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ABSTRACT
A nonlinear fluid-elastic continuum model of a slender

cantilevered plate subjected to axial flow directed from the
free end to the clamped one, also known as the inverted
flag problem, is proposed. A nonlinear unsteady slender
wing theory is employed to express the fluid-related forces
acting on the plate. It is based on potential flow theory
for inviscid fluids. The Euler-Bernoulli beam theory with
exact kinematics and inextensibility is employed to derive
the nonlinear partial integro-differential equation govern-
ing the dynamics of the plate. Discretization in space is
carried out via a conventional Galerkin scheme using the
linear modeshapes of the cantilevered beam. A Newton
solver is implemented to obtain equilibrium solutions and
integration in time is conducted using Gear’s backward
differentiation formula. A bifurcation diagram in terms
of flow velocity is constructed in order to gain insight on
the stability and post-critical behaviour of the system. It
is shown that the undeflected static equilibrium is stable
prior to a supercritical Hopf bifurcation giving rise to a
flapping motion around the undeflected static equilibrium.
By further increasing the flow velocity, the flag displays
flapping motions around deflected static equilibria and
change to fully-deflected static states at even higher flow
velocities. These predictions are in excellent agreement
with existing experimental data available in the literature.

NOMENCLATURE
H , L, h Flag height/length/thickness
A D H=L Flag aspect ratio
�, �f Flag/fluid mass density
D Flag flexural rigidity
A Flag cross-section area
I Flag second moment of inertia
� Material viscosity coefficient
cd External viscous damping coefficient
t , x 2 Œ0; L� Time and space parametrization
u.x; t/ Longitudinal in-plane deflection
w.x; t/ Transverse deflection

U Free stream fluid flow velocity
˛.x; t/ Instantaneous angle of attack
�.x; t/ Angle of relative flow velocity
 .x; t/ Mid-plane slope = cross-section rotation
T .t/, V.t/ Flag kinetic/potential energy
�r.x/, qr.t/ r th modeshape/generalized coordinate
FN.x; t/ Reactive component of fluid forces
FR.x; t/ Resistive component of fluid forces
Vn.x; t/ Relative velocity normal to the centre-line
… Dimensionless flow velocity
�t , Œ��t , P� First time derivative
�x , Œ��x First space derivative
�t t , Œ��t t , R� Second time derivative
Œ��xx , �xx Second space derivative

INTRODUCTION
An inverted flag is here understood as a cantilevered

plate subjected to axial flow and clamped along its down-
stream edge in the flow. Applications, particularly in en-
ergy harvesting systems, have motivated recent studies
in the literature. The flapping flag instability was first
explored experimentally by Kim et al. [1] and later by
Sader et al. [2] for various aspect ratios. Experimental
observations have revealed that the flag aspect ratio can
dramatically alter the dynamics. In particular, slender flags
exhibit a buckling behaviour via a divergence instability.
Wide flags, on the other hand, undergo a flapping motion
prior to fully bending on one side via buckling. Moreover,
the undeflected static equilibrium of inverted flags with
smaller aspect ratios loses stability at higher critical flow
velocities. These behaviours have been explored numeri-
cally in recent studies via three-dimensional computational
simulations [3, 4]. In a remarkable work, Sader et al. [5]
performed an experimental and theoretical investigation
and provided an analytical framework to explore the stabil-
ity and dynamics of inverted flags in the asymptotic limit
of zero aspect ratio, employing a steady-flow model to rep-
resent the aerodynamic forces. They found the emergence
of a bistable region wherein both the undeflected and the
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deflected static regimes are stable, which cause inverted
flag to display intermittent dynamics; any contribution of
unsteadiness originating from the flow was neglected in
their analytical model.

The present paper aims at deriving an analytical model
accounting for flow unsteadiness. The resulting nonlinear
dynamics is then investigated in the limit case of slender
flexible plates. The sensitivity of the dynamics to the
aspect ratio is also explored. The results are summarized in
the form of bifurcation diagrams to identify the transition
between various regimes.

MATHEMATICAL FORMULATION
In this section, the kinetic and potential energies of

the cantilevered elastic beam shown in Fig. 1 are derived
on the basis of the conventional nonlinear Euler-Bernoulli
beam theory. Next, the virtual work associated with fluid-
related forces is formulated. Finally, the equation of mo-
tion is obtained via Hamilton’s principle.

 
y 

U 

FIGURE 1: Inverted flag, idealized as a thin Euler-
Bernoulli beam, in axial flow: free at the upstream and
clamped at the downstream of the flow.

Potential and Kinetic Energies
Figure 2 shows a generic point at a distance z from the

mid-plane on the cross-section of the flag; z and x stand
for the transverse and axial directions, respectively, and t
is time. Denoting by w the transverse motion, and by u,
the longitudinal motion of the plate, the inextensibility
assumption reads .1Cux/2Cw2x D 1. As a consequence,

.x; i/

.z; k/

 .x;t/ u.x; t/i

w.x; t/k

Pu.x; t/i
�U i

Pw.x; t/k
Vrel.x; t/

�.x;t/

˛.x;t/

FIGURE 2: Generic infinitesimal element of the beam.
The relative fluidbody velocity reads Vrel D . Pu.x; t/ C
U/iC Pw.x; t/k.

w and u can be expressed in terms of the slope  , also the
angle of rotation of the cross-section, and the velocities
become

Pw.x; t/ D
Z x

0

P .s; t/ cos .s; t/ds;

Pu.x; t/ D �
Z x

0

P .s; t/ sin .s; t/ds:
(1)

The potential and kinetic energies are expressed as

T .t/ D �A

2

Z L

0

. Pw2 C Pu2/ dx C �I

2

Z L

0

P 2 dx; (2)

V.t/ D D

2

Z L

0

 2x dx; (3)

where D D EHh3=Œ12.1 � �2/� and � denotes the Pois-
son’s ratio.

Slender-body Nonlinear Model
The external aerodynamic force acting along the in-

verted flag can be decomposed into the reactive and the
resistive forces, FN and FR, respectively. The resistive
component models the viscous effects such as separation
and drag, while the reactive force originates from the ac-
celeration of fluid induced by the motion of the flag. The
extension of large-amplitude elongated body theory [6, 7]
combined with large displacements (that is, large ) yields

FN D �

4
�fH

2

�
� PVn C ŒVnV� �x �

1

2
V 2n  x

�
; (4)

where Vn D �. Pu C U/ sin C Pw cos and V� D
. PuCU/ cos C Pw sin denote the normal and tangential
components of the relative velocity of the element with
respect to the incident flow, respectively. A closed form
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of the resistive force can be obtained from semi-empirical
expressions or analogical work based on potential-flow
theory. In this paper, the resistive force is modelled on the
basis of the Polhamus leading-edge suction analogy [8] in
the form

FR D �fHU
2

2
.Kp sin˛ cos˛ CKv sin2 ˛/; (5)

with Kp and Kv being determined employing Bollay’s
nonlinear wing model [9]. As shown in Fig. 2, the instan-
taneous angle of attack can be expressed as ˛ D  �� [10]
where the relation tan � D Pw=.U C Pu/ holds. The virtual
work done by the fluid-related forces normal to the plate is

ıWf D
Z L

0

.FN � FR/.ıw cos � ıu sin /dx: (6)

Equation of Motion
Substituting Eqs. (2), (3) and (6) into the extended

Hamilton’s principle and using the following parame-
ters: x� D x=L, t� D t=� , … D �fSL

2U 2=D,
� D L2

p
�A=D, � D �fL=.�h/, ˇ D I=.AL2/,

ka D �A=4, kp D Kp=2, kv D Kv=2, c�d D cdL
4=.D�/,

and �s D �=� generates the following nonlinear dimen-
sionless equation of motion (with the asterisk notation
dropped for brevity):

ˇ R � �s P xx �  xx C…
�

cos 
Z x

1

cf.s; t/ cos .s; t/ ds

C sin 
Z x

1

cf.s; t/ sin .s; t/ ds
�

� cd

�
sin 

�Z 1

x

Z s

0

cos .�; t/ d�ds
�
t

C cos 
�Z 1

x

Z s

0

sin .�; t/ d�ds
�
t

�

� sin 
�Z 1

x

Z s

0

cos .�; t/ d�ds
�
t t

C cos 
�Z 1

x

Z s

0

sin .�; t/ d�ds
�
t t

D 0 (7)

where

cf D ka

h �
…

�
Rw cos � Ru sin C 2 P � Pu cos C Pw sin 

�

C  x
�1
2
Pu2 � 3 Pu Pw cos sin C 3

2

� Pw2 � Pu2� cos2  
�

� Pw2
�
C
r
�

…

�
 x
� Pu � 3 Pu cos2  � 3 Pw sin cos 

�

C 2 P cos 
�
� 1
2
 x
�
3 cos2  � 1�

i

C kp sin˛s cos˛s C kv sin˛sj sin˛sj;

with ˛s D  � atan. Pw=.p…=�C Pu//. The clamped-free
boundary conditions read  .0; t/ D 0 and  x.L; t/ D 0.
Equation (7) is discretized via a Galerkin expansion
 .x; t/ D PM

rD1 �r.x/qr.t/, where �r.x/ denotes the
r th eigenmode of the cantilevered beam and qr.t/, its
corresponding generalized coordinate. In this study, six
modes are employed. This is sufficient to obtain converged
results. The resultant set of nonlinear ordinary differen-
tial equations (ODEs) is solved using Gear’s backward
differentiation formula yielding the time histories of the
amplitude of oscillation. Static equilibria  0.x/ (together
with u0.x/ and w0.x/) are retrieved via a nonlinear New-
ton procedure solving the time-independent discretized
governing equations.

RESULTS AND DISCUSSION
The nonlinear dynamics of the system is now exam-

ined by means of bifurcation diagrams. Phase portraits
and (flapping) flag shapes are also provided. The param-
eters used in the analysis are L D 30 cm, h D 1 mm,
� D 1200 kg m�3, �f D 1:2 kg m�3, D D 2454 N cm2

and � D 0:008. The damping coefficient cd is replaced
by 2�!, where � is the modal damping ratio and ! is the
first dimensionless linear natural frequency. The modal
damping ratio, �, is set to 0:05 for the results obtained in
this section.

Two configurations are considered: H D 3 cm and
H D 10:5 cm corresponding to A D 0:1 and A D
0:35, respectively. Figures 3 and 4 depict the bifurcation
diagrams for inverted flags with A D 0:1 and A D
0:35, respectively, as a function of the dimensionless flow
velocity …. Bold and dashed lines represent stable and
unstable branches of the solution, respectively.

As seen in Fig. 3, no flapping motion is observed
forA D 0:1. When the flow velocity is increased, the
inverted flag deflects abruptly from its stable trivial equi-
librium (no deformation) to a stable deflected equilibrium
via a subcritical pitchfork bifurcation at … D 28:9. Also,
the inverted flag may undergo a sudden large-amplitude
deformation at lower flow velocities due to the emergence
of a stable deflected equilibrium initiating from a saddle-
node bifurcation at … D 8:6. This behaviour agrees with
other existing analytical findings [10, 5].

Figure 4 shows the bifurcational behaviour of the sec-
ond case, that is a larger aspect ratioA D 0:35. Unlike the
first case, the inverted flag undergoes a large-amplitude
flapping motion via a supercritical Hopf bifurcation at
… D 2:05; the amplitude of flapping increases with flow
velocity. Remarkably, increasing the flow velocity causes
a transition from a flapping regime around the undeflected
equilibria to a deformed-flapping regime which the oscil-
lation is around deflected equilibria. The latter motion
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FIGURE 3: Bifurcation diagrams forA D 0:1; (a) the tip
slope and (b) the transverse/longitudinal displacement ver-
sus …. Stable [ ] and unstable [ ] static equilibrium.

dies out by further increasing the flow velocity. The in-
verted flag then undergoes a fully-defected regime via a
secondary Hopf bifurcation at … D 9:95. It should be
noted that the response of the system is symmetrical with
respect to the horizontal axis and the inverted flag may flap
around deflected equilibria (buckled position) on either
side. Flapping around one side is plotted only, so as to
properly distinguish flapping around the undeflected static
equilibria and flapping around the deflected equilibria.

Moreover, the fixed points of Eq. (7) are drawn as
continuous (stable) and dashed (unstable) lines display-
ing a subcrtitical pitchfork bifurcation. This signifies that
in case of introducing additional damping to the system,
by touching the inverted flag using an external pole for
instance [2], the static deflected solution turns into a sta-
ble equilibrium. As such, the inverted flag resides at this
new induced equilibrium. This result is in line with the
experimental treatment of Sader et al. [2]. From a compar-
ison of the dynamics forA D 0:1 and forA D 0:35, it
can be concluded that reducing the aspect ratio decreases
the contribution of the reactive force, thus causing the
divergence instability to take place at high flow veloci-
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FIGURE 4: Bifurcation diagrams forA D 0:35. (a) min-
imum/maximum values of the tip slope of the inverted
flag. Stable static solution (undeflected stable equilibria)
[ ], unstable static solution [ ], stable periodic solu-
tion (oscillation around undeflected equilibria) [ ], stable
periodic solution (oscillations around deflected equilib-
ria) [ ] and stable static solution (deflected static equi-
libria) [ ]. (b) minimum/maximum values of the tip
transverse/longitudinal motion. The colour scheme in (a)
is used in Figs. 5 and 6.

ties. For sufficiently large aspect ratios, on the other hand,
the effect of the reactive component of the force becomes
dominant and the inverted flag loses stability via a Hopf bi-
furcation leading to a periodic limit cycle. These findings
are in excellent qualitative agreement with experimental
observations reported in the literature.

Phase portraits are shown in Fig. 5 demonstrating the
static equilibrium at … D 2:0, the periodic limit cycle
around undeflected static equilibrium at … D 8:0, the
periodic limit cycle around a buckled position at … D 9:5,
and finally, the static equilibrium at … D 20:0. Snapshots
of the configurations corresponding to the foregoing flow
velocities are plotted in Fig. 6.
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FIGURE 5: Phase portraits corresponding to Fig. 4. (a) … D 2:0, (b) … D 8:0, (c) … D 9:5, (d) … D 20:0.

0 1 0 1
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(a) (b)

(c) (d)

FIGURE 6: Flag motions in xz-plane corresponding to
Figs. 4 and 5. (a) … D 2:0, (b) … D 8:0, (c) … D 9:5, (d)
… D 20:0.

CONCLUSION
The nonlinear response of an inverted flag is investi-

gated in this paper. An analytical model is developed tak-
ing into account the geometric nonlinearities and the flag’s
inertia. Fluid-related forces are treated independently em-
ploying the extension of large-amplitude elongated body
theory. The nonlinear partial integro-differential equation
is solved numerically using Gear’s backward differenti-
ation formula. Equilibrium solutions are obtained via
implementing a nonlinear Newton solver. The results are
presented as bifurcation diagrams, phase portraits, and flap-
ping shapes to explore various static and flapping regimes.

The various responses indicate that the change in the
flag’s aspect ratio substantially alters the dynamics. Al-
though inverted flags of small aspect ratio do not exhibit
flapping motion for varying flow velocities, inverted flags

of sufficiently large aspect ratios undergo a flapping mo-
tion. More specifically, flags of very small aspect ratio
lose stability via a subcritical pitchfork bifurcation giving
rise to the birth of multiple equilibrium states. In this case,
any contribution of the unsteady terms of the flow can be
neglected. In contrast, the time-dependent nature of the
flow is expected to increase in strength with increasing
aspect ratio. This results in considerably richer and more
interesting bifurcational behaviour of the system. In partic-
ular, the inverted flag exhibits various dynamical regimes:
(i) it first loses stability via a supercritical Hopf bifurcation
in the first mode, the amplitude of which increases with
flow; (ii) this transforms to a deformed-flapping motion;
and (iii) finally, the system resides at the fully deflected
state.
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