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Large Shearing of a Prestressed Tube
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94010 Creteil Cedex, France
e-mail: zidi@univ-paris.12.fr

This study is devoted to a prestressed and hyperelastic tube rep-
resenting a vascular graft subjected to combined deformations. 
The analysis is carried out for a neo-Hookean response aug-
mented with unidirectional reinforcing that is characterized by a 
single additional constitutive parameter for strength of reinforce-
ment. It is shown that the stress gradients can be reduced in 
presence of prestress.

1 Introduction
Mechanical properties are of major importance when selec

a material for the fabrication of small vascular prostheses.
operation and the handing of prostheses vessel by surgeons, o
one part, the design of such grafts, on the other, induce spe
loading and particularly boundary or initial conditions. Cons
quently, the interest in developing a theoretical model to desc
the behavior of the prostheses vessel is proved~@1#!. In this paper,
we consider a thick-walled prestressed tube, hyperelastic, tr
versely isotropic, and incompressible assimilated to a vessel g
We give an exact solution of the stress distributions when the t
is subjected to the simultaneous extension, inflation, torsion,
muthal, and telescopic shears~@2–10#!. The first theoretical re-
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sults, in the case of a silicone tube, indicate that the increas
prestress minimizes the stress gradients due to the effects o
shear.

2 Model Formulation
Consider a nonlinearly elastic opened tube defined by the a

v0 ~Fig. 1!. Let us suppose that the tube undergoes two succes
deformations; first, including the closure of the tube which
duced residual strains~@11#! and second, including inflation, ex
tension, torsion, azimuthal and telescopic shears. The mappin
described by

r 5r ~R! u5S p

v0
Dv1faZ1Q~r ! z5laZ1D~r ! (1)

where (R,v,Z) and (r ,u,z) are, respectively, the reference an
the deformed positions of a material particle in a cylindrical s
tem. f is a twist angle per unloaded length,a and l are stretch
ratios~respectively, for the first and the second deformation!, Q is
an angle which defined the azimuthal shear, andD is an axial
displacement which defined the telescopic shear.

It follows from ~1! that the physical components of the defo
mation gradientF has the following representation in a cylindric
system:

F5F ṙ ~R! 0 0

r ~R!Q̇~r ! ṙ ~R!
r ~R!

R

p

v0
rfa

Ḋ~r ! ṙ ~R! 0 al

G (2)

where the dot denotes the differentiation with respect to the a
ment.

Incompressibility then requires thatJ[detF51, which upon
integration yields

r 25r i
21

v0

pal
~R22Ri

2! (3)

whereRi andr i are, respectively, the inner surfaces of the tube
the free and in the loaded configurations~Re and r e are the outer
surfaces!.

The strain energy density per unit undeformed volume for
elastic material, which is locally and transversely isotropic ab
the t(R) direction, is given by

W5W~ I 1 ,I 2 ,I 3 ,I 4 ,I 5! (4)

where

I 15TrC, I 25
1
2@~TrC!22TrC2#, I 351,

I 45tCt, I 55tC2t (5)

are the principal invariants ofC5F̄F which is the right Cauchy-
Green deformation tensor~F̄ is the transpose ofF!.

The corresponding response equation for the Cauchy stres
for transversely isotropic incompressible is~see@12#!

s52p112@W1B2W2B211I 4W4T ^ T

1I4W5~T ^ B"T1 T"B ^ T!# (6)

whereB5FF̄ is the left Cauchy-Green tensor,1 the unit tensor,
and p the unknown hydrostatic pressure associated with
incompressibility constraint,Wi5(]W/]I i) ( i 51,2,4,5) and
T5 (1/AI 4)Ft.

From ~6!, the equilibrium equations in the absence of bo
forces are reduced to

ds rr

dr
1

s rr 2suu

r
50 (7a)



Fig. 1 Cross section of the tube in the stress-free „a…, unloaded „b…, and loaded configuration
„c…
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ds rz
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50. (7c)

Suppose thatQ and D satisfy the following boundary condi
tions: ~a! Q5Q i , D5D i in r 5r i and ~b! Q5Qe , D5De in r
5r e . Then, a simple computation by integrating~7b! and ~7c!
gives the expression ofQ andD.

Integrating~7a!, given the boundary conditions thats rr (r i)5
2pi ands rr (r e)50, and takingt(R)5tv(R)ev1tZ(R)eZ and us-
ing ~3! yields the pressure fieldp:
2

p~r !5pi12W1S Rv0

rpal D 2

22W2f ~r !1E
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r s rr 2suu
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ds
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where

f ~r !5Ḋ2~r !F 1

~al!2 1S Rv0f

pl D 2G
1Q̇2~r !S Rv0

p D 2

22
Q̇~r !Ḋ~r !fv0

2
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Rv0
D 2
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(8b)
Fig. 2 Azimuthal stresses distribution inside the wall without fibers „stresses normalized by s r u„r e…, mÄ0.166 Mpa,
p iÄ0.0133 Mpa, t iÄ2 mm, teÄ3 mm …



Fig. 3 Azimuthal stresses distribution inside the wall with fibers „stresses normalized by s r u„r e…, mÄ0.166 Mpa, Ef
Ä10 Mpa, p iÄ0.0133 Mpa, t iÄ2 mm, teÄ3 mm …
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The expressions ofQ, D, andp determine all the components o
the Cauchy stress tensors.

3 Results
To illustrate the response of the proposed model, we use

extended Mooney Rivlin strain energy function which represe
the behavior of a prosthesis~@13#! constituted of a silicone matrix
and textile fibers,

W5W~ I 1 ,I 4!5
m

2
~ I 123!1

Ef

8
~ I 421!2, (9)

wherem is the shear modulus of the isotropic matrix at infinite
mal deformations andEf is the elastic modulus of the fibers.

The local tangent vector of the fibers is chosen here ast(R)
5cosg(R)ev1sing(R)eZ that represent a helical distribution o
fibers ~@1#!.

From Eqs.~7b!, ~7c! and using~3! it easily follows that the
expressions ofQ andD are

Q~r !5~Qe2Q i !

logF r

r iA11k~r 22r i
2!
G

logF r e

r iA11k~r e
22r i

2!
G 1Q i (10)

D~r !5~De2D i !
log@11k~r 22r i

2!#

log@11k~r e
22r i

2!#
1D i (11)

wherek5pal/Ri
2v0 .

As an illustrative result, we focus our attention only when t
tube is submitted to azimuthal shear strain. Figure 2 shows
distribution of circumferential stresses generated by applied ex
3
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nal azimuthal strain at a given pressure when taking into acco
the effects of such residual stresses. We show clearly that a
crease inv0 angle helps to distribute stresses in the loaded s
when the shear is important. This result does not change qua
tively when varying the pressurepi .

Furthermore, the particular effects of the presence of fib
have been examined with a linear distribution of fiber orientat
within the data rangeg(Ri)5240 deg andg(Re)540 deg. As
illustrated in Fig. 3, it is shown here that the effects of the a
muthal shear upon the distribution of the circumferential stres
within the wall become significant. When the tube is prestress
the stresses are also distributed. Clearly these results will be
to help the design and fabrication of a small vascular prosth
~@1#!.
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