
HAL Id: hal-01812719
https://hal.science/hal-01812719

Submitted on 11 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fast and Fuzzy Functional Simulator of Inexact
Arithmetic Operators for Approximate Computing

Systems
Justine Bonnot, Karol Desnos, Maxime Pelcat, Daniel Menard

To cite this version:
Justine Bonnot, Karol Desnos, Maxime Pelcat, Daniel Menard. A Fast and Fuzzy Functional Simulator
of Inexact Arithmetic Operators for Approximate Computing Systems. GLSVLSI 2018, May 2018,
Chicago, United States. �10.1145/3194554.3194574�. �hal-01812719�

https://hal.science/hal-01812719
https://hal.archives-ouvertes.fr

A Fast and Fuzzy Functional Simulator of Inexact Arithmetic
Operators for Approximate Computing Systems

Justine Bonnot
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

jbonnot@insa-rennes.fr

Karol Desnos
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

kdesnos@insa-rennes.fr

Maxime Pelcat
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

Institut Pascal UMR CNRS 6602
mpelcat@insa-rennes.fr

Daniel Menard
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

dmenard@insa-rennes.fr

ABSTRACT
Inexact operators are developed to exploit the tolerance of an ap-
plication to imprecisions. These operators aim at reducing system
energy consumption and memory footprint. In order to integrate
the appropriate inexact operators in a complex system, the Quality
of Service of the approximate system must be thoroughly studied
through simulation. However, when simulating on a PC or work-
station, the custom bit-level structures of inexact operators are not
implemented in the instruction set of the simulating architecture.
Consequently, the simulation requires a costly emulation, leading
to expensive bit-level simulations. This paper proposes a new "Fast
and Fuzzy" functional simulation method for inexact operators
whose probabilistic behavior is correlated with the Most Significant
Bits of the input operands. The proposed method processes real
signal data and simplifies the error model for inexact operators,
accelerating the simulation of the system. The modelization accu-
racy of the error can be controlled by a parameter called fuzzyness
degree F . Using the proposed method, the bit-accurate logic-level
simulation of inexact operators is replaced by an exact operator to
which a pseudo-random error variable is added. Experiments on
16-bit operators show that the proposed simulation method, when
compared to a bit-accurate logic level simulation, is up to 44 times
faster.

1 INTRODUCTION
According to the Semiconductor Industry Association and Semicon-
ductor Research Corporation, the total energy required for comput-
ing will exceed the estimated world’s energy production in 2040, if
no significant improvement is obtained in terms of energy-aware
computing systems [2]. In this context, approximate computing is
an active field of research that trades-off the output quality of a
system for its energy consumption. Approximate computing ben-
efits from the error resilience of algorithms in signal, image or
video processing and data mining fields. Among the numerous ex-
isting approximate computing techniques, inexact operators have
been designed to overcome the performance limitations of exact
operators. Inexact operators are obtained by making a functional
approximation. The boolean function of inexact operators is slightly
modified to reduce the logic complexity and/or length of critical
paths [9], [4], [17]. The main interest of inexact operators compared

,
. https://doi.org/10.1145/nnnnnnn.nnnnnnn

to a technique such as fixed-point coding is to generate an error
with an error rate (ER) lesser than 1 [13]. Inexact operators can
then have varied error profiles in terms of ER, the frequency of
error occurrences, and error distance (ED) representing the error
amplitude.

A challenge when including inexact operators in an application
is to evaluate the impact of the approximation on the quality of
service (QoS) λ at the output of the application. Potential approxi-
mations have to be analyzed to choose the best inexact operators
with respect to the different constraints on the application imple-
mentation. The approximation design space exploration (ADSE)
is large and requires a fast simulation to evaluate approximation
impact on QoS.

Two families of state-of-the-art approaches exist to evaluate the
errors induced by approximations on an application: 1) Analytical
techniques [20], [11]mathematically express error statistics but the
link between these statistics and the application QoS is not straight-
forward. 2) Functional simulation techniques run the approximate
system on data and checks the obtained λ. Nevertheless, to mimic
the inexact operator behavior, bit-accurate simulations at the logic-
level (BALL simulations) are required. BALL simulations are two or
three orders of magnitude more complex than classical simulations
with native data types, as shown in Section 4.

In this paper, we propose a fast functional simulation technique
for inexact operators. The proposed "Fast and Fuzzy" (FnF) simulator
simplifies the approximation error model to fasten the simulation.
The BALL simulation of an inexact operator is replaced by the exact
operation to which is added a pseudo-random variable (PRV) mod-
eling the approximation error. To take into account the correlation
between input values and approximation errors, the input operand
set is decomposed into subspaces and a different PRV is associated
to each subspace. Each PRV is defined to mimic the error in terms
of ER and ED generated by the approximation. The proposed simu-
lator is designed to be operator agnostic and is intended to be used
during the ADSE process. The FnF simulator is designed to quickly
evaluate the impact of different approximations at the hardware
level on the QoS of an application.

The paper is organized as follows: related works on techniques
to model and simulate inexact operators are presented in Section 2.
Section 3 details the proposed FnF simulation technique. The effi-
ciency of the FnF simulation in terms of time savings and quality,
is exposed in Section 4. Finally, Section 5 concludes the article.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 RELATEDWORKS
Inexact operators are designed by making a functional approxima-
tion. The functionality of the operator is modified to reduce e.g. the
combinatorial logic complexity and the length of critical paths. The
effect on the circuit is a reduction in power consumption and/or
area. Inexact operators have been developed to overcome the per-
formance limitations of exact arithmetic operators. Many inexact
adders have been proposed ([9], [4], [17]) and their performances
are compared in [8]. The comparison between adders is done in
terms of normalized mean error distance (NMED), ER, and mean rel-
ative error distance (MRED). The error profile of inexact operators
is often represented as a Probability Mass Function (PMF).

Different approaches have been proposed to characterize the er-
ror of an inexact operator. Probabilistic error models in [11] and [10]
derive the link between the inputs and the error occurrence in the
operator. These techniques are accurate but custom to particular
types of operators. In the case of small input bit-width operators,
exhaustive simulations can be launched to give an accurate expres-
sion of the PMF. In the more general case, inexact operators are long
and complex to simulate since they are working at the logic level.
For high word-length operators or to avoid exhaustive simulations,
Monte-Carlo simulations can be used to compare the performances
of different inexact operators [6]. These simulations strongly de-
pend on the chosen input data distribution and on the number of
launched simulations. This technique is also non-deterministic and
its execution time depends on the required simulation precision.

Analytical methods provide mathematical expressions of an er-
ror metric (ER, NMED or MRED) on inexact operators. The chosen
error metric can then be quickly evaluated. For instance, when
implementing an approximation based on fixed-point coding, the
error metric is the error power. To derive the error power, per-
turbation theory is used [15]. Perturbation theory is however not
applicable to inexact operators because it builds on the hypothesis
that errors are small compared to signal, which is not the case in
most inexact operators. Several analytical methods have thus been
proposed to get the impact of an inexact operator on an application.
Interval Arithmetic (IA) can be used [1], but usually overestimates
the error bounds. To overcome the pessimistic bounds given by
IA, Affine Arithmetic (AA)takes into account the first order de-
pendencies between variables [5]. Nevertheless, these techniques
do not give information on the ER of inexact operators. Modified
Interval (MIA) and Affine (MAA) Arithmetic have also been pro-
posed in [7]. MIA and MAA require a characterization of the PMF
of the inexact operator and derive rules to propagate it through the
application. However, the number of terms required to propagate
the PMF suffers from range explosion. For instance, to propagate
the PMF through 4 Multiply-Accumulate (MAC) operations, 8 mil-
lion terms are needed [7]. Analytical techniques are completely
describing the PMF of an inexact operator but do not give a direct
link between the error metric and λ.

The straightforward method to determine the impact of the er-
ror on λ is to perform a functional simulation of the application. A
functional simulation of an inexact operator simulates the operator
at the logic level. Thus, the simulation time is significantly higher
than the one obtained with a classical simulation using workstation
native data types. The simulation in C code of an Almost Correct

Quality	evaluationSimulator	generation

Inexact	operator	
characterization

Table	generation

Code	generation

Fast	simulation

Approximation	design	
space	exploration

Optimization
Quality	metric	
determination

Application	description

Ops_FnF.h
Ops_FnF.c �

C

Ops_BALL.h
Ops_BALL.c

2

1

3 4

Figure 1: ADSE flow integrating the proposed FnF simulator
to evaluate the application QoS with inexact operators

Adder (ACA, [17]) on 32-bits takes 197×more time than the floating-
point addition natively supported by the processor. When it comes
to the Lower-Error Fixed-Width Multiplier (AAM, [16]), a multipli-
cation of two 32-bit operands takes 6250× more simulation time
than a floating-point multiplication. Inexact operators are generally
more intricate in terms of hardware implementation or memory
accesses than their exact implementation.

To the best of our knowledge, no method has been proposed to
accelerate the simulation of inexact operators by combining exact
computation and statistical methods. The goal of the proposed
simulator is to replace the BALL simulation of the inexact operator
⋄̂ by the simulation of the exact operator ⋄ plus a Pseudo-Random
Variable (PRV).

3 PROPOSED FAST AND FUZZY SIMULATOR
Our proposed simulation technique for inexact operators simplifies
the modeling of the approximation error to fasten the simulation
of inexact operators within the targeted application.

The proposed FnF simulator is set in the design flow presented
in Figure 1. The ADSE, corresponding to Block 4 in Figure 1 aims
at finding the best inexact operator for each operation in the appli-
cation as well as the best parameters for their tuning. For each test
of a configuration C, λ is evaluated from the results of the fast sim-
ulation carried-out with the FnF simulator (Block 3). The technique
proposed for the fast simulation is presented in Section 3.1.

The FnF simulator uses pre-computed tables computed in Block
2. The generation of the tables is presented in Section 3.2. The gen-
eration of the tables requires the knowledge of the approximation
error statistics. These statistics are provided by the characterization
process corresponding to Block 1 in Figure 1. Analytical techniques
[11], Monte-Carlo simulations [6] or exhaustive simulations are
the different alternatives to obtain these statistics. In the rest of the
paper, the statistics on the error have been derived from exhaustive
simulations for accuracy and generic purpose.

3.1 Fast and Fuzzy simulation of x⋄̂y
Let’s consider an approximate operator ⋄̂ whose input operands
x ∈ Ix = [x ;x] and y ∈ Iy = [y;y] are encoded on Nx and Ny
bits respectively. To avoid a coarse error modeling, the input set
I = Ix × Iy is decomposed in subspaces Si j = Ixi × Iyj such that⋃
i, j Si j = I . Since the ER is not equal to 1 in each Si j , our method

determines a pseudo-random variable PRV ei j for each Si j with
statistical characteristics provided by the inexact operator char-
acterization phase (Block 1). It is important to note that our FnF
simulator can take as input the statistics on the error provided
by [11], by exhaustive or Monte-Carlo simulations. Our simulator
does not output the exact value of the approximate operation but
generates the error with the same statistical characteristics as the
error at the output of the approximate operator.

Our method reduces the software simulation time of an inexact
operator by replacing the BALL simulation of ⋄̂ by the accurate ver-
sion of the operator ⋄ plus a PRV ei j whose statistical characteristics
are computed from the error generated by ⋄̂. Figure 2 illustrates
this principle.

Figure 2: Statistical equivalence between BALL and FnF sim-
ulation of x⋄̂y

According to the ER fi j in Si j , 0 or ei j is added to x ⋄ y. The
input operands sharing the same N-F MSBs (Most Significant Bits)
are grouped in the same subspace Si j , and are then associated to
the same PRV ei j , hence the error on the result of the simulation.
The size of the subspaces Si j controls the modeling grain and is
embodied by the user-defined fuzziness degree F . F has an impact
on the accuracy of our FnF simulator. Hence, the larger F is, the
more different outputs of the simulated operator are summarized
with the same PRV ei j , thus increasing the simulation imprecision.

Algorithm 1 Fast and Fuzzy Simulation of x⋄̂y

procedure FnF⋄̂(x ,y,N , F)
x0 = x >> F ▷ Pre-process operands
y0 = y >> F
k = Tidx [x0][y0]
if k == 0 then ▷ Error-free test

return x ⋄y
else ▷ Pseudo-random number generation

M1 = 2F − 1
pi j = generatePRNumber(M1,x ,y)
ei j = generateError(pi j , fi j ,ai j ,bi j)
return x ⋄y + ei j

end if
end procedure

Algorithm 1 details the proposed simulation process for Nx =

Ny = N and Figure 3 illustrates the flow of our simulation. The
first step of the FnF simulation is to pre-process the input operands

x and y by extracting their N-F MSBs. This leads to the values x0
and y0 respectively. x0 and y0 indicate to which subspace Si j x
and y belong to. The index k = Tidx [x0][y0] indicates if x⋄̂y may
generate an error. Tidx is a precomputed table that indicates if an
error occurs in Si j . Consequently, if k is equal to zero, no error is
generated and the accurate version of x ⋄y is directly returned, thus
avoiding any simulation time overhead. If k is different from zero, a
set of statistical characteristics (ai j ,bi j , fi j) is used to compute the
PRV ei j . The pre-computed table Terr [k] stores the sets of statisti-
cal characteristics for each Si j where an error occurs. Section 3.2
presents the generation of the two abovementioned tables. The PRV
ei j is computed with the following expression

ei j = ai j + bi j ∗ pi j , (1)

with pi j a pseudo-random number. In the FnF simulator, pi j , is
geerated from the F LSBs of the input operands. Indeed, the LSBs
of a signal can be considered as a white random additive noise non-
correlated with the input signal as derived in [19]. The F LSBs of x
and y are concatenated and finally scrambled by a xor operation
with a constant K . The purpose of these operations is to map the
input operands (x ,y) ∈ Ix × Iy to pi j ∈ [0; 22F [in a bijective way.

Finally, an asset of our simulator is that the execution time de-
pends on the number of errors committed by the original inexact
operator. The less errors an operator generates, the faster our FnF
simulator.

3.2 Automated simulator construction
The main contribution is to reduce the simulation time to get the
value x⋄̂y with the method detailed in Section 3.1. The error model-
ing is simplified using the tablesTidx andTerr to store the character-
istics of the PRVs used to compute the output value. The generation
of these tables is done only once for each operator and off-line.

Table Tidx indicates if a combination of input operands does or
not generate an error. The size ofTidx is 2Nx+Ny−2F . TheNx−F and
Ny − F MSBs of the operands are masked and operands obtaining
the same mask value are mapped to the same subspace Si j in Tidx .
Equation 2 presents the computation of Tidx .

Tidx [i, j] =
{

0 if ∀x ,y ∈ Si j , x⋄̂y = x ⋄y
k else. (2)

Terr stores the ED characteristics embodied by the affine form
(ai j ,bi j), and the threshold ti j used to generate an error with the
same ER as in Si j . The size of Terr then depends on the number of
subspaces where an error occurs.

To generate an error with the same statistical characteristics
as the inexact operator, a system with two equations for three
unknowns is set. The threshold ti j is then computed to be equal
to the number of errors to generate. We then have the system S
in Equation 3 to solve, with fi j representing the ER in Si j , Ai j , the
maximum ED in Si j , and µi j the mean ED in Si j .

S :




ti j = 22∗F (1 − fi j)

Ai j = ai j + bi j ∗max
i, j

(pi j)

µi j ∗ fi j =

∑22∗F −1
p=0 ai j+bi j ∗p

22∗F

(3)

S is developed to extract ai j and bi j in Equation 4. Indeed, the
maximum value of the pseudo-random number pi j is 22F − 1 and

Nx-F bits F bits

Mask M0x0

Terror

x Op y

Ny-F bits F bits
x y

Mask M0y0

Tindex
(bidimensionnal table)

k10
k3
k2

k4

tij

0

(aij,bij) +
i5k5

...

k1k2k3k4k5k6

pij

p>t

... ...

z~

xor

fij

tij=f(fij)
eij=g(aij,bij,pij) eij

Figure 3: Graph flow of the proposed Fast and Fuzzy simulation

the third equation of the system can be separated to highlight an
arithmetic sequence whose first term is ti j and common term 1.




bi j =
22F+1µi j fi j−2Ai j (22F−1−ti j)
(22F−1−ti j) (22F−3+ti j−22F+1)

ai j = Ai j − bi j (22F − 1)

(4)

The error ei j can also be modeled by a constant value if bi j is set
to zero, but the accuracy of our simulator decreases. In this case,
the threshold ti j is computed for each Si j by equalizing the mean
ED of ⋄̂ with the mean ED generated by the FnF simulation of ⋄̂, as
presented in Equation 5.

µi j ∗ fi j = ai j ∗ (1 −
ti j

22∗F
) (5)

⇔ ti j = 22∗F · (1 −
µi j · fij
ai j

) (6)

Besides, an inexact operator can be designed to generate errors
always lower or equal to x ⋄y. In this case, ei j cannot be greater
than the value of the operation x ⋄y, since the output of the simu-
lation is x ⋄y + ei j . In this case, the generated error ei j is equal to
max(− min

x,y∈Si j
(x ⋄y),Ai j). The maximum ED is not always gener-

ated. Consequently, to keep the same mean ED, the threshold ti j
has to be lower to generate errors more often. The worst possible
case is obtained when ei j is always equal to x ⋄y in Si j : in this case,
the value of ti j is presented in Equation 7. Else, ei j is always equal
to Ai j , the maximum ED in Si j .

ti j = 22∗F · (1 −
µi j · fij

− min
x,y∈Si j

(x ⋄y)
) (7)

4 EXPERIMENTAL RESULTS
The FnF simulator proposes to simulate an inexact operator using
a simple error model. To evaluate the impact on the simulation of
the proposed method, three points have to be highlighted: the time
savings offered by the simulator for the simulation of a single opera-
tion presented in Section 4.1, the trade-off simulation time/accuracy
of the proposed simulation depending on the fuzzyness degree F ,

detailed in Section 4.2 and the accuracy of the QoS evaluation
compared to the time savings in an ADSE process, extended in
Section 4.3. The results have been obtained on a processor Intel
i7-6700 with 32GBytes of RAM.

4.1 Simulation time savings for the FnF
simulator

To quickly test the impact of an inexact operator in an application,
the easiest solution is to simulate the application in software with
BALL simulation. The simulation time of our FnF simulator is then
compared with the software BALL simulation time obtained with
the C code from the App Test framework [3] for a single operation
and various input operand bit-width. The time required to generate
the tables (Block 4 in the flow presented in Figure 1) is less than
140s for the tested 16-bit inexact operators.

Figure 4a represents the simulation times for the ACA and Fig-
ure 4b for the Lower-Error Fixed-Width Multiplier (AAM), an ap-
proximate array multiplier presented in [16]. The time for simu-
lating a single operation is represented depending on the operand
bit-width. The obtained times have been averaged for all the pos-
sible configurations of carry-chain length (for the ACA) and all the
possible values of F for both operators. A BALL simulation of the
ACA on 16-bit takes 300 more time than classical simulation of the
exact operator with native data types, and the BALL simulation of
the AAM, for the multiplication of two 16-bit operands takes 4200
more time than a simulation with native data types.

The simulation times for the FnF simulator are represented for
bi j , 0 and bi j = 0, the affine modeling being slightly longer to
simulate than when bi j = 0. For the ACA, the FnF simulation is
always faster than the BALL one with operand bit-width greater
than 5 if bi j = 0, else greater than 6. On a single 16-bit addition, the
BALL simulation takes 3.5 more time than the FnF simulation. The
gain for this operator is reasonable since the design of the ACA is
quite simple and can easily be reproduced with C-code. However,
when it comes to the AAM, whose design is much more complex
than the one of the ACA, the FnF simulation is always faster and

the BALL simulation takes 44 more time than the FnF simulation
on a single 16-bit operation.

(a) ACA inexact operator

(b) AAM inexact operator
Figure 4: Simulation time for the FnF and the BALL simula-
tion of one operation.

4.2 Trade-off simulation time/quality
The number of Fuzzy bits F embodies a trade-off between the simu-
lation time, the size of the tables to store and the quality of the sim-
ulation. Figure 5 represents the Normalized Rooted Mean Squared
Error (NRMSE) of the FnF simulation of the ACA compared to the
BALL simulation of the inexact operator, δFnF /BALL , for two input
operand bit-widths. The NRMSE of the inexact operator simulated
with BALL simulation compared to the exact operator, δBALL/ex , is
equal to 0.35. When F = N −1, a single PRV is used to model the er-
rors, δFnF /BALL and δBALL/ex are of the same order of magnitude.
When F = 0, the simulator behaves like a Look-Up Table (LUT)
containing the error due to inexact operation. Thus, δFnF /BALL
is equal to zero. Besides, the relative difference between the FnF
simulation and BALL simulation stays lower than 10% for N − F
higher than 4.

The fuzzyness degree F has also an impact on the simulation
time as demonstrated in Figure 6 for the AAM. The FnF simulation
time is represented for different input bit-widths, depending on the
fuzzyness degree. The highest F , the smallest the tables and the
least cache misses. For instance, for N = 13, F has to be at least
equal to 3 to be faster than the BALL simulation (simulation time
gain of 2.4) and the maximum simulation time gain if F = N − 1 is
equal to 49.2.

4.3 ADSE for a stereo vision application
Designing an application with approximate computing, several pa-
rameters have to be tuned during the ADSE. During this phase,

Number of Fuzzy bits
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
R

M
S
E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FnF (N=8)
FnF (N = 16)

Figure 5: NRMSE between the FnF simulation and the BALL
simulation of ⋄̂ (ACA with a carry chain length cut at N /2)

Number of Fuzzy bits
0 1 2 3 4 5 6 7 8 9 10 11 12

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

n
s)

0

500

1000

1500

2000

2500

3000

N=10
N=11
N=12
N=13

Figure 6: FnF simulation time depending on the fuzzyness
degree F for the AAM

the application is run several times to measure the quality of the
result at the output of the application with the chosen parameters,
to finally select the parameters leading to the best performances
with respect to the designer’s constraints. To give an idea of the
intensiveness of this phase, several tunable parameters are given
hereafter (non exhaustive list). The percentage of replaced opera-
tors, the replaced operations, the inexact operator that is used (ex:
AAM or AWM), if the operator is tunable, the parameter to tune
(ex: carry-chain length for the ACA) and finally, the set of inputs
on which the algorithm has to be tested, are tunable parameters.

To illustrate the DSE phase, the stereomatching algorithm is con-
sidered [12]. This computer vision algorithm outputs a depth map
given two rectified input images. Approximate computing is par-
ticularly interesting for this algorithm since it is computationally
expensive. In this experiment, only the most computation intensive
kernel of this algorithm is considered for the ADSE. Only taking
into account the percentage of operators as well as the operations to
replace, but no tuning of the operators, 158 simulations are needed.
If the replacement of multiply operations is solely considered, test-
ing all the possible configurations with the BALL simulation takes
8.82 hours. The simulation using the FnF simulator only requires
12.71 minutes.

This test has been done using solely an input image from a test
set extracted from the Middlebury database [14]. To validate the

approximation on the stereomatching algorithm, the test needs to
be done on a complete data set, hence increasing the number of
simulations to perform. Several configurations have been tested
and are presented in Table 1. The quality metric used to measure
the difference between FnF and the BALL simulation is the SSIM
presented in [18]. The terms rADD and rMULT represent the ratio
of respectively addition and multiplication which use an inexact
operator. The gain Gt =

tBALL
tFnF in term of simulation time of the

proposed approach compare to a BALL simulation is provided. The
accuracy degradation of the application QoS evaluation is provided
through ∆a that measures the relative difference between the SSIM
of both output images obtained with FnF and BALL simulations.
The multiply operations have been replaced by the AAM and the
additions have been replaced by the ACA with a carry-chain length
equal to 7. Both operators are on 16-bit. The most important accu-
racy degradation for QoS evaluation depends on which operation is
impacted by the approximation, but the degradation is always lower
than 6%. The FnF simulator leads to an accurate QoS evaluation
and allows to save a non negligible simulation time by dividing the
simulation time between 1.38 to 87.59.

F rADD (%) rMPY (%) Gt ∆acc
5 0 14.3 65.59 < 0.1%
5 0 14.3 66.01 < 0.1%
5 0 14.3 65.71 < 0.1%
5 0 28.6 84.44 < 0.1%
5 0 28.6 83.37 < 0.1%
5 0 28.6 87.59 < 0.1%
8 20 0 1.38 5.69%

5(AAM) - 8(ACA) 20 14.3 52.24 0.578 %
Table 1: ADSE for the stereomatching algorithm. Simulation
time gain Gt and quality degradation ∆acc of the proposed
approach compared to a BALL simulation for different con-
figurations rADD and rMULT

5 CONCLUSION
This paperhas proposed a simulator of inexact arithmetic operators
that simplifies the modeling of the approximation error to fasten the
simulation. The "Fast and Fuzzy" simulator explores the functional
accuracy of operators in potentially large applications. The simu-
lator is demonstrated to induce an acceptable loss of simulation
accuracy in exchange for large simulation speedups. Simulation
speedups of 3.5× and 44× are observed respectively for an inexact
16-bit adder and an inexact 16-bit multiplier.

This project has received funding from the French Agence Na-
tionale de la Recherche under grant ANR-15-CE25-0015 (ARTEFaCT
project).

REFERENCES
[1] G Alefeld. 1999. Interval arithmetic tools for range approximation and inclusion

of zeros. In Error Control and Adaptivity in Scientific Computing. Springer, 1–21.
[2] Semiconductor Industries Association and Semiconductor Research Corporation.

2015. Rebooting the IT Revolution, a Call for Action. https://www.src.org/
newsroom/rebooting-the-it-revolution.pdf. (2015).

[3] Benjamin Barrois, Olivier Sentieys, and Daniel Menard. 2017. The hidden cost of
functional approximation against careful data sizing: a case study. In Proceedings
of DATE. European Design and Automation Association, 181–186.

[4] Vincent Camus, Jeremy Schlachter, and Christian Enz. 2016. A low-power carry
cut-back approximate adder with fixed-point implementation and floating-point
precision. In Proceedings of the 53rd Annual Design Automation Conference. ACM,
127.

[5] Claire Fang Fang, Rob A Rutenbar, Markus Püschel, and Tsuhan Chen. 2003.
Toward efficient static analysis of finite-precision effects in DSP applications via
affine arithmetic modeling. In Proceedings of the 40th annual Design Automation
Conference. ACM, 496–501.

[6] Jiawei Huang and John Lach. 2011. Exploring the fidelity-efficiency design space
using imprecise arithmetic. In Design Automation Conference (ASP-DAC), 2011
16th Asia and South Pacific. IEEE, 579–584.

[7] Jiawei Huang, John Lach, and Gabriel Robins. 2011. Analytic error modeling for
imprecise arithmetic circuits. Proc. SELSE (2011).

[8] Honglan Jiang, Jie Han, and Fabrizio Lombardi. 2015. A comparative review and
evaluation of approximate adders. In Proceedings on Great Lakes Symposium on
VLSI. ACM.

[9] Yongtae Kim, Yong Zhang, and Peng Li. 2013. An energy efficient approximate
adder with carry skip for error resilient neuromorphic VLSI systems. In Proceed-
ings of the International Conference on Computer-Aided Design. IEEE Press.

[10] Sana Mazahir, Osman Hasan, Rehan Hafiz, andMuhammad Shafique. 2017. Proba-
bilistic Error Analysis of Approximate Recursive Multipliers. IEEE Trans. Comput.
(2017).

[11] SanaMazahir, Osman Hasan, Rehan Hafiz, Muhammad Shafique, and Jorg Henkel.
2017. Probabilistic error modeling for approximate adders. IEEE Trans. Comput.
66, 3 (2017), 515–530.

[12] Judicaël Menant, Muriel Pressigout, Luce Morin, and Jean-Francois Nezan. 2014.
Optimized fixed point implementation of a local stereo matching algorithm onto
C66x DSP. In Design and Architectures for Signal and Image Processing (DASIP),
2014 Conference on. IEEE.

[13] Jongsun Park, Jung Hwan Choi, and Kaushik Roy. 2010. Dynamic bit-width
adaptation in DCT: an approach to trade off image quality and computation
energy. IEEE transactions on very large scale integration (VLSI) systems 18, 5
(2010).

[14] Daniel Scharstein and Richard Szeliski. 2003. High-accuracy stereo depthmaps us-
ing structured light. In Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on, Vol. 1. IEEE.

[15] Changchun Shi and Robert W Brodersen. 2004. A perturbation theory on statisti-
cal quantization effects in fixed-point DSP with non-stationary inputs. In Circuits
and Systems, 2004. ISCAS’04. Proceedings of the 2004 International Symposium on,
Vol. 3. IEEE, III–373.

[16] Lan-Da Van, Shuenn-Shyang Wang, and Wu-Shiung Feng. 2000. Design of the
lower error fixed-width multiplier and its application. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing 47, 10 (2000).

[17] Ajay K Verma, Philip Brisk, and Paolo Ienne. 2008. Variable latency speculative
addition: A new paradigm for arithmetic circuit design. In Proceedings of the
conference on Design, automation and test in Europe. ACM.

[18] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004).

[19] Bernard Widrow and István Kollár. 2008. Quantization noise. Cambridge Univer-
sity Press 2 (2008).

[20] Yi Wu, You Li, Xiangxuan Ge, andWeikang Qian. 2017. An Accurate and Efficient
Method to Calculate the Error Statistics of Block-based Approximate Adders.
arXiv preprint arXiv:1703.03522 (2017).

https://www.src.org/newsroom/rebooting-the-it- revolution.pdf
https://www.src.org/newsroom/rebooting-the-it- revolution.pdf

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Fast and Fuzzy Simulator
	3.1 Fast and Fuzzy simulation of x "0362 y
	3.2 Automated simulator construction

	4 Experimental Results
	4.1 Simulation time savings for the FnF simulator
	4.2 Trade-off simulation time/quality
	4.3 ADSE for a stereo vision application

	5 Conclusion
	References

