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Abstract

In this article the problem of reconstructing the pattern of connection between agents from partial empirical
data in a macro-economic model is addressed, given a set of behavioral equations.

This systemic point of view puts the focus on distributional and network effects, rather than time-
dependence. Using the theory of complex networks we compare several models to reconstruct both the
topology and the flows of money of the different types of monetary transactions, while imposing a series of
constraints related to national accounts, and to empirical network sparsity. Some properties of reconstructed
networks are compared with their empirical counterpart.

Keywords: econophysics, physics and society, maximum entropy, constraint satisfaction, networks,
finance, interfirm, network reconstruction

The state and dynamics of production and financial sectors are affected by interconnection patterns
between agents. However these patterns are poorly known at a detailed level because of confidentiality
issues. This prevents building risk indicators, that can help preventing the propagation of crises.

Our main motivation here is to infer an ensemble of unobserved multilayer networks in a data-scarce
context, taking advantage of available information: first, aggregate public statistics are used to estimate the
number and importance of the nodes involved. Then, macro-economic models established by economists
provide consistency and behavioral constraints that further reduce the size of the reconstructed ensemble.

A second motivation is to recover empirical regularities from the reconstructed ensemble, that are also
available in a few empirical studies, which will help assessing our method. For example, the degrees of firms
in buyer-supplier networks have been the subject of many studies, and are hard to measure and to model.
They are fundamental properties of the network that influence the dynamical processes that take place on
it. The same holds for strengths as functions of degrees. Even though the macro-economic model used
below is theoretical, it allows to compute these empirical regularities from the reconstructed ensemble. This
paves the way for more detailed models with more sectors (government, central bank, financial services, the
environment, etc...), and more refined mechanisms.

A third motivation, not developed in this article and left for future works, will be to explore the conse-
quences of building such a reconstructed ensemble in terms of economic applications: define and estimate
risk levels in production networks, study the risk of crisis propagation between the productive and financial
sectors, identify hidden clusters among nodes, etc. . .

To do so our method in this paper builds on advances in the field of data-driven network reconstruction
from partial information. While actively investigated in recent years, it remains an open problem. Maximum
entropy methods were introduced in statistical physics [1] and were shown to be very useful in studying the
properties of network ensembles [2]. Their application to social systems [3, 4, 5, 6], to financial and economic
networks is well established [7] and was recently demonstrated by central bankers to be rather accurate [8].

Network theory which deals with the structure and dynamics of network, and the properties of dynamics
over networks has been prolific overs past years [9] and seen a rising interest among economists [10]. The-
oretical models of supply chain, credit [11], trade, as well as empirical studies have covered various topics
such as employment, world trade or ownership control among corporations [12].

However, up to our knowledge, the possibility to include constraints inspired by macroeconomic models
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in Maxent network models was little studied so far. In engineering for example, network reconstruction
based on physical laws was developed for flow networks [13]. In the present article we propose to introduce
such a constraint on the network ensemble, with an unknown topology.

The most direct way to reach that aim would be to extend one of the existing weighted reconstruction
methods such as [14, 15], but this extension raises several issues. Rather, we use a two-step method that
requires first to estimate the topology of each subnetwork taken independently, from partial empirical data,
in the spirit of [16]. This choice stems from the fact that weighted networks estimation is greatly improved
when topological information is available. Then, when the topology is reconstructed, network weights can
be approximated using various methods, either probabilistic or deterministic.

The highlights of our method to reconstruct an ensemble of networks follow: i) it is probabilistic, ii) relies
on Maximum Entropy, iii) enforces non-negativity of weights, iv) allows linear constraints on connections
and weights, of the form Aξ − b = 0. More specifically :

• it is probabilistic because deterministic methods do not allow sampling random instances, that are
necessary to compute average quantities.

• Maximum Entropy makes it possible to respect empirical measurement (e.g. aggregate weights, link
density), while maximizing randomness, to avoid biases.

• non-negativity of weights is required by the nature of economic transactions.

• linear constraints in the form Aξ− b = 0 incorporates consistency constraints that stems from models
built by economists.

Lastly we stress that when detailed micro data is available, a reconstruction error can be computed to assess
the accuracy of the method.

In section 1 we present the testbed model for this study, which is inspired by stock-flow consistent
(SFC) macroeconomic models, in the restricted linear and steady-state case. In section 2 the corresponding
binary network is defined and reconstructed. In section 3, the weights are computed, using several methods.
Sections 4 and 5 compare and discuss the results while section 6 concludes.

1. A disaggregated linear model

In this section we describe a toy macroeconomic model, only consisting in a transaction matrix that
defines the flows of money between origins and destinations, as shown in Tab. 1. There are no stocks
(capital, loans, deposits) nor balance sheet, nor behavioral equations responsible for consumption, capital
depreciation. It is a simplification of the aggregated BMW model proposed in [17, §7], an SFC model that
introduces private bank money and does not involve a state nor a central bank, and where each sector is
represented by a single agent.

However, our model deals with the disaggregated case: the number of households, firms and banks is
arbitrary. Households can buy from several firms, get wages from various employers and interest on deposits
from several banks. Firms can buy capital goods from many firms, and pay interest on loans to several
banks.

To simplify further, and keep the focus on topological and distributional effects, the systems is supposed
to be in the steady-state1 regime. The set of row and column-sums equations in Tab. 1 can be written in
the form a linear system:

S = {ξ s.t. Aξ = b} (1)

Furthermore the system can be written as a function of demands only:

ξ =
[
Cd Id WBd ILd IDd

]T
(2)

1a detailed study in [17] establishes the properties of the BMW model in the transient and steady-state regimes, in the case
of the representative model that is when each institutional sector is represented by one agent.
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Households Firms Banks
∑

1 2 3 1 2 1
Consumption -Cd11 -Cd21 Cs1 0

-Cd22 Cs2 0
-Cd13 -Cd33 Cs3 0

Investment -Id1 Is1 0
Wage WBs1 -WBd1 0

WBs2 -WBd2 0
WBs3 -WBd3 0

Interest on loans -IL1 IL1 0
Interest on deposits ID1 -ID1 0

ID2 -ID2 0
ID3 -ID3 0∑

0 0 0 0 0 0 0

Table 1: Transaction matrix of a disaggregated model with many households, two firms and one bank: agents nh = 3, nf = 2,
nb = 1. See Tab. 2 for notations.

with vectors C, I,WB, IL, ID standing for consumption, investment, wage bill, interest on loans, interest
on deposits and subscripts d and s referring to demand and supply as summarized in Tab. 2. The vectors
are indexed so as to encode all origin-destination information:

Cd =
[
Cd1,1 . . . Cdnh,1 Cd1,2 . . . Cdnh,2 . . . Cd1,nf

. . . Cdnh,nf

]
(3)

where Cdnh,nf
is the amount of consumption goods sold by firm nf to household nh.

The same indexing convention is adopted for I,WB, IL, ID, as explained in Appendix A. This leads to
the following expression for A and b:

A =

−Ih1 Ih2 Ih3
If1 If2 −If3 −If4

Ib1 −Ib2

 , b = 0nb+nf+nh
(4)

The submatrices I∗ reflect the connection pattern among agents, in a way such that each line of A can
enforce the constraints in Tab. 1. A is a matrix with elements having values in {−1, 0,+1}, composed of
2nfnh + n2f + nb(nf + nh) columns and nb + nf + nw rows. Its sparsity factor is close to 10−3 given the
values of the parameters. The system Aξ = b is under-determined.

Note that the system eq.(1) is homogeneous and has a trivial solution. For this reason, it will be useful
below to define a minimalist nonhomogeneous system:

S1 = {ξ s.t. A1ξ = b1} (5)

where A1 and b1 are such that the consumption of all households is set to the constant value α0.
How the connection pattern is reconstructed from partial empirical data is the subject of sec. 2.

2. Random network reconstruction and sampling

In order to parametrize the disaggregated model in sec. 1, empirical datasets are necessary. Detailed
datasets exist in some particular cases: consumption networks were studied in Latin America and Europe
[18, 19]. The buyer/supplier interfirm network in Japan [20, 21], in Estonia [22], in the USA [23] where the
distribution of supply chains was modelled by a birth-death process. The ownership network of transnational
companies was reconstructed in [12] whith spatial distances as an explanatory variable [24]. Apart from
interfirm links, a study of Japanese bank-firms relationships can be found for example in [25].
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Variable Label
loans to firms L
investment I
interest on loans IL
wage bill WB
interest on workers deposits ID
consumption of workers C

Table 2: Labels associated with the different monetary variables, after [17]. The subscripts d and s stand for demand and
supply.

However, when detailed transaction databases exist, their access is restricted or paywalled. Only aggre-
gated ones are publicly available for most developed countries.

The topic of input/output relations between industrial sectors has been studied by economists dating
back to Leontief [26]. At the aggregate level, this weighted network is densely connected, as remarked in
[27], but dense connection is not a property observed at the micro level in available detailed datasets. The
same kind of problem arises for other types of networks, which reveals the necessity to perform network
reconstruction [7].

Before describing the reconstruction methods used below, let us define some notations: a binary graph
G, with at most one edge e ∈ E between two vertices in I × J , is specified by its adjacency matrix
A = {aij}i∈I,j∈J . This covers the unipartite case when I = J . The degree sequences will be denoted
by k. For graph ensembles, pij is the connection probability between vertices i and j, and 〈.〉 denotes an
average over that ensemble. The n-uple of adjacency matrices that correpond to the model in sec. 1 is
A = (Acons, . . . ,Ainvest). Lagrange multipliers in maximum-entropy models will be written in the form xi,
with i ∈ I.

Popular graph examples include the Erdös-Rényi random graph model (generalized to the bipartite
case under the name BiRG, for Bipartite Random Graph [28]), and the configuration model (CM, see [7,
2.2.2]). The latter defines an maximally random ensemble of graphs such that the degree ki of each vertex is
constrained to experimental values, that is in the undirected case: ∀i ∈ I, 〈ki〉 = ki. However such detailed
information is not available in our case. To go round this difficulty the notion of fitness gi was put forward
in the litterature [7, p.82]. The hypothesis made is that “the probability for any two nodes to interact can
be explicitly written in terms of non-structural quantities”, which suggests to write the Lagrange multiplier
in the form xi = f(gi), where gi are “non-structural quantities” such as the trade volume between countries.

Node-specific fitnesses of the form xi can be used, for example in the bilinear model pij = xixj that is
associated to the sparse hypothesis [2, 29].

The following functional form was introduced in [16] to reconstruct the World Trade Web using the Gross
Domestic Product (GDP) of various countries as an explanatory variable:

pij =
z xixj

1 + z xixj
(6)

This form is an example of “fitness-induced configuration model” (FiCM), that makes it possible to respect
both the maximum likelihood criterion and the total empirical number of links, or equivalently the overall
link density of the network, as noted in [30].

Many extensions were debated to cover for example weighted, directed, bipartite graphs. In the next sec-
tion, dyadic terms such as the distance dij in the gravity model pij =

xixj

d2ij
, where the respective contributions

of nodes i and j can’t be disentangled, will be introduced.

2.1. Application to a disaggregated SFC model

In sec. 1 an example of disaggregated economic model was considered. In sec. 2, reconstruction strategies
were discussed. In the present section, the nature of the graph built according to the model in sec. 1 is
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explained, as well as the probabilistic models used to reconstruct it from partial data. Section 2.2 describes
the necessary data.

Let G be the graph associated to the transactions of the disaggregated model. It is composed of various
subgraphs with heterogeneous properties, due to the diversity of the transactions involved, as summarized
in Tab. 3, where all subgraphs are binary and do not include any self-loop (a similar graph representing
assets and liabilities may be written, following [31]).

G is a multipartite, multilayer network. The population of agents is divided into three categories (banks,
firms, households). Each type of transaction corresponds to one layer. This type of network, while common
for social networks [32, Tab.2], is not often found in economic empirical studies that tend to focus on
individual layers, one at a time (finance, interbank, production, consumption, . . . ). Furthermore, imposing
a constraint over the network (here Aξ = b) is used in engineering to reflect conservation laws (mass, energy),
or in statistical mechanics of networks, for example to study motif-constrained ensembles (e.g. 2-stars, see
[2]), but is not commonly found in economic network models.

Transaction type Graph type Nodes Edge i → j or i ↔ j
present if:

Investment of firms unipartite directed firms firm i is selling capital
goods to firm j

Consumption of households bipartite undirected firms, households firm i is selling con-
sumption goods to
household j

Wages bipartite undirected firms, households firm i pays a wage to
household j

Interests on loans bipartite undirected banks, firms bank i gets interests
from firm j

Interests on deposits bipartite undirected banks, households bank i pays interests to
household j

Table 3: Graph type for all subgraphs of the full transaction graph G. All subgraphs are binary.

Following the methods explained in sec. 2, we need to specify the probability model pij for each type of
transaction using the different ingredients available (node-specific or dyadic terms, . . . ). Not all subgraphs
could be modelled as FiCM maximum-entropy networks, due to the availability of data to fit the models.
In that case, BiRG networks were used.

Let us first remark that in a few cases, the available empirical data impose a community structure to
the graph. For example, the demography of firms in public datasets is given at an aggregate sectorial level.
The same is true for intermediate consumption and the investment in capital goods of firms (see sec. 2.2).
As a consequence, the probability matrix {pij} that firm investment occurs between any two firms i and
j will in the simplest model be a block matrix with terms taken in {psi,sj}, the probability matrix that a
transaction occurs between sectors si and sj , as represented in Fig. 1(a). The same is true for consumption
of households, because the source of final consumption of households is known at the level of industrial
sectors.

The different functional forms corresponding to the transactions of this simplified block model are sum-
marized in Tab. 4. z is a free parameter which value is set independently for each transaction using
maximum likelihood, as will be seen below. Dyadic factors are noted dsisj and node-specific factors are
noted xi. Using node-specific rather than dyadic factors in FiCM is also a matter of data availability, as
will be seen in sec. 2.2.

The first two rows in Tab. 4 are associated with FiCM networks which definitions were recalled in sec.
2. In the case of consumption, all households are considered homogeneous. This explains the difference in
the form of pij between the first two lines.

The mean number of links 〈L〉 =
∑
i

∑
j 6=i pij in the undirected case is constrained and should be equal

to the observed one L =
∑
i

∑
j 6=i aij , which is given by empirical observation. Under the chosen models,
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Transaction type Model type pij Indices Constraint

Investment of firms FiCM
z dsisj

1+z dsisj
(i, j) ∈ [1, nf ]2 dsisj : propensity of sector

si to sell capital goods to
sj

Consumption of house-
holds

FiCM
z xsi

1+z xsi
(i, j) ∈ [1, nf ]× [1, nh] xsi : propensity of sec-

tor si to sell consumption
goods to households

Wages BiRG L
nf nh (i, j) ∈ [1, nf ]× [1, nh] 〈L〉 = L∗, or 〈k〉 = k∗

Interests on loans BiRG L
nb nf (i, j) ∈ [1, nb]× [1, nf ] 〈L〉 = L∗, or 〈k〉 = k∗

Interests on deposits BiRG L
nb nh (i, j) ∈ [1, nb]× [1, nh] 〈L〉 = L∗, or 〈k〉 = k∗

Table 4: Block model for each transaction type. All subgraphs are binary. z is a free parameter which value is set independently
for each transaction using maximum likelihood.

Transaction type Model type pij Indices Constraint

Investment of firms FiCM
zaiaj dsisj

1+zaiaj dsisj
(i, j) ∈ [1, nf ]2 ai: propensity of firm i

to play a role in invest-
ment, either as a buyer or
a seller.

Wages FiCM
zaixsi

1+zaixsi
(i, j) ∈ [1, nf ]× [1, nh] ai: see investment. xsi :

propensity of sector si to
attract the workforce

Table 5: Random fitness model for transactions that differ from the block model in Tab. 4.

given empirical fitnesses and L, the values of the remaining free parameters z for each network is set using
maximum-likelihood procedure, for the probabilities pij to be fully specified. In the case of the FiCM model
for investments, this leads to solving the one-dimensional nonlinear equation in z:

L =
∑
i<j

z xixj
1 + z xixj

(7)

which can be done approximately using standard numerical methods. One can then sample independently
the edges, and obtain random network samples for each transaction. An example is given in Fig. 2(d).

(a) (b)

Figure 1: Simplified network of (a) investments between firms i and j belonging to different sectors si and sj ; (b) wages.

In Tab. 4 the last three rows refer to a BiRG network (which definition is recalled in sec. 2) such that
only the average number of links is constrained. This type of model is not appropriate if local information
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is available, but this is not the case for the examined transactions. The edge probability is uniform and has
the simple expression pij = L

N1N2
where N1 and N2 are the number of vertices in each layer of the bipartite

network. The average number of links 〈L〉 = L∗ constraint can be equivalently expressed as a mean degree
constraint, either on one subset of the nodes or the other since these networks are bipartite with a fixed
number of vertices. Furthermore, for the BiRG networks:

• Wages: this network (firms on one hand and households on the other) can be subdivided into different
independent bipartite networks that correspond to industrial sectors as shown in Fig. 1(b). Firms and
households are randomly assigned to a sector depending on business demography data (i.e. number of
firms and number of employees in each sector). Then the connection probabilty is set such that the
mean degree on the households side equals the empirical mean: ∀i ∈ [1, nh], 〈ki〉 = k̄wage

• Interests on loans: the degree of this network (banks and firms) is uniform on the firms side, and
equals its empirical mean: ∀i ∈ [1, nf ], 〈ki〉 = k̄loans

• Interests on deposits: the degree of this network (banks and households) is uniform on the households
side, and equals its empirical mean: ∀i ∈ [1, nh], 〈ki〉 = k̄deposit

In the block model, for some subnetworks, all firms in a given economic sector have the same connection
probability with firms in another sector. This approach is useful but not realistic. A simple way to introduce
diversity among sectors is to use random fitnesses sampled from a specific distribution. Instead of writing

pij in the investment network in the form
z dsisj

1+z dsisj
, one may write:

pij =
zaiaj dsisj

1 + zaiaj dsisj
(8)

where ai are firm-specific terms sampled from some distribution that can be fit to empirical values. In this
article a continuous uniform distribution X = U[0,1] is chosen, but power law distributions will be considered
in further works. The wage network is modified accordingly, and can be seen as an FiCM network determined
by the firm-specific fitness ai in eq.(8) and a sector-specific fitness xsi that reflects the sectorial assignment
of the workforce in empirical data, keeping the household sector homogeneous:

pij =
zaixsi

1 + zaixsi
(9)

The specification of this random fitness model is summarized in Tab.5. Other propositions to go beyond the
limits of this formalization will be discussed in sec.5

2.2. Empirical data and fitnesses

Most datasets are extracted from Eurostat databases [33] as summarized in Tab. B.10. The figures men-
tionned in this table concern the demography of businesses and are not used directly to initialize simulations,
but are downscaled to permit computation in reasonable time. The agricultural sector, being separated from
business demography data, is not included in this study but will be added in further works.

The structure of supply, use and input-output tables is explained in Appendix B, along with the notations
for the Eurostat sector aggregates. Each correspond to a given country, and a given year, but these mentions
are dropped for simplicity.

These datasets are used to compute the fitnesses di,j and xi in Tab. 4. dsisj quantifies the propensity of
sector si to sell capital goods to sj . Since this information is not available directly in public datasets, our
proposition is to use the volume of intermediate consumption by industry in the use table as a proxy for
dsisj . It is a dyadic factor depending specifically on the couple (si, sj).

The fitness value xsi in Tab. 4 is supposed to quantify the propensity of sector si to sell consumption
goods to households. While household consumption could in fact be separated into different subgroups (see
[19]), we keep it aggregated here for simplicity. The proposed proxy comes in the form of a dot-product:

xsi ∝
∑

p∈[1,P ]

sup[p, si]× usefin[p] (10)
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where sup[p, s] is the value of product p ∈ [1, P ] produced by sector s ∈ S, and usefin[p] is the value of
product p ∈ [1, P ] consumed by households as a final use. This factor weighs the proximity between the
supply profile of sector si and the final use profile of the household sector. It is normalized to 1 across
sectors.

Average degrees of networks typically are not included in public datasets, but rather in private ones.
However their magnitude can be looked for in the literature in order to parametrize both FiCM and BiRG
models in sec. 2.1:

• the average number of edges per vertex for the interfirm network has been studied in the USA for the
period 1979-2002, and has a average value of 1.06 according to [23]. In the case of Japan, the estimated
value is close to 5 [21]. We believe these estimations aggregate both intermediate consumption of firms,
and acquisition of capital goods by firms. However we consider they are valuable proxies for the mean
link number 〈L〉 in the investment network.

• the average number of suppliers for households can be estimated from recent studies at the individual
level [18]. We set it to 20 in experiments below.

• the average number of jobs per household k̄wage is set to 1.

These choices are further discussed in sec.5.

2.3. Network properties

In this section we analyze the properties of some of the network models discussed in sec. 2.1. The
availability of a probabilistic model allows us to compute analytically the moments of some higher-order
topological properties [7], so as to compare it to stylized facts found in empirical studies. The programs
used to generate the figures are publicly available2. The figures dealt with in this section concern the Czech
Republic in 2010.

In sec. 2.1, the expression of the connection probabilities was given for all transaction networks. Fig.
2(a) illustrates the behavior of psi,sj in the case of the investment block network, proxied by the interfirm
consumption network in this article. Almost all sectors are primarily connected to themselves. Four aggre-
gated sectors stand out in terms of probability magnitude: B-E, F, G-I, and M-N (see definitions in Tab.
B.11). This can be related to the number of firms in each sector, jointly represented with probabilities in
Fig. 2(c). In first approximation the latter can be considered as symmetric, but this is not strictly verified
at a finer scale as shown in Fig. 2(b), where {|psi,sj − psj ,si |} is represented, as well as the sign of the differ-
ence. For example industry (B-E) sells more to construction (F) than the opposite. A randomly generated
network corresponding to pij is shown in Fig. 2(d) and illustrates these facts.

The network of households’ consumption is simpler, as defined in sec. 2.1, because the connection
probability pij doesn’t depend on j. Since the household sector is homogeneous, the matrix pij can be
summed-up by its cross-section along the firms’ axis, as shown in Fig. 3. Note the importance of sector K
(“financial and insurance activities”).

The degree is another classical indicator of network topology. Theoretical expectations of kin(j) and
kout(i) are directly available from pij , computing

∑
i pij and

∑
j pij . The variance can be computed using

the fact that independent Bernoulli variables are sampled along rows and columns. By a central limit
argument3, the pdf can be approximated for high degrees by a normal law. Fig. 4(a-b) show sample
degrees as functions of theoretical degree with approximate standard deviations plotted as error bars. It
can be noticed that, consistently with the block hypothesis, all firms in a given sector have the same degree.
Furthermore the four prominent sectors are the same as in Fig. 2.

Then we consider another classical high-order topological indicator, the average nearest neighbors de-
grees. For each agent, it measures the average degree of its neighbors.

2https://gitlab.com/hazaa/sfc_proba
3more specifically the de Moivre-Laplace theorem.
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Figure 2: Properties of the investment block network, unipartite and directed. (a) sector-level connection probability matrix
psi,sj (b) lower triangle part of the matrix {|psi,sj − psj ,si |} with the corresponding sign in the bounding box (c) probability
matrix pij with nf = 300 (d) random network sample.
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Figure 3: Properties of the households’ consumption block network, bipartite and undirected.
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Figure 4: Degree of the investment block network. Dots are randomly sampled graphs, lines represent theoretical approximation
of the expectation. Errobar represent ±1 standard deviation (a) in-degree (b) out-degree. nf = 300

knnin (i) =

∑
j=1 aijkin(j)

kout(i)
(11)

knnout(j) =

∑
i=1 aijkout(i)

kin(j)
(12)

Knowing pij , the expectation of these indicators can be approximated [34, eq.(34-35)]. Using these results,
in Fig. 5 we compare randomly sampled values and their theoretical couterpart. Both agree concerning the
assortative nature or the network, on the buyers and suppliers sides: suppliers with a small (resp. high)
out-degree kout in Fig. 5(a) tend to be connected to suppliers buyers with a small knnin (resp. high). The
same is true for buyers with respect to in-degree. This is a consequence of the dense conection inside the
first four sectors (that account for 85% of all links in this model), be it with inter or intra-sector links. It
contrasts with the disassortative nature of buyers-suppliers networks found in recent empirical studies such
as the interfirm payment network in Estonia [22], Italy [35, §2], and Japan [36, 3.1].
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Figure 5: Nearest network degree of the investment block network. Dots are randomly sampled graphs, lines represent
theoretical approximations.

The random fitness model depicted in sec. 2.1 and summarized in Tab. 5 was proposed to avoid such
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inconsistencies. In Fig. 6(a) the in-degree distribution of the investment network shows that some mixing
was succesfully introduced among firms belonging to different sectors, unlike in the case of block model in
Fig.4 where all firms of a given sector share the same degree. Similarly, the investment network is no longer
assortative in the case of the random fitness network as shown by Fig. 6(b). It can be noticed that in that
case, the probability distribution of degrees of a fitness model can be computed, following [37, eq. (1-2)].
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Figure 6: Random fitness investment network. (a) in-degree; (b) nearest-neighbour degree. nf = 300

While in this section only topological features were examined, the topic of average money flows will also
be dealt with below.

3. Estimation of marginal probabilities of monetary flows for a particular network

In sec. 2 only the topological properties of the model inspired by sec. 1 were examined. The present
section deals with the values of flows ξ associated to vertices given a specific topology. Moreover, we are
interested in the relationship between the solutions and the topological properties of networks. The n-uple
of adjacency matrices ASFC = (Acons, . . . ,Ainvest) can be temporarily considered as a quenched variable: it
is sampled once from the statistical ensemble {ASFC} subject to empirical constraints, and then considered
fixed.

The linear time-invariant underdetermined problem in eq. (1) has the following properties: A has full
rank and is such that m < n with m the number of rows and n the number of columns. In that case, AAT is
invertible, the Moore-Penrose pseudoinverse writes A† = AT (AAT )−1, and coincides with the least-square
solution of eq. (1):

ξ = AT (AAT )−1b (13)

This result can be related to probabilistic approaches: Bayesian and maximum entropy methods were
applied to flow networks in [13], using the unbounded Gaussian prior N (µ,Σ). The authors get the following
expression for the posterior average 4 :

〈ξ〉 = µ+ ΣAT (AΣAT )−1(b−Aµ) (14)

With the simplifying homoscedasticity assumptions Σ = σIn, this solution can be compared to the one
obtained with the Moore-Penrose pseudoinverse in eq.( 13). However, several problems arise: firstly, eq.(1)

4 to do so the likelihood is used to enforce the constraint in eq.(1) p(b|ξ) = δ(b − Aξ), then using the Gaussian expression
of the delta function yields −2 ln p(b|ξ) ∝ limΣA→0(b−Aξ)TΣ−1

A (b−Aξ)
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has a trivial solution x = 0 because the system is homogeneous. It is thus necessary to turn to the
nonhomogeneous system eq.(5) to obtain nontrivial solutions. Secondly, negative solutions 5 may be found
for this system, which limits the interest of this method.

Adding inequalities to eq.(1), it can be considered as a Constraint Satisfaction Problem (CSP):

S = {ξ s.t. Aξ = b, ξ0 ≤ ξ ≤ ξ1} (15)

Various properties of the set of solution vectors ξ can be studied numerically: as examplified in the field
of metabolic networks research, samples can be generated in a uniform [38, 39] or non-uniform way [40].
This type of method was applied already to SFC macro models in [41]. Distributional properties were
observed in the partially aggregated case in [42]. Unfortunately, sampling methods can’t be applied directly
in the present case because of the dimension of the problem. The positivity constraint can also be dealt
with by the Expectation Propagation algorithm [43] which yields an analytic approximation of the marginal
probability distribution P (ξi), using truncated Gaussian priors. But according to preliminary experiments
the dimension of our problem is too large for existing implementations.

Other algorithms are then necessary to handle the constrained high-dimensional case. As for metabolic
network analysis [44, §12.5], linear programming or basis pursuit can be used. It the objective function to
be minimized has the form 1T ξ, sparse solutions can be found numerically. This property is interesting for
example to force high unemployment, but is too restrictive otherwise. Nonnegative Least Square (NNLS)
numerically solves the problem:

argmin
ξ
‖ Aξ − b‖, s.t. ξ ≥ 0 (16)

which is equivalent to a quadratic programming problem, and which solution can be efficiently approximated
[45, §23] for large problems.

3.1. Properties of flows

In this section we present numerical NNLS solutions to the nonhomogeneous problem:

argmin
ξ
‖ A1ξ − b1‖, s.t. ξ ≥ 0 (17)

with A1, b1 defined in eq.(5). The networks that specify A1 are sampled from the ensemble defined by the
random fitness model in sec. 2.1. Due to computational constraints, the size of the networks will be limited
to nb = 3, nf = 100, nh = 1000, resulting in a system with more than 2.105 unknowns.

Fig. 7(a) represents the budget of all households, with a fixed consumption demand α0 imposed by A1

and b1, as a minimalist way to ensure nonhomogeneity. The population of agents can be clustered in two
groups: their consumption is either financed by wage bills or by interests on deposits, and this two values
are negatively correlated. Furthermore the values taken by WBs and IDs are highly clustered

Fig. 7(b) represents the budget of firms. Income is mainly composed of consumption supply to house-
holds, which is much larger than investment supply to firms. Expense includes wage bills and interests on
loans, the former dominating the latter. We note also that WBd and Cs are positively correlated. There is
a sectorial dependence of Cs that can be observed more in detail in Fig.8

3.2. Relationship between topological properties, stocks and flows in the block model

In the present section niter networks are sampled from the ensemble defined by the random fitness
model. For each of them, the approximate NNLS solution to eq.(17) is computed. Then the values of
ξ corresponding to various economic transactions are compared to the topological features of the related
subnetworks established in sec. 2.3.

5 for numerical reasons, the solution is not computed directly from the expression of the pseudoinverse, instead sparse
least-norm solvers should be used.
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Figure 7: Budget of (a) households; (b) firms. nb = 3, nf = 100, nh = 1000

The consumption Cs supplied to households by firms is shown in Fig. 8 with respect to the out-degree
of firms, that is the number of their customers among households. The distribution of sectors along the
x-axis is well clustered and reflects the distribution of the connection probability, seen in Fig. 3, for example
the high probability of connection of sector K. However, this clustering effect is attenuated by the uniform
random fitness model in comparison to the block model defined in sec. 2.1. Given the sector, it seems that
Cs is uniformly distributed on some interval [u, v]. Comparing sectors B-E and K, v does not appear to be
a linear function of the sector’s connection probability psi .
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Figure 8: Consumption supply Cs from firms to households and out-degree of the consumption network. (center) Each dot
corresponds to a specific firm and represents its out-degree, Cs computed using NNLS, and its sector; (top) marginal histogram
of out-degree; (right) marginal histogram of Cs. nb = 3, nf = 50, nh = 300, niter = 10

The average consumption Cd demanded by households is represented in Fig. 9 with respect to the in-
degree of households, that is the number of firms a given household is buying from. It can be verified that
households form a homogeneous group in the block model and the random fitness models. Furthermore
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they can’t be associated to an industrial sector in a one-to-one map. The clustering around the value of Cd
imposed by the rhs b1 in eq.(17) is clearly observed.
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Figure 9: Consumption demand Cd by households and in-degree of the consumption network. (center) Each dot corresponds
to a specific household and represents its average Cd computed using NNLS and its in-degree ; (top) marginal histogram of
in-degree ; (right) marginal histogram of Cd. nb = 3, nf = 100, nh = 1000, niter = 10

In sec. 3.1, it was remarked that the investment Is between firms had a residual level compared to other
quantities. As a first explanation, it can be noticed that the number of inter-firm links is very low compared
to firm-household links. This problem is likely to disappear when adding capital depreciation equations that
constrain the investment level, as in the BMW model.

4. Comparison to other methods

In sec. 3, numerical NNLS solutions to the problem in eq.(17) were computed, as the network topology
was sampled from a probabilistic FiCM model. In this section, our approach, noted FiCM+NNLS, is
compared to other existing works.

Firstly, the “degree-corrected gravity model” (FiCM+dCGM) is a two-step method that builds on an
FiCM model [46, 47], inspired by the gravity model, and corrected in order to set a given level of sparsity,
and to apply a constraint on the degree sequence. The value of weights placed on edges is:

wij =
aij
W

(z−1 + sisj) (18)

where W is a normalization factor, si =
∑
j wij and sj =

∑
i wij are the nodes’ strengths. For the sake of

comparison, Wi, Wj and W are computed below using the NNLS solution.
Secondly, FiCM+NNLS will be compared to the Bayesian method in [13] that results in eq.(14). All

methods give wij conditioned on the knowledge of the connection probabilities aij of the subgraphs. Even
though FiCM+dcGM and FiCM+NNLS build probabilistic models of topologies, expressed by pij , they
compute connection weights conditionaly on a particular realization of aij , as explained above. Similarly,
the Bayesian method in [13] computes the mean 〈ξ〉 using a closed-form expression that needs aij to be
known. We will be interested by several features of the obtained solutions:

• do they return negative money flows (that are not compatible with the desired behavior) ? This is
quantified by the percentage of negative coefficients over non-zero coefficients in ξ.

• to what extend do they respect the linear system of equations in eq.(15) ? This is quantified by a

relative error defined by 100× ‖A1ξ−b1‖1
‖ξ‖1 .
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Tab. 6 summarizes a computational comparison based on repreating n = 100 times each method, and
estimating the sample value of the error indicators. As expected, since FiCM+dcGM is not designed to
impose the linear constraint A1ξ = b1, the relative error rate obtained is much higher than the value
obtained with the other methods. FiCM+NNLS and the Bayesian algorithm yield a satisfactory relative
residual error below 1%. Then, the rate of negative coefficients is compared, and we find a value as high as
21% for the Bayesian method. This was anticipated in sec. 3, but is not acceptable in our context. Potential
solutions to this issue will be discussed in sec. 5.

Some other features can be remarked: first the FiCM+dcGM and Bayesian method yield a closed-form
expression for wij conditioned on aij , unlike FiCM+NNLS. There are method, such as the ECM [14], that
outputs both P (aij = a) and P (wij = w) in a closed-form way, but with the same drawback as FiCM+dcGM
since there is no way to impose the condition A1ξ = b1.

To conclude this section, FiCM+NNLS stands as the only method among the considered ones that
respects both non-negativity of coefficients and the linear system of equations A1ξ = b1. In the following
section, other possible improvements or research directions will be discussed.

Method FiCM+dcGM FiCM+NNLS Bayesian

Input Fitnesses xi, yj , number of
links L, Wi,Wj for each
subnetwork.

Fitnesses xi, yj , number of
links L for each subnet-
work. A1, b1 correspond-
ing to aij

Network topology aij .
A1, b1 corresponding to
aij

Probabilistic model of
topology pij

Yes Yes No

Closed-form expres-
sion of wij

Yes, conditioned on aij . No Yes, conditioned on aij .

Relative error % 15.9 0.18 0.15
Negative coefficients % 0. 0. 21.1
Refs [47] Present article [13]
Comments High error since A1ξ = b1

is not taken into account.
No pdf is available for wij . Outputs negative coeffi-

cients. Estimation can be
augmented with observed
values.

Table 6: Comparison of ensemble reconstruction methods. Relative error is defined by 100 × ‖A1ξ−b1‖1
‖ξ‖1

and averaged over

n = 100 trials. Negative coefficients % is the percentage of negative coefficients over non-zero coeffecients of ξ.

5. Discussion

The main idea developed in this article is to build a systemic macroeconomic model able to reproduce
topological features, with respect to a given theoretical behavior. This explains the choice of a minimalist
set of behavioral equations, that may be extended to include other features of SFC models. The interplay
between stocks (wealth of households M , stock of loans L, capital stock of firms K) and flows was not
examined here. It is known from empirical studies that the network of interfirm sales should be disassortative
[35, §2] but we could not observe realistic values for Is as explained in sec. 3.2. Apart from linear models,
nonlinearities may be introduced, following the example given in engineering [48].

In sec. 2.1, several topological models were proposed for each transaction subnetwork. It was noticed that
some were not consistent with empirical evidence. Among FiCM networks, the block model for investment
and consumption of firms was modified to account for heterogeneity among sectors. A uniform random
fitness model was proposed and can be extended to power-laws, building on studies of firm size [49, 50].
The scope could be extended beyond national limits, following [51]. The network of household consumption
should incorporate more empirical data and notably the different socioeconomic positions [19]. The BiRG
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networks may be replaced by appropriate FiCM networks. The network of bank loans to firms should use
central bank data [52, 3.2]. The network of wages could benefit from aggregate constraints such that the
compensation of employees in national accounts [33, 5.1]. The investment network, which was proxied by
firm consumption, could be enhanced using a better data source. Agriculture, which was not excluded in
the network model for convenience, should be included.

The experimental analysis of the reconstructed networks’ properties in sec. 2.3 and 3.2 consists in
a comparison to basic stylized facts in the empirical litterature. This validation, while necessary is not
sufficient and should be extended in two possible directions: either with a comparison to detailed micro-
data from empirical studies, of from ABM simulation where the real topology is known.

The two-step method devised here first needs to reconstruct the topology from economic data. Then,
weights are approximated using an numerical method. Those weights are then expected to reflect the
economic data used in the first step, which can be validated experimentally (but is not guaranteed by
construction). A single-step method similar to [14] and able to cope with the constraint in eq. (1), could
provide such a guarantee. Some recent works [53] in that direction question the relevant form for the entropy.
Also, maximum entropy methods with inequality constraint should be taken into account.

The role of time may be questionned, as it is expected to play no role in this article, on the opposite of
ABM that can deal with growth and transient phenomena. Small fluctuations in the vicinity of the data
points used to learn the subnetworks can be discussed, but it is unlikely that radical change in the network
structure can be modelled. Stability issues close to the steady-state can be examined using the theory of
dynamics on networks [9, 18.2],[54]. More importantly, it must be stressed that the concept of steady-state
[55] has been debated during several decades in the field of ecological economics. The benefits of using our
approach in that context will be examined.

A detailed analysis of our results in the light of economic knowledge is needed. For example the influence
of the macroeconomic parameters on the network structure may be compared to what is expected by existing
economic theories, and empirical observations.

6. Conclusion

In this article we propose an intermediate model between ABM and complex networks, able to reflect
topological features, heterogeneity and interaction, with theoretical properties that are easier to establish
than in the ABM case. This comes at the cost of losing time-dependence.

Data-driven economic network reconstruction methods do not include so far constraints stemming from
macroeconomic models. In this article we propose to introduce such a constraint, that induces a specific
distribution for the weights of the network. To do so, we use a two-step method that requires first to estimate
the topology of each subnetwork taken independently, then to estimate network weights. The first step can
be skipped if a detailed empirical description of the network topology is known.

Building on the fitness-induced configuration model we defined several connection probabilities to model
the topology of subnetworks representing various economic transactions. These models respect the empirical
link density found in empirical studies and were fit to national accounts empirical data.

In the future we will extend the methods developed here in several direction: first, instead of a two-step
approach, we plan to get the parameters of the full network in just one step. Furthermore, reconstructed
networks will be compared to a ground truth obtained from empirical or simulated data. More detailed
economic models, possibly non-linear, can be studied.

Lastly we stress that the results obtained can be used by practitioners in the ABM or SFC communities
that are interested in network and distributional phenomena in the steady state.

Appendix A. Notations

In this section the notations of sec. 1 are explicited.
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WBd =
[
WBd1,1 . . . WBdnh,1 WBd1,2 . . . WBdnh,2 . . . WBd1,nf

. . . WBdnh,nf

]
IDd =

[
IDd1,1 . . . IDdnh,1 IDd1,2 . . . IDdnh,2 . . . IDd1,nb

. . . IDdnh,nb

]
ILd =

[
ILd1,1 . . . ILdnh,1 ILd1,2 . . . ILdnh,2 . . . ILd1,nb

. . . ILdnh,nb

]
Id =

[
Id1,1 . . . Idnf ,1 Id1,2 . . . Idnf ,2 . . . Id1,nf

. . . Idnf ,nf

] (A.1)

where WBdnh,nf
is the wage obtained by household nh from firm nf , IDdnh,nb

is the amount of interest
obtained by household nh from bank nb, ILdnh,nb

is the amount of interest paid by firm nh to bank nb,
Idnf,1,nf,2

is the investment paid by firm nf,1 to firm nf,2.

Appendix B. Eurostat national accounts databases

All tables in this section are built by national accountants for a given country, and a given year, but
these mentions are dropped for clarity reasons.

The production matrix forms a part of the supply table. For each category of products in the rows,
it displays the value of the production, grouped by industry type in the columns. To simplify, only the
production matrix is shown in Tab. B.7 while the others components of the supply table are dropped (no
imports, trade and transport margins, taxes less subsidies on products) [33, Tab. 4.3, §4.1]. The value of
product p ∈ [1, P ] produced by sector s ∈ S will be noted sup[p, s].

Output of industries
Industries Agriculture . . . Other services Total domestic output

Products 1 . . . n

Products of agriculture . . .
... . . . Σ
Products of other services . . .
Total Σ

Table B.7: Production matrix, that constitutes the first quadrant of the supply table.

As explained in [33, §5.1] “a use table shows the use of goods and services by product and by type of
use for intermediate consumption by industry, final consumption expenditure, gross capital formation or
exports”. Only the quadrant named “Final uses” will be used here, and more particularly two columns,
“Final consumption expenditure by households” and “Gross fixed capital formation”. This is summarized
in Tab.B.8. Since our model does not involve intermediate consumption, the corresponding part of the use
table is not exploited here. The value of product p ∈ [1, P ] consumed by households as a final use is noted
usefin[p].

The column “Gross fixed capital formation” can in fact be disaggregated by investing industry [33, Fig
5.1 p.125], and is called the Investment matrix. The amount of fixed capital of product p ∈ [1, P ] formed
by the industrial sector s ∈ S is written usecap[p, s].

The rows of the industry-by-industry input-output table in Tab.B.9 explain how the production of a
given sector is sent to other sectors. The columns show the different inputs of a given sector.

Tab. B.10 summarizes the data sources used in this article.
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[34] F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade
Web, Scientific Reports 5 (1). doi:10.1038/srep10595.
URL http://www.nature.com/articles/srep10595

[35] E. m. Letizia, F. m. Lillo, Corporate Payments Networks and Credit Risk Rating, SSRN Electronic Journal-
doi:10.2139/ssrn.3075019.
URL https://www.ssrn.com/abstract=3075019

[36] A. Bernard, A. Moxnes, Y. Saito, Production Networks, Geography and Firm Performance, Tech. Rep. w21082, National
Bureau of Economic Research, Cambridge, MA (Apr. 2015). doi:10.3386/w21082.

20



URL http://www.nber.org/papers/w21082.pdf
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