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In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations.

This systemic point of view puts the focus on distributional and network effects, rather than timedependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imposing a series of constraints related to national accounts, and to empirical network sparsity. Some properties of reconstructed networks are compared with their empirical counterpart.

The state and dynamics of production and financial sectors are affected by interconnection patterns between agents. However these patterns are poorly known at a detailed level because of confidentiality issues. This prevents building risk indicators, that can help preventing the propagation of crises.

Our main motivation here is to infer an ensemble of unobserved multilayer networks in a data-scarce context, taking advantage of available information: first, aggregate public statistics are used to estimate the number and importance of the nodes involved. Then, macro-economic models established by economists provide consistency and behavioral constraints that further reduce the size of the reconstructed ensemble.

A second motivation is to recover empirical regularities from the reconstructed ensemble, that are also available in a few empirical studies, which will help assessing our method. For example, the degrees of firms in buyer-supplier networks have been the subject of many studies, and are hard to measure and to model. They are fundamental properties of the network that influence the dynamical processes that take place on it. The same holds for strengths as functions of degrees. Even though the macro-economic model used below is theoretical, it allows to compute these empirical regularities from the reconstructed ensemble. This paves the way for more detailed models with more sectors (government, central bank, financial services, the environment, etc...), and more refined mechanisms.

A third motivation, not developed in this article and left for future works, will be to explore the consequences of building such a reconstructed ensemble in terms of economic applications: define and estimate risk levels in production networks, study the risk of crisis propagation between the productive and financial sectors, identify hidden clusters among nodes, etc. . .

To do so our method in this paper builds on advances in the field of data-driven network reconstruction from partial information. While actively investigated in recent years, it remains an open problem. Maximum entropy methods were introduced in statistical physics [1] and were shown to be very useful in studying the properties of network ensembles [START_REF] Park | Statistical mechanics of networks[END_REF]. Their application to social systems [START_REF] Hernando | MaxEnt and dynamical information[END_REF][START_REF] Hernando | Variational principle underlying scale invariant social systems[END_REF][START_REF] Hernando | The workings of the maximum entropy principle in collective human behaviour[END_REF][START_REF] Zambrano | Thermodynamics of firms' growth[END_REF], to financial and economic networks is well established [START_REF] Squartini | Maximum-Entropy Networks, SpringerBriefs in Complexity[END_REF] and was recently demonstrated by central bankers to be rather accurate [START_REF] Anand | The missing links: A global study on uncovering financial network structures from partial data[END_REF].

Network theory which deals with the structure and dynamics of network, and the properties of dynamics over networks has been prolific overs past years [START_REF] Newman | Networks: an introduction[END_REF] and seen a rising interest among economists [START_REF] Jackson | Social and economic networks[END_REF]. Theoretical models of supply chain, credit [START_REF] Battiston | Credit chains and bankruptcy propagation in production networks[END_REF], trade, as well as empirical studies have covered various topics such as employment, world trade or ownership control among corporations [START_REF] Vitali | The Network of Global Corporate Control[END_REF].

However, up to our knowledge, the possibility to include constraints inspired by macroeconomic models in Maxent network models was little studied so far. In engineering for example, network reconstruction based on physical laws was developed for flow networks [START_REF] Waldrip | Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks †[END_REF]. In the present article we propose to introduce such a constraint on the network ensemble, with an unknown topology.

The most direct way to reach that aim would be to extend one of the existing weighted reconstruction methods such as [START_REF] Mastrandrea | Enhanced reconstruction of weighted networks from strengths and degrees[END_REF][START_REF] Cimini | Estimating topological properties of weighted networks from limited information[END_REF], but this extension raises several issues. Rather, we use a two-step method that requires first to estimate the topology of each subnetwork taken independently, from partial empirical data, in the spirit of [START_REF] Garlaschelli | Fitness-Dependent Topological Properties of the World Trade Web[END_REF]. This choice stems from the fact that weighted networks estimation is greatly improved when topological information is available. Then, when the topology is reconstructed, network weights can be approximated using various methods, either probabilistic or deterministic.

The highlights of our method to reconstruct an ensemble of networks follow: i) it is probabilistic, ii) relies on Maximum Entropy, iii) enforces non-negativity of weights, iv) allows linear constraints on connections and weights, of the form Aξ -b = 0. More specifically :

• it is probabilistic because deterministic methods do not allow sampling random instances, that are necessary to compute average quantities.

• Maximum Entropy makes it possible to respect empirical measurement (e.g. aggregate weights, link density), while maximizing randomness, to avoid biases.

• non-negativity of weights is required by the nature of economic transactions.

• linear constraints in the form Aξ -b = 0 incorporates consistency constraints that stems from models built by economists.

Lastly we stress that when detailed micro data is available, a reconstruction error can be computed to assess the accuracy of the method.

In section 1 we present the testbed model for this study, which is inspired by stock-flow consistent (SFC) macroeconomic models, in the restricted linear and steady-state case. In section 2 the corresponding binary network is defined and reconstructed. In section 3, the weights are computed, using several methods. Sections 4 and 5 compare and discuss the results while section 6 concludes.

A disaggregated linear model

In this section we describe a toy macroeconomic model, only consisting in a transaction matrix that defines the flows of money between origins and destinations, as shown in Tab. 1. There are no stocks (capital, loans, deposits) nor balance sheet, nor behavioral equations responsible for consumption, capital depreciation. It is a simplification of the aggregated BMW model proposed in [17, §7], an SFC model that introduces private bank money and does not involve a state nor a central bank, and where each sector is represented by a single agent.

However, our model deals with the disaggregated case: the number of households, firms and banks is arbitrary. Households can buy from several firms, get wages from various employers and interest on deposits from several banks. Firms can buy capital goods from many firms, and pay interest on loans to several banks.

To simplify further, and keep the focus on topological and distributional effects, the systems is supposed to be in the steady-state1 regime. The set of row and column-sums equations in Tab. 1 can be written in the form a linear system: S = {ξ s.t. Aξ = b} (1)

Furthermore the system can be written as a function of demands only:

ξ = Cd Id W Bd ILd IDd T (2) 

Households

Firms Banks with vectors C, I, W B, IL, ID standing for consumption, investment, wage bill, interest on loans, interest on deposits and subscripts d and s referring to demand and supply as summarized in Tab. 2. The vectors are indexed so as to encode all origin-destination information:

1 2 3 1 2 1 Consumption -C d11 -C d21 C s1 0 -C d22 C s2 0 -C d13 -C d33 C s3 0 Investment -I d1 I s1 0 Wage W B s1 -W B d1 0 W B s2 -W B d2 0 W B s3 -W B d3 0 Interest on loans -IL 1 IL 1 0 Interest on deposits ID 1 -ID 1 0 ID 2 -ID 2 0 ID 3 -ID 3 0 0 0 0 0 0 0 0
Cd = Cd 1,1 . . . Cd n h ,1 Cd 1,2 . . . Cd n h ,2 . . . Cd 1,n f . . . Cd n h ,n f (3) 
where Cd n h ,n f is the amount of consumption goods sold by firm n f to household n h . The same indexing convention is adopted for I, W B, IL, ID, as explained in Appendix A. This leads to the following expression for A and b:

A =   -I h1 I h2 I h3 I f 1 I f 2 -I f 3 -I f 4 I b1 -I b2   , b = 0 n b +n f +n h (4) 
The submatrices I * reflect the connection pattern among agents, in a way such that each line of A can enforce the constraints in Tab. 1. A is a matrix with elements having values in {-1, 0, +1}, composed of

2n f n h + n 2 f + n b (n f + n h ) columns and n b + n f + n w rows.
Its sparsity factor is close to 10 -3 given the values of the parameters. The system Aξ = b is under-determined. Note that the system eq.( 1) is homogeneous and has a trivial solution. For this reason, it will be useful below to define a minimalist nonhomogeneous system:

S 1 = {ξ s.t. A 1 ξ = b 1 } (5) 
where A 1 and b 1 are such that the consumption of all households is set to the constant value α 0 . How the connection pattern is reconstructed from partial empirical data is the subject of sec. 2.

Random network reconstruction and sampling

In order to parametrize the disaggregated model in sec. 1, empirical datasets are necessary. Detailed datasets exist in some particular cases: consumption networks were studied in Latin America and Europe [START_REF] Dong | Pentland, Social Bridges in Urban Purchase Behavior[END_REF][START_REF] Leo | Correlations and dynamics of consumption patterns in social-economic networks[END_REF]. The buyer/supplier interfirm network in Japan [START_REF]The Economics of Interfirm Networks[END_REF][START_REF] Mizuno | Buyer-Supplier Networks and Aggregate Volatility[END_REF], in Estonia [START_REF] De La Torre | On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia[END_REF], in the USA [START_REF] Atalay | Network structure of production[END_REF] where the distribution of supply chains was modelled by a birth-death process. The ownership network of transnational companies was reconstructed in [START_REF] Vitali | The Network of Global Corporate Control[END_REF] whith spatial distances as an explanatory variable [START_REF] Vitali | Geography versus topology in the European Ownership Network[END_REF]. Apart from interfirm links, a study of Japanese bank-firms relationships can be found for example in [START_REF] Ono | A New Look at Bank-Firm Relationships and the Use of Collateral in Japan: Evidence from Teikoku Databank Data[END_REF]. However, when detailed transaction databases exist, their access is restricted or paywalled. Only aggregated ones are publicly available for most developed countries.

The topic of input/output relations between industrial sectors has been studied by economists dating back to Leontief [START_REF] Leontief | Quantitative Input-Output Relations in the Economic System of the United States[END_REF]. At the aggregate level, this weighted network is densely connected, as remarked in [START_REF] Blöchl | Vertex centralities in input-output networks reveal the structure of modern economies[END_REF], but dense connection is not a property observed at the micro level in available detailed datasets. The same kind of problem arises for other types of networks, which reveals the necessity to perform network reconstruction [START_REF] Squartini | Maximum-Entropy Networks, SpringerBriefs in Complexity[END_REF].

Before describing the reconstruction methods used below, let us define some notations: a binary graph G, with at most one edge e ∈ E between two vertices in I × J , is specified by its adjacency matrix A = {a ij } i∈I,j∈J . This covers the unipartite case when I = J . The degree sequences will be denoted by k. For graph ensembles, p ij is the connection probability between vertices i and j, and . denotes an average over that ensemble. The n-uple of adjacency matrices that correpond to the model in sec. 1 is A = (A cons , . . . , A invest ). Lagrange multipliers in maximum-entropy models will be written in the form x i , with i ∈ I.

Popular graph examples include the Erdös-Rényi random graph model (generalized to the bipartite case under the name BiRG, for Bipartite Random Graph [START_REF] Straka | Grand canonical validation of the bipartite international trade network[END_REF]), and the configuration model (CM, see [7, 2.2.2]). The latter defines an maximally random ensemble of graphs such that the degree k i of each vertex is constrained to experimental values, that is in the undirected case: ∀i ∈ I, k i = k i . However such detailed information is not available in our case. To go round this difficulty the notion of fitness g i was put forward in the litterature [7, p.82]. The hypothesis made is that "the probability for any two nodes to interact can be explicitly written in terms of non-structural quantities", which suggests to write the Lagrange multiplier in the form x i = f (g i ), where g i are "non-structural quantities" such as the trade volume between countries.

Node-specific fitnesses of the form x i can be used, for example in the bilinear model p ij = x i x j that is associated to the sparse hypothesis [START_REF] Park | Statistical mechanics of networks[END_REF][START_REF] Bargigli | Statistical Ensembles for Economic Networks[END_REF].

The following functional form was introduced in [START_REF] Garlaschelli | Fitness-Dependent Topological Properties of the World Trade Web[END_REF] to reconstruct the World Trade Web using the Gross Domestic Product (GDP) of various countries as an explanatory variable:

p ij = z x i x j 1 + z x i x j ( 6 
)
This form is an example of "fitness-induced configuration model" (FiCM), that makes it possible to respect both the maximum likelihood criterion and the total empirical number of links, or equivalently the overall link density of the network, as noted in [START_REF] Garlaschelli | Maximum likelihood: Extracting unbiased information from complex networks[END_REF]. Many extensions were debated to cover for example weighted, directed, bipartite graphs. In the next section, dyadic terms such as the distance d ij in the gravity model

p ij = xixj d 2 ij
, where the respective contributions of nodes i and j can't be disentangled, will be introduced.

Application to a disaggregated SFC model

In sec. 1 an example of disaggregated economic model was considered. In sec. 2, reconstruction strategies were discussed. In the present section, the nature of the graph built according to the model in sec. 1 is explained, as well as the probabilistic models used to reconstruct it from partial data. Section 2.2 describes the necessary data.

Let G be the graph associated to the transactions of the disaggregated model. It is composed of various subgraphs with heterogeneous properties, due to the diversity of the transactions involved, as summarized in Tab. [START_REF] Hernando | MaxEnt and dynamical information[END_REF], where all subgraphs are binary and do not include any self-loop (a similar graph representing assets and liabilities may be written, following [START_REF] Bardoscia | Pathways towards instability in financial networks[END_REF]).

G is a multipartite, multilayer network. The population of agents is divided into three categories (banks, firms, households). Each type of transaction corresponds to one layer. This type of network, while common for social networks [32, Tab.2], is not often found in economic empirical studies that tend to focus on individual layers, one at a time (finance, interbank, production, consumption, . . . ). Furthermore, imposing a constraint over the network (here Aξ = b) is used in engineering to reflect conservation laws (mass, energy), or in statistical mechanics of networks, for example to study motif-constrained ensembles (e.g. 2-stars, see [START_REF] Park | Statistical mechanics of networks[END_REF]), but is not commonly found in economic network models. Following the methods explained in sec. 2, we need to specify the probability model p ij for each type of transaction using the different ingredients available (node-specific or dyadic terms, . . . ). Not all subgraphs could be modelled as FiCM maximum-entropy networks, due to the availability of data to fit the models. In that case, BiRG networks were used.

Let us first remark that in a few cases, the available empirical data impose a community structure to the graph. For example, the demography of firms in public datasets is given at an aggregate sectorial level. The same is true for intermediate consumption and the investment in capital goods of firms (see sec. 2.2). As a consequence, the probability matrix {p ij } that firm investment occurs between any two firms i and j will in the simplest model be a block matrix with terms taken in {p si,sj }, the probability matrix that a transaction occurs between sectors s i and s j , as represented in Fig. 1(a). The same is true for consumption of households, because the source of final consumption of households is known at the level of industrial sectors.

The different functional forms corresponding to the transactions of this simplified block model are summarized in Tab. 4. z is a free parameter which value is set independently for each transaction using maximum likelihood, as will be seen below. Dyadic factors are noted d sisj and node-specific factors are noted x i . Using node-specific rather than dyadic factors in FiCM is also a matter of data availability, as will be seen in sec. 2.2.

The first two rows in Tab. 4 are associated with FiCM networks which definitions were recalled in sec. 2. In the case of consumption, all households are considered homogeneous. This explains the difference in the form of p ij between the first two lines.

The mean number of links L = i j =i p ij in the undirected case is constrained and should be equal to the observed one L = i j =i a ij , which is given by empirical observation. Under the chosen models, 

(i, j) ∈ [1, nf ] × [1, nh] L = L * , or k = k * Interests on loans BiRG L nb nf (i, j) ∈ [1, nb] × [1, nf ] L = L * , or k = k * Interests on deposits BiRG L nb nh (i, j) ∈ [1, nb] × [1, nh] L = L * , or k = k *
zaixs i 1+zaixs i (i, j) ∈ [1, nf ] × [1, nh] a i : see investment. x si :
propensity of sector s i to attract the workforce given empirical fitnesses and L, the values of the remaining free parameters z for each network is set using maximum-likelihood procedure, for the probabilities p ij to be fully specified. In the case of the FiCM model for investments, this leads to solving the one-dimensional nonlinear equation in z:

L = i<j z x i x j 1 + z x i x j (7) 
which can be done approximately using standard numerical methods. One can then sample independently the edges, and obtain random network samples for each transaction. An example is given in Fig. 2(d). In Tab. 4 the last three rows refer to a BiRG network (which definition is recalled in sec. 2) such that only the average number of links is constrained. This type of model is not appropriate if local information is available, but this is not the case for the examined transactions. The edge probability is uniform and has the simple expression p ij = L N1N2 where N 1 and N 2 are the number of vertices in each layer of the bipartite network. The average number of links L = L * constraint can be equivalently expressed as a mean degree constraint, either on one subset of the nodes or the other since these networks are bipartite with a fixed number of vertices. Furthermore, for the BiRG networks:

• Wages: this network (firms on one hand and households on the other) can be subdivided into different independent bipartite networks that correspond to industrial sectors as shown in Fig. 1(b). Firms and households are randomly assigned to a sector depending on business demography data (i.e. number of firms and number of employees in each sector). Then the connection probabilty is set such that the mean degree on the households side equals the empirical mean: ∀i ∈ [1, nh], k i = kwage

• Interests on loans: the degree of this network (banks and firms) is uniform on the firms side, and equals its empirical mean: ∀i ∈ [1, nf ], k i = kloans

• Interests on deposits: the degree of this network (banks and households) is uniform on the households side, and equals its empirical mean

: ∀i ∈ [1, nh], k i = kdeposit
In the block model, for some subnetworks, all firms in a given economic sector have the same connection probability with firms in another sector. This approach is useful but not realistic. A simple way to introduce diversity among sectors is to use random fitnesses sampled from a specific distribution. Instead of writing p ij in the investment network in the form z ds i s j 1+z ds i s j , one may write:

p ij = za i a j d sisj 1 + za i a j d sisj (8) 
where a i are firm-specific terms sampled from some distribution that can be fit to empirical values. In this article a continuous uniform distribution X = U [0,1] is chosen, but power law distributions will be considered in further works. The wage network is modified accordingly, and can be seen as an FiCM network determined by the firm-specific fitness a i in eq.( 8) and a sector-specific fitness x si that reflects the sectorial assignment of the workforce in empirical data, keeping the household sector homogeneous:

p ij = za i x si 1 + za i x si (9) 
The specification of this random fitness model is summarized in Tab.5. Other propositions to go beyond the limits of this formalization will be discussed in sec.5

Empirical data and fitnesses

Most datasets are extracted from Eurostat databases [START_REF]Eurostat Manual of supply, use and input-output tables[END_REF] as summarized in Tab. B.10. The figures mentionned in this table concern the demography of businesses and are not used directly to initialize simulations, but are downscaled to permit computation in reasonable time. The agricultural sector, being separated from business demography data, is not included in this study but will be added in further works.

The structure of supply, use and input-output tables is explained in Appendix B, along with the notations for the Eurostat sector aggregates. Each correspond to a given country, and a given year, but these mentions are dropped for simplicity.

These datasets are used to compute the fitnesses d i,j and x i in Tab. 4. d sisj quantifies the propensity of sector s i to sell capital goods to s j . Since this information is not available directly in public datasets, our proposition is to use the volume of intermediate consumption by industry in the use table as a proxy for d sisj . It is a dyadic factor depending specifically on the couple (s i , s j ).

The fitness value x si in Tab. 4 is supposed to quantify the propensity of sector s i to sell consumption goods to households. While household consumption could in fact be separated into different subgroups (see [START_REF] Leo | Correlations and dynamics of consumption patterns in social-economic networks[END_REF]), we keep it aggregated here for simplicity. The proposed proxy comes in the form of a dot-product:

x si ∝ p∈[1,P ] sup[p, s i ] × use f in [p] ( 10 
)
where sup[p, s] is the value of product p ∈ [1, P ] produced by sector s ∈ S, and use f in [p] is the value of product p ∈ [1, P ] consumed by households as a final use. This factor weighs the proximity between the supply profile of sector s i and the final use profile of the household sector. It is normalized to 1 across sectors.

Average degrees of networks typically are not included in public datasets, but rather in private ones. However their magnitude can be looked for in the literature in order to parametrize both FiCM and BiRG models in sec. 2.1:

• the average number of edges per vertex for the interfirm network has been studied in the USA for the period 1979-2002, and has a average value of 1.06 according to [START_REF] Atalay | Network structure of production[END_REF]. In the case of Japan, the estimated value is close to 5 [START_REF] Mizuno | Buyer-Supplier Networks and Aggregate Volatility[END_REF]. We believe these estimations aggregate both intermediate consumption of firms, and acquisition of capital goods by firms. However we consider they are valuable proxies for the mean link number L in the investment network.

• the average number of suppliers for households can be estimated from recent studies at the individual level [START_REF] Dong | Pentland, Social Bridges in Urban Purchase Behavior[END_REF]. We set it to 20 in experiments below.

• the average number of jobs per household kwage is set to 1.

These choices are further discussed in sec.5.

Network properties

In this section we analyze the properties of some of the network models discussed in sec. 2.1. The availability of a probabilistic model allows us to compute analytically the moments of some higher-order topological properties [START_REF] Squartini | Maximum-Entropy Networks, SpringerBriefs in Complexity[END_REF], so as to compare it to stylized facts found in empirical studies. The programs used to generate the figures are publicly available2 . The figures dealt with in this section concern the Czech Republic in 2010.

In sec. 2.1, the expression of the connection probabilities was given for all transaction networks. Fig. 2(a) illustrates the behavior of p si,sj in the case of the investment block network, proxied by the interfirm consumption network in this article. Almost all sectors are primarily connected to themselves. Four aggregated sectors stand out in terms of probability magnitude: B-E, F, G-I, and M-N (see definitions in Tab. B.11). This can be related to the number of firms in each sector, jointly represented with probabilities in Fig. 2(c). In first approximation the latter can be considered as symmetric, but this is not strictly verified at a finer scale as shown in Fig. 2(b), where {|p si,sj -p sj ,si |} is represented, as well as the sign of the difference. For example industry (B-E) sells more to construction (F) than the opposite. A randomly generated network corresponding to p ij is shown in Fig. 2(d) and illustrates these facts.

The network of households' consumption is simpler, as defined in sec. 2.1, because the connection probability p ij doesn't depend on j. Since the household sector is homogeneous, the matrix p ij can be summed-up by its cross-section along the firms' axis, as shown in Fig. 3. Note the importance of sector K ("financial and insurance activities").

The degree is another classical indicator of network topology. Theoretical expectations of k in (j) and k out (i) are directly available from p ij , computing i p ij and j p ij . The variance can be computed using the fact that independent Bernoulli variables are sampled along rows and columns. By a central limit argument 3 , the pdf can be approximated for high degrees by a normal law. Fig. 4(a-b) show sample degrees as functions of theoretical degree with approximate standard deviations plotted as error bars. It can be noticed that, consistently with the block hypothesis, all firms in a given sector have the same degree. Furthermore the four prominent sectors are the same as in Fig. 2.

Then we consider another classical high-order topological indicator, the average nearest neighbors degrees. For each agent, it measures the average degree of its neighbors. 

p ij B-E F G-I J K L M_N O-Q R-U (a)
Figure 3: Properties of the households' consumption block network, bipartite and undirected. 

k nn in (i) = j=1 a ij k in (j) k out (i) (11) 
k nn out (j) = i=1 a ij k out (i) k in (j) (12) 
Knowing p ij , the expectation of these indicators can be approximated [34, eq.(34-35)]. Using these results, in Fig. 5 we compare randomly sampled values and their theoretical couterpart. Both agree concerning the assortative nature or the network, on the buyers and suppliers sides: suppliers with a small (resp. high) out-degree k out in Fig. 5(a) tend to be connected to suppliers buyers with a small k nn in (resp. high). The same is true for buyers with respect to in-degree. This is a consequence of the dense conection inside the first four sectors (that account for 85% of all links in this model), be it with inter or intra-sector links. It contrasts with the disassortative nature of buyers-suppliers networks found in recent empirical studies such as the interfirm payment network in Estonia [START_REF] De La Torre | On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia[END_REF], Italy [35, §2], and Japan [36, 3. The random fitness model depicted in sec. 2.1 and summarized in Tab. 5 was proposed to avoid such inconsistencies. In Fig. 6(a) the in-degree distribution of the investment network shows that some mixing was succesfully introduced among firms belonging to different sectors, unlike in the case of block model in Fig. 4 where all firms of a given sector share the same degree. Similarly, the investment network is no longer assortative in the case of the random fitness network as shown by Fig. 6(b). It can be noticed that in that case, the probability distribution of degrees of a fitness model can be computed, following [37, eq. (1-2)]. While in this section only topological features were examined, the topic of average money flows will also be dealt with below.

Estimation of marginal probabilities of monetary flows for a particular network

In sec. 2 only the topological properties of the model inspired by sec. 1 were examined. The present section deals with the values of flows ξ associated to vertices given a specific topology. Moreover, we are interested in the relationship between the solutions and the topological properties of networks. The n-uple of adjacency matrices A SF C = (A cons , . . . , A invest ) can be temporarily considered as a quenched variable: it is sampled once from the statistical ensemble {A SF C } subject to empirical constraints, and then considered fixed.

The linear time-invariant underdetermined problem in eq. ( 1) has the following properties: A has full rank and is such that m < n with m the number of rows and n the number of columns. In that case, AA T is invertible, the Moore-Penrose pseudoinverse writes A † = A T (AA T ) -1 , and coincides with the least-square solution of eq. ( 1):

ξ = A T (AA T ) -1 b ( 13 
)
This result can be related to probabilistic approaches: Bayesian and maximum entropy methods were applied to flow networks in [START_REF] Waldrip | Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks †[END_REF], using the unbounded Gaussian prior N (µ, Σ). The authors get the following expression for the posterior average4 :

ξ = µ + ΣA T (AΣA T ) -1 (b -Aµ) (14) 
With the simplifying homoscedasticity assumptions Σ = σI n , this solution can be compared to the one obtained with the Moore-Penrose pseudoinverse in eq.( 13). However, several problems arise: firstly, eq.( 1) has a trivial solution x = 0 because the system is homogeneous. It is thus necessary to turn to the nonhomogeneous system eq.( 5) to obtain nontrivial solutions. Secondly, negative solutions5 may be found for this system, which limits the interest of this method. Adding inequalities to eq.( 1), it can be considered as a Constraint Satisfaction Problem (CSP):

S = {ξ s.t. Aξ = b, ξ 0 ≤ ξ ≤ ξ 1 } ( 15 
)
Various properties of the set of solution vectors ξ can be studied numerically: as examplified in the field of metabolic networks research, samples can be generated in a uniform [START_REF] Wiback | Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space[END_REF][START_REF] Braunstein | Estimating the size of the solution space of metabolic networks[END_REF] or non-uniform way [START_REF] Capuani | Quantitative constraint-based computational model of tumorto-stroma coupling via lactate shuttle[END_REF]. This type of method was applied already to SFC macro models in [START_REF] Hazan | Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model[END_REF]. Distributional properties were observed in the partially aggregated case in [START_REF] Hazan | Stock-flow consistent macroeconomic model with nonuniform distributional constraint[END_REF]. Unfortunately, sampling methods can't be applied directly in the present case because of the dimension of the problem. The positivity constraint can also be dealt with by the Expectation Propagation algorithm [START_REF] Braunstein | An analytic approximation of the feasible space of metabolic networks[END_REF] which yields an analytic approximation of the marginal probability distribution P (ξ i ), using truncated Gaussian priors. But according to preliminary experiments the dimension of our problem is too large for existing implementations.

Other algorithms are then necessary to handle the constrained high-dimensional case. As for metabolic network analysis [44, §12.5], linear programming or basis pursuit can be used. It the objective function to be minimized has the form 1 T ξ, sparse solutions can be found numerically. This property is interesting for example to force high unemployment, but is too restrictive otherwise. Nonnegative Least Square (NNLS) numerically solves the problem:

argmin ξ Aξ -b , s.t. ξ ≥ 0 (16) 
which is equivalent to a quadratic programming problem, and which solution can be efficiently approximated [45, §23] for large problems.

Properties of flows

In this section we present numerical NNLS solutions to the nonhomogeneous problem:

argmin ξ A 1 ξ -b 1 , s.t. ξ ≥ 0 (17) 
with A 1 , b 1 defined in eq.( 5). The networks that specify A 1 are sampled from the ensemble defined by the random fitness model in sec. 2.1. Due to computational constraints, the size of the networks will be limited to n b = 3, n f = 100, n h = 1000, resulting in a system with more than 2.10 5 unknowns. Fig. 7(a) represents the budget of all households, with a fixed consumption demand α 0 imposed by A 1 and b 1 , as a minimalist way to ensure nonhomogeneity. The population of agents can be clustered in two groups: their consumption is either financed by wage bills or by interests on deposits, and this two values are negatively correlated. Furthermore the values taken by WBs and IDs are highly clustered Fig. 7(b) represents the budget of firms. Income is mainly composed of consumption supply to households, which is much larger than investment supply to firms. Expense includes wage bills and interests on loans, the former dominating the latter. We note also that W Bd and Cs are positively correlated. There is a sectorial dependence of Cs that can be observed more in detail in Fig. 8 3.2. Relationship between topological properties, stocks and flows in the block model

In the present section n iter networks are sampled from the ensemble defined by the random fitness model. For each of them, the approximate NNLS solution to eq.( 17) is computed. Then the values of ξ corresponding to various economic transactions are compared to the topological features of the related subnetworks established in sec. The consumption C s supplied to households by firms is shown in Fig. 8 with respect to the out-degree of firms, that is the number of their customers among households. The distribution of sectors along the x-axis is well clustered and reflects the distribution of the connection probability, seen in Fig. 3, for example the high probability of connection of sector K. However, this clustering effect is attenuated by the uniform random fitness model in comparison to the block model defined in sec. The average consumption C d demanded by households is represented in Fig. 9 with respect to the indegree of households, that is the number of firms a given household is buying from. It can be verified that households form a homogeneous group in the block model and the random fitness models. Furthermore they can't be associated to an industrial sector in a one-to-one map. The clustering around the value of C d imposed by the rhs b 1 in eq.( 17) is clearly observed. In sec. 3.1, it was remarked that the investment I s between firms had a residual level compared to other quantities. As a first explanation, it can be noticed that the number of inter-firm links is very low compared to firm-household links. This problem is likely to disappear when adding capital depreciation equations that constrain the investment level, as in the BMW model.
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Comparison to other methods

In sec. 3, numerical NNLS solutions to the problem in eq.( 17) were computed, as the network topology was sampled from a probabilistic FiCM model. In this section, our approach, noted FiCM+NNLS, is compared to other existing works.

Firstly, the "degree-corrected gravity model" (FiCM+dCGM) is a two-step method that builds on an FiCM model [START_REF] Cimini | Systemic Risk Analysis on Reconstructed Economic and Financial Networks[END_REF][START_REF] Squartini | Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks[END_REF], inspired by the gravity model, and corrected in order to set a given level of sparsity, and to apply a constraint on the degree sequence. The value of weights placed on edges is:

w ij = a ij W (z -1 + s i s j ) ( 18 
)
where W is a normalization factor, s i = j w ij and s j = i w ij are the nodes' strengths. For the sake of comparison, W i , W j and W are computed below using the NNLS solution.

Secondly, FiCM+NNLS will be compared to the Bayesian method in [START_REF] Waldrip | Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks †[END_REF] that results in eq.( 14). All methods give w ij conditioned on the knowledge of the connection probabilities a ij of the subgraphs. Even though FiCM+dcGM and FiCM+NNLS build probabilistic models of topologies, expressed by p ij , they compute connection weights conditionaly on a particular realization of a ij , as explained above. Similarly, the Bayesian method in [START_REF] Waldrip | Comparison Between Bayesian and Maximum Entropy Analyses of Flow Networks †[END_REF] computes the mean ξ using a closed-form expression that needs a ij to be known. We will be interested by several features of the obtained solutions:

• do they return negative money flows (that are not compatible with the desired behavior) ? This is quantified by the percentage of negative coefficients over non-zero coefficients in ξ.

• to what extend do they respect the linear system of equations in eq.( 15) ? This is quantified by a relative error defined by 100 × A1ξ-b1 1 ξ 1 .

Tab. 6 summarizes a computational comparison based on repreating n = 100 times each method, and estimating the sample value of the error indicators. As expected, since FiCM+dcGM is not designed to impose the linear constraint A 1 ξ = b 1 , the relative error rate obtained is much higher than the value obtained with the other methods. FiCM+NNLS and the Bayesian algorithm yield a satisfactory relative residual error below 1%. Then, the rate of negative coefficients is compared, and we find a value as high as 21% for the Bayesian method. This was anticipated in sec. 3, but is not acceptable in our context. Potential solutions to this issue will be discussed in sec. 5. Some other features can be remarked: first the FiCM+dcGM and Bayesian method yield a closed-form expression for w ij conditioned on a ij , unlike FiCM+NNLS. There are method, such as the ECM [START_REF] Mastrandrea | Enhanced reconstruction of weighted networks from strengths and degrees[END_REF], that outputs both P (a ij = a) and P (w ij = w) in a closed-form way, but with the same drawback as FiCM+dcGM since there is no way to impose the condition A 1 ξ = b 1 .

To conclude this section, FiCM+NNLS stands as the only method among the considered ones that respects both non-negativity of coefficients and the linear system of equations A 1 ξ = b 1 . In the following section, other possible improvements or research directions will be discussed. and averaged over n = 100 trials. Negative coefficients % is the percentage of negative coefficients over non-zero coeffecients of ξ.

Method

Discussion

The main idea developed in this article is to build a systemic macroeconomic model able to reproduce topological features, with respect to a given theoretical behavior. This explains the choice of a minimalist set of behavioral equations, that may be extended to include other features of SFC models. The interplay between stocks (wealth of households M , stock of loans L, capital stock of firms K) and flows was not examined here. It is known from empirical studies that the network of interfirm sales should be disassortative [35, §2] but we could not observe realistic values for Is as explained in sec. 3.2. Apart from linear models, nonlinearities may be introduced, following the example given in engineering [48].

In sec. 2.1, several topological models were proposed for each transaction subnetwork. It was noticed that some were not consistent with empirical evidence. Among FiCM networks, the block model for investment and consumption of firms was modified to account for heterogeneity among sectors. A uniform random fitness model was proposed and can be extended to power-laws, building on studies of firm size [START_REF] Axtell | Zipf Distribution of U.S. Firm Sizes[END_REF][START_REF] Gabaix | Power Laws in Economics and Finance[END_REF]. The scope could be extended beyond national limits, following [START_REF] Mizuno | Structure of global buyer-supplier networks and its implications for conflict minerals regulations[END_REF]. The network of household consumption should incorporate more empirical data and notably the different socioeconomic positions [START_REF] Leo | Correlations and dynamics of consumption patterns in social-economic networks[END_REF]. The BiRG networks may be replaced by appropriate FiCM networks. The network of bank loans to firms should use central bank data [52, 3.2]. The network of wages could benefit from aggregate constraints such that the compensation of employees in national accounts [33, 5.1]. The investment network, which was proxied by firm consumption, could be enhanced using a better data source. Agriculture, which was not excluded in the network model for convenience, should be included.

The experimental analysis of the reconstructed networks' properties in sec. 2.3 and 3.2 consists in a comparison to basic stylized facts in the empirical litterature. This validation, while necessary is not sufficient and should be extended in two possible directions: either with a comparison to detailed microdata from empirical studies, of from ABM simulation where the real topology is known.

The two-step method devised here first needs to reconstruct the topology from economic data. Then, weights are approximated using an numerical method. Those weights are then expected to reflect the economic data used in the first step, which can be validated experimentally (but is not guaranteed by construction). A single-step method similar to [START_REF] Mastrandrea | Enhanced reconstruction of weighted networks from strengths and degrees[END_REF] and able to cope with the constraint in eq. ( 1), could provide such a guarantee. Some recent works [START_REF] Niven | Maximum Entropy Analysis of Flow Networks with Structural Uncertainty (Graph Ensembles)[END_REF] in that direction question the relevant form for the entropy. Also, maximum entropy methods with inequality constraint should be taken into account.

The role of time may be questionned, as it is expected to play no role in this article, on the opposite of ABM that can deal with growth and transient phenomena. Small fluctuations in the vicinity of the data points used to learn the subnetworks can be discussed, but it is unlikely that radical change in the network structure can be modelled. Stability issues close to the steady-state can be examined using the theory of dynamics on networks [9, 18.2], [START_REF] Anand | Stability and dynamical properties of material flow systems on random networks[END_REF]. More importantly, it must be stressed that the concept of steady-state [START_REF] Daly | From uneconomic growth to a steady-state economy[END_REF] has been debated during several decades in the field of ecological economics. The benefits of using our approach in that context will be examined.

A detailed analysis of our results in the light of economic knowledge is needed. For example the influence of the macroeconomic parameters on the network structure may be compared to what is expected by existing economic theories, and empirical observations.

Conclusion

In this article we propose an intermediate model between ABM and complex networks, able to reflect topological features, heterogeneity and interaction, with theoretical properties that are easier to establish than in the ABM case. This comes at the cost of losing time-dependence.

Data-driven economic network reconstruction methods do not include so far constraints stemming from macroeconomic models. In this article we propose to introduce such a constraint, that induces a specific distribution for the weights of the network. To do so, we use a two-step method that requires first to estimate the topology of each subnetwork taken independently, then to estimate network weights. The first step can be skipped if a detailed empirical description of the network topology is known.

Building on the fitness-induced configuration model we defined several connection probabilities to model the topology of subnetworks representing various economic transactions. These models respect the empirical link density found in empirical studies and were fit to national accounts empirical data.

In the future we will extend the methods developed here in several direction: first, instead of a two-step approach, we plan to get the parameters of the full network in just one step. Furthermore, reconstructed networks will be compared to a ground truth obtained from empirical or simulated data. More detailed economic models, possibly non-linear, can be studied.

Lastly we stress that the results obtained can be used by practitioners in the ABM or SFC communities that are interested in network and distributional phenomena in the steady state.

Appendix A. Notations

In this section the notations of sec. 1 are explicited. 

Final uses

Figure 1 :

 1 Figure 1: Simplified network of (a) investments between firms i and j belonging to different sectors s i and s j ; (b) wages.

Figure 2 :

 2 Figure 2: Properties of the investment block network, unipartite and directed. (a) sector-level connection probability matrix ps i ,s j (b) lower triangle part of the matrix {|ps i ,s j -ps j ,s i |} with the corresponding sign in the bounding box (c) probability matrix p ij with nf = 300 (d) random network sample.

Figure 4 :

 4 Figure 4: Degree of the investment block network. Dots are randomly sampled graphs, lines represent theoretical approximation of the expectation. Errobar represent ±1 standard deviation (a) in-degree (b) out-degree. nf = 300

Figure 6 :

 6 Figure 6: Random fitness investment network. (a) in-degree; (b) nearest-neighbour degree. nf = 300

Figure 7 :

 7 Figure 7: Budget of (a) households; (b) firms. nb = 3, nf = 100, nh = 1000

  2.1. Given the sector, it seems that C s is uniformly distributed on some interval[u, v]. Comparing sectors B-E and K, v does not appear to be a linear function of the sector's connection probability p si .

Figure 8 :

 8 Figure 8: Consumption supply Cs from firms to households and out-degree of the consumption network. (center) Each dot corresponds to a specific firm and represents its out-degree, Cs computed using NNLS, and its sector; (top) marginal histogram of out-degree; (right) marginal histogram of Cs. n b = 3, n f = 50, n h = 300, n iter = 10

Figure 9 :

 9 Figure 9: Consumption demand C d by households and in-degree of the consumption network. (center) Each dot corresponds to a specific household and represents its average C d computed using NNLS and its in-degree ; (top) marginal histogram of in-degree ; (right) marginal histogram of C d . n b = 3, n f = 100, n h = 1000, n iter = 10

Table 1 :

 1 

Transaction matrix of a disaggregated model with many households, two firms and one bank: agents nh = 3, nf = 2, nb = 1. See Tab. 2 for notations.

Table 2 :

 2 Labels associated with the different monetary variables, after[START_REF] Godley | Monetary economics: an integrated approach to credit, money, income, production and wealth[END_REF]. The subscripts d and s stand for demand and supply.

	Variable	Label
	loans to firms	L
	investment	I
	interest on loans	IL
	wage bill	W B
	interest on workers deposits ID
	consumption of workers	C

Table 3 :

 3 

	Transaction type	Graph type	Nodes	Edge i → j or i ↔ j
				present if:
	Investment of firms	unipartite directed	firms	firm i is selling capital
				goods to firm j
	Consumption of households bipartite undirected firms, households	firm i is selling con-
				sumption goods to
				household j
	Wages	bipartite undirected firms, households	firm i pays a wage to
				household j
	Interests on loans	bipartite undirected banks, firms	bank i gets interests
				from firm j
	Interests on deposits	bipartite undirected banks, households bank i pays interests to
				household j

Graph type for all subgraphs of the full transaction graph G. All subgraphs are binary.

Table 4 :

 4 Block model for each transaction type. All subgraphs are binary. z is a free parameter which value is set independently for each transaction using maximum likelihood.

	Transaction type	Model type p ij	Indices	Constraint
	Investment of firms	FiCM	zaiaj ds i s j 1+zaiaj ds i s j	(i, j) ∈ [1, nf ] 2	a i : propensity of firm i to play a role in invest-
					ment, either as a buyer or
					a seller.
	Wages	FiCM			

Table 5 :

 5 Random fitness model for transactions that differ from the block model in Tab. 4.
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	Figure 5: Nearest network degree of the investment block network. Dots are randomly sampled graphs, lines represent
	theoretical approximations.														

Table 6 :

 6 Comparison of ensemble reconstruction methods. Relative error is defined by 100 ×

	A 1 ξ-b 1 1
	ξ 1

Table B .

 B Table B.8: Final uses matrix, that constitutes the second quadrant of the use table. Table B.9: Input-output matrix, industry-by-industry. 10: Eurostat datasets used to parametrize random networks

		Label Definition		
		A	agriculture, forestry and fishing
		B	mining and quarrying	
		C	manufacturing		
		D	electricity, gas, steam and air conditioning supply
		E	Final consumption expen-water supply; sewerage, waste management and remediation activities Gross fixed capital forma-. . . Total
		F	diture by households construction	tion
	Products	G	wholesale and retail trade; repair of motor vehicles and motorcycles
	Products of agriculture H transportation and storage		. . .
	. . . Products of other services I accommodation and food service activities . . . J information and communication . . . K financial and insurance activities	Σ
	Total	L	real estate activities			Σ
		M	professional, scientific and technical activities
		N	administrative and support service activities
		O	public administration and defence; compulsory social security
		P	education		
		Q	human health and social work activities
		R	arts, entertainment and recreation
		S	other service activities	
		T	activities of households as employers or for own use
		U	activities of extraterritorial organisations and bodies
				Agri. Industry Services Uses
			Agriculture 10	34	10
			Industry	20	152	40	Σ
			Services	10	72	20
			Output		Σ
	Dataset label	Dataset definition		Input for transaction	Corresponding	vari-
						networks	able or fitness
	bd 9ac l form r2	business demography	Investment, consump-	nf, nh by sector
			by legal form			tion, wage
	naio 10 cp15,	supply,use,	input-	Investment	d sisj
	naio 10 cp16,	output tables		
	naio 10 cp1750			
						Consumption	x si

Table B.11: Definition of sectors
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a detailed study in[START_REF] Godley | Monetary economics: an integrated approach to credit, money, income, production and wealth[END_REF] establishes the properties of the BMW model in the transient and steady-state regimes, in the case of the representative model that is when each institutional sector is represented by one agent.

https://gitlab.com/hazaa/sfc_proba

more specifically the de Moivre-Laplace theorem.

to do so the likelihood is used to enforce the constraint in eq.(1) p(b|ξ) = δ(b -Aξ), then using the Gaussian expression of the delta function yields -2 ln p(b|ξ)∝ lim Σ A →0 (b -Aξ) T Σ -1 A (b -Aξ)

for numerical reasons, the solution is not computed directly from the expression of the pseudoinverse, instead sparse least-norm solvers should be used.

where W Bd n h ,n f is the wage obtained by household n h from firm n f , IDd n h ,n b is the amount of interest obtained by household n h from bank n b , ILd n h ,n b is the amount of interest paid by firm n h to bank n b , Id n f,1 ,n f,2 is the investment paid by firm n f,1 to firm n f,2 .

Appendix B. Eurostat national accounts databases

All tables in this section are built by national accountants for a given country, and a given year, but these mentions are dropped for clarity reasons.

The production matrix forms a part of the supply table . For each category of products in the rows, it displays the value of the production, grouped by industry type in the columns. To simplify, only the production matrix is shown in Tab. B.7 while the others components of the supply table are dropped (no imports, trade and transport margins, taxes less subsidies on products) [START_REF]Eurostat Manual of supply, use and input-output tables[END_REF]Tab. 4 As explained in [33, §5.1] "a use table shows the use of goods and services by product and by type of use for intermediate consumption by industry, final consumption expenditure, gross capital formation or exports". Only the quadrant named "Final uses" will be used here, and more particularly two columns, "Final consumption expenditure by households" and "Gross fixed capital formation". This is summarized in Tab.B.8. Since our model does not involve intermediate consumption, the corresponding part of the use table is not exploited here. The value of product p ∈ [1, P ] consumed by households as a final use is noted

The column "Gross fixed capital formation" can in fact be disaggregated by investing industry [ The rows of the industry-by-industry input-output table in Tab.B.9 explain how the production of a given sector is sent to other sectors. The columns show the different inputs of a given sector.

Tab. B.10 summarizes the data sources used in this article.
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