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 ABSTRACT. The Particle Finite Element Method (PFEM) is applied to the solution of three 
dimensional casting processes with solidification problems for a viscous incompressible fluid. 
One of the most salient features of the method is to treat the classical Navier-Stokes 
equations in a fully non-linear Lagrangian description, including the large deformations of 
the fluid during the filling process. The stabilisation of the convective term is then completely 
bypassed. A modified fractional step is presented to ensure mass conservation. A fully 
thermally coupled flow and the solidification strategy are also introduced.  

 RÉSUMÉ. La méthode des éléments finis particulaires (PFEM) est utilisée pour la résolution 
des procédés de mise en forme modélisés par des fluides visqueux incompressibles. 
L’utilisation de la formulation Lagrangienne appliquée aux équations de Navier-Stokes 
permet d’éviter la classique difficulté numérique due au terme convectif inclus dans la 
dérivée temporale totale. Un schéma de pas fractionnaire modifié est présenté pour assurer 
la conservation de la masse. Le couplage thermique au travers de l’approximation de 
Boussinesq et le processus de solidification sont également présentés. 

 KEYWORDS: Lagrangian description, free surface problem, incompressibility, solidification, 
mass conservation. 

MOTS-CLÉS : Description Lagrangienne, surface libre, incompressibilité, solidification, 
conservation de la masse. 
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1. Introduction 

In casting processes, one of the biggest difficulties to be solved is created by the 
appearance of the free surface during the mould filling process, which has to be 
located. Various methods have already been studied with fixed grid like VOF, level 
set and pseudo-concentration. They all use a hyperbolic-like transport equation to 
solve the movement of the free surface as well as the Navier-Stokes equations. 
Various strategies have also been presented to track and smooth the free surface. 
Here, we take the choice to follow the free surface during its motion by following 
the movement of the particles in a Lagrangian manner, which implicitly gives the 
position and the evolution of the free surface. Furthermore, using the Lagrangian 
description allows to use total temporal derivatives and to circumvent the well-
known difficulty of the stabilization of the convective term. However, due to the 
large motion of the fluid, which only produces deviatoric stresses through 
deformation rates, a complete remeshing has to be performed at each time step. 
Furthermore, the non linearity of the convective term is now present in all the 
spatial derivatives of the Navier-Stokes equation. 

The Particle Finite Element Method (PFEM) (Idelsohn et al., 2004, Oñate et al., 
2004) is a powerful method to solve free surfaces problems and is extended here to 
discontinuous pressure approximations and solidifications problems.  
  

2. Numerical model of the fluid equations 

2.1. The Navier-Stokes equations in a Lagrangien framework 

We recall quickly the Lagrangian equations of motion for a Newtonian 
incompressible fluid flow and we refer to (Aubry et al., 2004) for a complete 
presentation. The momentum conservation reads: 
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T

X
T

X DFdivFdivV −− +−= JJp
dt
d µρ           [1] 

)(xgradF X=      [2] 

Fdet=J        [3] 
where F is the transformation gradient, J is the Jacobian of the transformation, D the 
symmetric part of the strain rate, p the pressure, 0ρ  the density and µ  the dynamic 
viscosity of the fluid. Incompressibility is expressed through the mass conservation 
as: 
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1=J or       [4] 0)( =−1
X F:Vgrad

We will see that this equation is particularly important for our application. 
Furthermore, as F is a function of x we see that the right hand side of [4] is highly 
non-linear respect to the displacement, which is the main unknown in a Lagrangian 
approach. Equations [1] and [4] must be completed with appropriate boundary and 
initial conditions. 

2.2. Space discretization 

Applying the finite element Galerkin method to equations [1] and [4], we obtain: 

FPUBVUKVM =++ )()(
dt
d    [5] 

0)( =VUB  

where V and U are the velocity and displacement vectors, and the matrix follow the 
classical notations for the finite element solution of the Navier-Stokes equations. 
Once more the non linear dependence of the displacement of all the matrices has 
been emphasized. Furthermore, it should be noted that the incompressibility 
condition [4] has been changed for: 

0)( =− Vdiv x     [6] 

which is the time derivative of [4]. Evidently, [4] and [6] are equivalent at the 
continuum level. We will see that the time integration of [6] will play a major role in 
the mass conservation. 

2.3. Fractional step, preconditioned Uzawa method and mixed elements 

The time discretization is performed with a θ -scheme and through a classical 
fractional step, designed at the algebraic level following (Codina, 2001). After the 
introduction of an auxiliary velocity variable and a few algebraic manipulations, the 
scheme reads: 

θnnθnθnθnn1n FPUGVUKVVM +++++ =++− )(~)()~( γ
dt

1nθnn1nθn1 VUDPPUGDM ++++− =− ~)())(( γdt   
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0PPUGVVM n1nθn1n1n =−+− ++++ ))(()~( γ
dt

  

where is the time increment and dt γ is a numerical parameter varying from 0 to 1. 
As noted in (Codina, 2001), the two pairs of interesting values for (γ ,θ ) are (0,1) 
which is first order in time, and (1,1/2), which is second order in time. At this point, 
a classical approximation is usually made: 

LGDM 1 ≈−      [7]
    
where L is the Laplace operator for continuous pressure. Writing the previous 
fractional step in terms of Vn+1, a natural stabilization term of the form dt(DM-1G-
L)(Pn+1 –γPn) then appears. This term is efficient only for first order schemes and 
other strategies have to be designed for second order in time and equal order 
interpolation (Codina, Idelsohn et al., Oñate et al.). Furthermore, this induces a 
wrong boundary condition for the pressure and produces a non-discrete divergence 
free end-of-step velocity.  

Instead of using the precedent approximation, we replace the velocity mass 
matrix in by its lumped mass matrix version in the fractional step so that 
the same boundary conditions as the monolithic approach are applied, and an 
exactly discrete divergence-free solution is obtained by also replacing the consistent 
velocity mass matrix by its lumped counterpart in the projection step of the 
fractional step. Furthermore, discontinuous approximations of the pressure are now 
available as well as a second order in time for a mixed finite element satisfying the 
inf-sup condition.  

GDM 1−

2.4. Mass conservation 

A classical difficulty of free surface problems is the conservation of mass during 
the computation. Incompressibility is enforced only weakly through the pressure 
acting as the Lagrangian multiplier of this condition. A valuable property of 
discontinuous pressure elements is the enforcement of mass conservation at the 
element level. In solid mechanics with incompressible media, condition [4] is 
usually weakly enforced and linearized through a Newton-like method. In fluid 
mechanics, equation [6] is usually preferred due to its Eulerian form. So we see that 
for a Lagrangian fluid, mass conservation will depend crucially of two factors, 
namely a good approximation of the incompressibility and a good integration of the 
velocity in time, which is confirmed through numerical results. We therefore use a 
second order fractional step with a P1++/P1 element with discontinuous linear 
pressure satisfying the inf-sup condition. With the discontinuous pressure, a better 
mass conservation is obtained, but more than else allows using a second order 
scheme which provides a much better integration of condition [6]. 



PFEM applied in mould filling 5 

3. The thermal problem 

3.1. The energy conservation 

In a Lagrangian description, the energy conservation and its weak form read: 
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where C is the heat capacity and κ the conductivity of the media considered. The 
non linearity is also reflected in the spatial operators of the right hand side.  

3.2. Thermo-mechanical coupling 

The equations of motion of the fluid are coupled with the heat equation through the 
Boussinesq approximation by introducing a dependence on the density of the 
temperature in the gravity forces. On the other side, the temperature is implicitly 
coupled with the displacement as the spatial operators related to the temperature 
equation are function of the displacement. The system is then fully coupled. 

3.3. Solidification 

We introduce solidification effects through the latent heat release and the solid 
fraction function. The mushy zone is modelled as a variable viscosity zone until the 
solid fraction of the zone becomes 1.  

4. Meshing and boundary recognition 

4.1. Remeshing 

As previously mentioned, the large deformations of the fluid produce severe 
distortion in the mesh so that a remeshing is performed every time step. This 
remeshing, due to its frequency must be fast and robust, particularly in a three-
dimensional context. There we have chosen to use the revisited Delaunay based 
mesh generator, as described in (Frey et al, 1999). It allows eliminating slivers 
during the generation process. Furthermore, as the Delaunay kernel connects points, 
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the cloud of nodes of the last time step could be used to create the new mesh, which 
minimizes the interpolation error. 

4.2 Boundary recognition 

The α -shape method (Edelsbrünner et al, 1994) is used to determine the free 
surface, whereas the solid surfaces are explicitly known. Mainly, the α -shape 
method tries to reconstruct the shape of a cloud of points by relying on a distance 
argument. In practice, it determines if a given tetrahedral must be taken as a fluid 
element if its radio is not larger than a local value corresponding to a given size 
map. The α -shape can be used in a constrained isotropic context, and tests are 
currently being performed in an anisotropic context.   

5. Conclusions 

An efficient and robust solution is presented for the incompressible Navier-
Stokes equations coupled with thermal effects and solidification. The Lagrangian 
description provides a natural framework to treat free surface problems appearing in 
casting processes. The modified fractional step allows uncoupling the velocity and 
the pressure computation, the use of discontinuous pressure elements and second 
order time discretization. This appears to be of utmost importance in the mass 
conservation process in a moving grid strategy. 
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