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ABSTRACT. In this paper we introduce two main ideas :
We reformulate global optimization problems in term of boundary value problem (BVP). This
allow us to introduce new optimization algorithms using what is known to solve BVPs. Indeed,
current optimization methods, including non-deterministic ones, are based on discretization of
initial value problems for differential equations.
On the other hand, we introduce low complexity sensitivity evaluation techniques using incom-
plete sensitivity concept, reduced complexity models and multi-level discretizations. Sensitivity
knowledge permits to distinguish between points of a Pareto front in multi-criteria optimization
problems characterizing these points from a robustness point of view.

RÉSUMÉ. Dans cette présentation nous présentons deux idées :
Reformuler les problèmes d’optimisation globale en terme de problème à valeurs aux limites.
Ceci permet de présenter les problèmes d’optimisation globale sous un nouvel angle et de dé-
couvrir de nouveaux algorithmes en utilisant ce que l’on connaît sur la résolution des problèmes
à valeurs aux limites. En effet, toutes les méthodes d’optimisation actuelles, y compris les non-
déterministes, sont basées sur la résolution de problèmes à valeurs initiales pour des équations
différentielles.
Nous introduirons aussi les techniques de calcul de sensitivités à faible complexité telles que les
gradients incomplets, les modèles à complexité réduite et les discrétisations à niveaux multiples.
Ceci est intéressant en optimisation sous contrainte, même lors de l’utilisation des techniques
sans gradient. En effet, cette information supplémentaire permet de discriminer entre les points
d’un front de Pareto en optimisation multi-critère, en mettant en évidence le caractère plus ou
moins robuste d’un point du front.
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1. Introduction

A fundamental remark on classical gradient based minimization algorithms, hav-
ing a continuous representation as a cauchy problem for a first order dynamic system
[MOH 02, ATT 96], is that they can find the global minimum if the initial condition
belongs to the attraction basin of the infimum and that otherwise the minimizing se-
quence they build is in principle captured by a local minimum. In that sense, the
problem of global minimization with a gradient based algorithm becomes the pre-
scription of an initial condition for the mentioned Cauchy problem in the suitable
attraction basin. On the other hand, one notice that minimization algorithms, includ-
ing non-deterministic ones such as genetic algorithms, are discrete forms of first or
second order ODE (or system of ODEs) [IVO 05a]. This paper presents a formulation
of global minimization problems in term of over-determined boundary value problems
(BVP) and show how to solve these using methods for the solution BVPs.

Another important issue in minimization is sensitivity evaluation. Gradients are
useful in constrained optimization even if a gradient free approach is used. Indeed,
the knowledge of sensitivity permits to qualify various points of a Pareto front from
the point of view of robustness. However, sensitivity evaluation for large dimension
minimization problems is not an easy task. The most efficient approach is to use an
adjoint variable with the difficulty that it requires the development of specific soft-
ware [CéA 71, MOH 02]. We show how to reduce the effort in sensitivity evaluation
introducing the concept of incomplete sensitivity.

These ingredients are illustrated on various configurations of industrial optimiza-
tions.

2. Low-complexity Global optimization method

Most deterministic minimization algorithms can be seen as discretizations of the
following dynamical system [MOH 01, MOH 02]:
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This is an over-determined boundary value problem which can be solved using clas-
sical techniques for BVPs (e.g. shooting, finite differences,...). Because we are in-
terested by constrained global optimization we prefer to express the condition at =F>A@
on the functional instead of its gradient. Indeed, in our context first order optimality
condition is usually not satisfied at infimum.

This over-determination is an explanation of why we should not solve global op-
timization problems with methods which are particular discretizations of first order
differential systems. We could use variants of classical methods after adding second
order derivatives [ATT 96]:
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with G $�1 2 . In practice, we consider P G PRQSQUT in order not to introduce too much
perturbation in the method.

The over determination can be removed, for instance, by considering 	?� 
WV for
[1] (resp.

�	 ���0��
XV for [3]) as a new variable to be found by the minimization of:
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To perform the minimization of [4], we then consider the following algorithm[ ( ��V ( �EV ! � , with
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– return v

The line search minimization might fail. For instance, a secant method degenerates
on plateau and critical points. In that case, we add an external level to the algorithm[ ( , keeping

V ( unchanged, and looking for
V ! by minimizing a new functional }Y

defined by: }Y ��oq�9
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To perform the minimization of [5], we then consider the following two-level al-
gorithm
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The choice of initial conditions in this algorithm contains the non-deterministic
feature of the algorithm. The construction can be pursued building recursively

Yh� ��V � ��
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 }Y ��V�� where

c
de-

notes the external level. Mathematical background for this algorithm and validation on
academic test cases and solution of nonlinear PDEs as well as geometrical interpreta-
tions of the different functionals (

�
,
Y

,
Y !

,
Y��

,...) are available in [MOH 02, IVO 05a].

In practice, the algorithm gives satisfaction if the trajectory passes close enough
to the infimum (i.e. in �p� � 	 4 � where � defines the accuracy in the capture of the
infimum). This means that we should consider for

Y
a functional of the form

Y ��V5�.
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generated by [1] and = ( 
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In cases
��4

is unknown, we set
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and look for the best solution for a
given complexity and computational effort.

3. Low-complexity sensitivity

Consider a general simulation loop, leading from shape parametrization 	 to the
cost functional

�
:
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is the shape geometry,
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An incomplete definition of the sensitivity [MOH00] can be used, neglecting state
variations, if the cost function is, or can be reformulated, to have the following char-
acteristics: The cost function

�
and the parameterization 	 are defined on the shape

(or a same part of it).
�

is of the form:
��� 	 �%
 �B¤�¥ � 	 �¦�*�fa?��§?�n�#¨ where © 


shape or part of the shape, which means that it involves a product of geometrical and
state based functions. -The shape curvature is not too high (this has to be quantified).
This leads to neglecting the last term in [7].

We can illustrate this idea on the following simple example. Consider as cost
function

����_��ª
«_5¬5§ > ��_�� and as state equation the following diffusion equation:�.§ >B> 
 T � on
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¯��� which has as solution
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C� 	 ! �#� I���  � T � 	 � �*� �°�  	 � �#� e . We are in the domain of application of the incomplete
sensitivities: The cost function is product of state and geometrical quantities (larger
is
e

, better is the approximation). It is defined at the boundary. The curvature of the
boundary is small (here no curvature at all). The gradient of

�
with respect to


is

given by:
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term between parenthesis is the state linearization contribution which is neglected in
incomplete sensitivities. We can see that the sign of the gradient is always correct and
the approximation is better for large

e
.

One way to improve incomplete evaluation of sensitivities is to use reduced com-
plexity models which provide an inexpensive approximation of the missing term in
[7] (i.e. the last term). For instance, consider the following reduced model for the
definition of }��� 	 ��µ¶�"�L��� 	 ��� . Suppose }� is a wall function to be used instead of the
full flow equation on the wall and giving wall values knowing local internal flow de-
scription. The incomplete gradient of

�
with respect to 	 can be improved evaluating

the former term in [7] linearizing the simple model. Note that }� is never used in the
definition of the state

�
, but only in an approximation of ¢ }� � ¢ 	 . It is also important

to notice that the reduced model needs to be valid only over the support of the control
parameters. More precisely, we linearize the following approximate simulation loop
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A simple example shows the importance of the scaling introduced in [8]. Con-
sider
��� 	 ��
C¾À¿0Á�� T I 	 � scalar for simplicity and
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Another way to define low-complexity models is to use a different level of dis-
cretization for

�
with the same state equation. We can look for state sensitivity on

coarse meshes while the state is evaluated on much finer discretizations:/�·/ > 
 ¹
·
¹ >
�,��ÆO�E�BÆ0�DI ¹
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·
¹
º ¹
º
¹B¼ ¹�¼¹ >
�L��ÇÆ ��ÆO�E� Ç � where

�5ÇÆ is an interpola-
tion operator between the fine and coarse meshes,

¥
and È subscripts denote fine and

coarse meshes with typically 4 times more mesh nodes in the fine mesh. By fine mesh
we mean a mesh enough fine for the solution to become independent from the mesh.
This means that the linearization is performed on a coarse mesh, however around an
accurate state variable computed on a fine mesh. In that case, obviously if the coarse
mesh tends to the fine one, the approximate gradient tends to the gradient on the fine
mesh.

4. Applications

We illustrate the previous ingredients through the following optimization prob-
lems: temperature and pollution control in a bunsen flame [DEB 04], shape optimiza-
tion of coastal structures [ISE 05], shape optimization of fast-microfluidic-mixer de-
vices [IVO 05b], optical multiplexer fibers design [IVO 04], shape optimization of



Optimisation globale à complexité réduite 5

under aerodynamic and acoustic constraints for internal and external flows [MOH 01,
MOH 04b, MOH 04a].

5. Conclusion

A global optimization algorithm based on the solution of boundary value has been
presented. To keep the computational complexity low and make optimization prob-
lems easy to solve with industrial softwares approximate gradient evaluation has been
introduced.
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