques. Cette approche est illustrée par un exemple de mouvement propre 
d’un liquide dans un réservoir. 
ABSTRACT. In the framework of fixed-mesh finite element approaches for the computation of 
the fluid dynamics of the problem, a moving lagrangian interface technique (MLIT) was 
proposed to describe the interface. Nevertheless, as a lagrangian scheme is used to move the 
interface, its updated position could be represented by a highly distorted distribution of 
markers. To avoid this problem, we propose in this work a new remeshing technique applied 
to the interface. The remeshing is performed according to a curvature-based criterion by 
using a diffuse approximation technique. Moreover, the new distribution of points needs to be 
volume preserving. This condition is included as a constraint in the remeshing algorithm and 
it is the novel contribution of this work. Geometric restrictions, size distribution quality and 
physical aspects are all considered in the proposed formulation. Particular features of their 
capabilities are evaluated in simple test: a sloshing problem. 
MOTS-CLÉS :Interfaces fluide-fluide, remaillage, Approximation Diffuse. 
KEYWORDS:Fluid-fluid interfaces, remeshing, Diffuse Approximation. 
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1. Introduction 

Many engineering applications require the analysis of time-dependent 
incompressible flows with moving two-liquid interfaces or free surfaces. Filling 
processes or open channels flows give an idea of the wide range of problems 
involving moving boundaries and interfaces. Many investigations have been 
devoted to numerical developments of formulations able to deal with the treatment 
of this kind of problems. Either moving or fixed domain discretizations are adopted 
to describe problems involving interfaces. All of them provide alternative solutions 
to update the material front and to overcome severe difficulties present in the 
numerical simulations of moving interfaces. In addition to the inconveniences 
related to the numerical schemes used to solve the fluid dynamics equations usually 
coming from the incompressibility constraint and relevant convection terms, there 
are many others due to the presence of two fluids and to the algorithm used to move 
the interface. In particular, global mass preserving and discontinuity in material 
properties are two of the most important aspects to be properly described in order to 
avoid numerical oscillations and to produce accurate results.  

2. The mass preserving algorithm for the remeshed interface 

A mass conservation algorithm applied to the remeshed interface is presented in 
this section. A remeshed interface position given by (xrem,yrem) is not, in general, a 
mass preserving configuration. Then, a further correction in the front coordinates, 
denoted as (vpxrem,vpyrem), needs to be performed in order to attain a known given 
volume Ω1 (Figure 1.a).  

 

 
a) 

 
b) 

Figure 1. Mass preserving algorithm: a) interface description,  b) move directions. 

The coordinates of each node j are (xrem(j),yrem(j)) for j=1,…,nrem, where nrem is 
the number of nodes. In these conditions, an 1D isoparametric representation of the 
interface within the interval [j,j+1] is given by: 
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where -1≤θ≤1 the isoparametric coordinate associated to the shape function 
matrix N  ( )1(5.0N1 θ−=  and )1(5.0N2 θ+= ) such that x1

rem = xrem(j), 
x2

rem = xrem(j+1) and y1
rem = yrem(j), y2

rem = yrem(j+1).  

The computation of the grey area in Figure 1.a is performed through the Green-
Riemann formula 
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resulting, for the adopted linear shape functions, in the following expression: 
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of a tridiagonal matrix whose components are independent of the distance 
between markers. 

The volume to preserve can be written, according to equation (2), as: 

1rem
vpT

rem
vp YQX Ω=     (5) 

considering that the volume preserving new coordinates are given by: 

remremrem
vp XXX βδ+= ,  remremrem

vp YYY βδ+=         (6) 

δXnew and δYnew being the admissible variations of the coordinates and β is a 
scalar parameter. These variations are assumed to be described by: 

[ ] tu(j)(j)(j)(j)x rem δδ nV ⋅−= sign , [ ] tv(j)(j)(j)(j)yrem δδ nV ⋅−= sign       (7) 

where V=(u,v). The expressions (7) are proposed on the basis that the admissible 
motion of the markers is in the direction of their velocities and, besides, they must 
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compensate the loss (or gain) of mass flow through the interface. It is important to 
remark that with this procedure a physically-based correction is attained. Then, by 
introducing equations (6) and (7) into (5), we have the following quadratic equation 
on the β parameter: 

0cba 2 =++ ββ     (8) 

where the values of a, b and c are: 
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The solution of equation (8) results in two real roots (the variations (7) were 
found to always guarantee the condition b2 – 4ac ≥ 0). In practice, β is chosen as the 
root with a minimum absolute value. With this parameter, equation (6) gives a mass 
preserving interface position. This approach provides a remeshed interface position 
with zero error in the volume. No iterations are needed to achieve convergence. This 
mass conservation corrector algorithm can be applied between two different 
configurations with different number of markers. The technique can be also 
extended to 3D where in this case the expression equivalent to (8) is of third degree 
on β. 

2 Numerical example: Two-liquid interface problem 

A closed container (Figure 2.a) with dimensions 0.8 m x 0.6  m is filled with two 
fluids with the lighter one being on top of the heavier one. The initial, inclined 
interface is linear with an average height of 0.3 m and slope 1:4. The fluid 
properties [1] used in the present analysis are ρ1= 2 kg/m3, ρ2= 1 kg/m3, µ1 = µ2 = 
0.001 kg/ms with g=0.294 m/s2 (the effect of different set of properties has been 
assessed in [49]). The boundary conditions consist of no-slip conditions at the upper 
and lower walls, and slip conditions at the side walls. Both fluids are initially at rest. 
Two different meshes are used (Figures 2.b and 2.c) to test the performance of the 
improved formulation when, in particular, coarse meshes are used. Note that the 
meshes in Figure 2 are refined in the zone where the movement of the interface is 



Remeshing of Interfaces in Two-Fluids Flows     5 

expected to take place. The computations are performed with two different time 
steps of sizes 0.5 s and 0.1 s. 

The time history of the relative wave height at the left side of the container (i.e., 
(hA – 0.3)/0.3, hA being the instantaneous wave height at point A) obtained using 
different numerical approaches is presented in Figure 3. The results computed with 
both methods using the finer mesh and the smaller time step are practically identical. 
These results also adjust to those computed in [7,8] that are considered as the 
reference ones. Moreover, when the coarse mesh and the smaller time step are 
considered, the MLIRT provides slightly better results than those corresponding to 
ETILT. Nevertheless, erroneous results are obtained when using the ETILT with 
greater time step for both meshes. On the other hand, the relative wave height at 
point A predicted by the MLIRT exhibits a good response also for the greater time 
step. This satisfactory behavior in relatively coarse both time and space 
discretizations is an attractive aspect of the proposed methodology. Further 
investigation on this subject needs to be done in more severe problems. 

 

a) b)  

c)

 

Figure 2. Two-fluid interface problem: a) problem description and meshes used in 
the analysis: b) fine and c) coarse (respectively identified as “fm” and “cm”). 

The interface profiles at different instants of the analysis with MLIRT are 
presented in Figure 4. Although high interface curvatures are not developed, their 
changes during the analysis are properly captured.  

a)  b)  

Figure 3. Two-fluid interface problem. Analysis of time and mesh size dependency: 
a) ETILT solutions, b) MLIRT solutions using the fine (fm) and coarse (cm) meshes 
and different time discretizations. 
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t= 1.0 s 

 
t= 2.0 s 

 
t= 3.0 s 

 
t= 5.0 s 

 
t= 10.0 s 

 
t= 12.0 s 

Figure 4. Two-fluid interface problem. MLIRT solutions for the interface position at 
different instants of the analysis. 

10. Conclusions 

In this work, a volume preserving remeshing technique based on Diffuse 
Approximation of curvatures aimed at redefining the markers’ distribution on the 
interface has been described. The remeshing scheme is embedded in the two-fluid 
dynamic computation. The numerical predictions of the interface position during 
time have been found to be nearly independent of the number of initial markers and 
their distribution.  
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