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sults, in the case of a silicone tube, indicate that the increase of
prestress minimizes the stress gradients due to the effects of the
shear.

2 Model Formulation

Consider a nonlinearly elastic opened tube defined by the angle
wq (Fig. 1). Let us suppose that the tube undergoes two successive
deformations; first, including the closure of the tube which in-
duced residual straing11]) and second, including inflation, ex-
tension, torsion, azimuthal and telescopic shears. The mapping is
described by

r=r(R) 0=(w£)w+¢az+®(r) 2=NaZ+A(r) (1)
0

where R,w,Z) and (,6,z) are, respectively, the reference and
the deformed positions of a material particle in a cylindrical sys-
tem. ¢ is a twist angle per unloaded lengtta,and A are stretch
ratios(respectively, for the first and the second deformatiénis
an angle which defined the azimuthal shear, aniés an axial
displacement which defined the telescopic shear.

It follows from (1) that the physical components of the defor-
mation gradienE has the following representation in a cylindrical

system:
P (R) 0 0
. r(R)y =
F=| r(R)O(nNi(R) R wy réa )
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where the dot denotes the differentiation with respect to the argu-
M. Zidi ment.

Incompressibility then requires thde=detF=1, which upon
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e-mail: zidi@univ-paris.12.fr whereR, andr; are, respectively, the inner surfaces of the tube in
the free and in the loaded configuratidifig, andr are the outer
surfaces).

This studyis devotedto a prestressedind hyperelastictube rep- The strain energy density per unit undeformed volume for an

resentinga vascular graft subjectedto combineddeformations. €lastic material, which is locally and transversely isotropic about
The analysisis carried out for a neo-Hookeanresponseaug- thet(R) direction, is given by
mentedwith unidirectional reinforcing that is characterizedby a -

. o . . . W W(|11|21|31|41|5) (4)
single additional constitutiveparameterfor strengthof reinforce-
ment. It is shown that the stressgradients can be reducedin where
presenceof prestress. 1,=TrC, I,=Y(TrC)>=TrC?, 1,=1,

I,=tCt, 15=tC? (5)

Mechanical properties are of major importance when selecti are the principal invariants & =FF which is the right Cauchy-

a material for the fabrication of small vascular prostheses. TE%_?eg ggrcr)er;na(t)t:]odr;ntenrngéistl;eetrﬁgzggs% rd?].e Cauchv siress
operation and the handing of prostheses vessel by surgeons, or}th ransverseﬁ isotr% ic Iioncom rgssible(ime[lz]) y
one part, the design of such grafts, on the other, induce spec it y P P

1 Introduction

loading and particularly boundary or initial conditions. Conse- o=—pl+2[W;B—W,B 1+ ,W,T®T
quently, the interest in developing a theoretical model to describe
the behavior of the prostheses vessel is praf&t). In this paper, +1Ws(T®B-T+T-BRT)] (6)

we consider a thick-walled prestressed tube, hyperelastic, tragg];?reB:FEis the left Cauchy-Green tensdk,the unit tensor

versely isotropic, and incompressible assimilated to a vessel gr. p the unknown hydrostatic pressure associated with the
We give an exact solution of the stress distributions when the tu%ﬁompressibility constraint, W, = (3W/al;) (i=1,2,4,5) and

is subjected to the simultaneous extension, inflation, torsion, a%J-_ (1/\/r) Ft
— J)Ft.

muthal, and telescopic sheaff2—10]). The first theoretical re- From (6), the equilibrium eguations in the absence of body

forces are reduced to

doy oy —0g _

dr r

0 (7a)
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Fig. 1 Cross section of the tube in the stress-free (a), unloaded (b), and loaded configuration

(©
doyy 20 ( Rowg 2 "o — 0
dr + r =0 (7b) p(r)—pi+2W1 m —2W2f(r)+ rifds
doy, o (8a)
ar * 1 =0. (7¢)  where

Suppose tha® and A satisfy the following boundary condi- e 1 Rwod)|?
tions: (a) ®=0;, A=A, inr=r; and(b) ®=0,, A=A inr f(r)=2a%r) (a)\)2+ A
=r.. Then, a simple computation by integratifigb) and (7c) \
gives the expression & andA. . Rwg)?

Integrating(7a), given the boundary conditions thaf, (r;) = +®2(r)(—) -
—p;i ando(re) =0, and taking(R)=t,(R)e,+t;(R)e, and us- &
ing (3) yields the pressure field: (8b)
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Fig. 2 Azimuthal stresses distribution inside the wall without fibers (stresses normalized by o ,¢(r.), #=0.166 Mpa,
p;=0.0133 Mpa, 7,=2 mm, 7,=3 mm)
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Fig. 3 Azimuthal stresses distribution inside the wall with fibers
=10Mpa, p;=0.0133 Mpa, 7;=2 mm, 7,=3 mm)

(stresses normalized by o ,4(r.), n=0.166 Mpa, E;

The expressions d, A, andp determine all the components ofnal azimuthal strain at a given pressure when taking into account

the Cauchy stress tensor the effects of such residual stresses. We show clearly that a de-
crease inw, angle helps to distribute stresses in the loaded state

3 Results v_vhen the shear _is important. This result does not change qualita-
tively when varying the pressurg .

To illustrate the response of the proposed model, we use therurthermore, the particular effects of the presence of fibers
extended Mooney Rivlin strain energy function which representgve been examined with a linear distribution of fiber orientation
the behavior of a prosthesglL3]) constituted of a silicone matrix within the data rangey(R;)=—40deg andy(R.)=40deg. As
and textile fibers, illustrated in Fig. 3, it is shown here that the effects of the azi-

muthal shear upon the distribution of the circumferential stresses
(9) Wwithin the wall become significant. When the tube is prestressed,

the stresses are also distributed. Clearly these results will be able
where is the shear modulus of the isotropic matrix at infinitesit® help the design and fabrication of a small vascular prosthesis
mal deformations an&; is the elastic modulus of the fibers.

The local tangent vector of the fibers is chosen her¢( B}
=cosy(R)e,+siny(R)e that represent a helical distribution of
fibers ([1)).

From Egs.(7b), (7c) and using(3) it easily follows that the

E
W=W(l;19)=5 (13- 3)+ 5 (1= 12,
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