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Assessing Imputation of Extreme Data on Climatological Time Series

Techniques for imputation of missing data are generally well known. However, they are often applied and validated on non-extreme data. Even for specific approaches specialized on extreme data, the question raises on how to assess the imputation. Because of this, we propose to use known estimators of extreme value theory, such as the extremogram, which we generalize to time series with the presence of missing data.

Introduction

Recently extreme temperature events took important relevance in global scale studies. However, there is a lack of information and/or studies on Africa and South America where the geographical inhomogeneity of the results is caused mainly due to the absence of data. A special case is Uruguay, where long time series are available, but incomplete, with missing records on several consecutive years. On the other hand, climate change, annual seasonality and exogenous factors are some of the well known non stationary patterns present in climatological records. We use a flexible non parametric model to extract these factors from a non stationary time series. The remaining noise will then be assumed as a strictly stationary R d -valued time series, denoted by X := (X i ) i∈Z .

Preliminaries : The extremogram [2]

Def. 1.The extremogram of X, for two sets A and B bounded away from zero, is defined (provided the limit exists) as

ρ X A,B (h) := lim x→∞ P   x -1 X h ∈ B|x -1 X 0 ∈ A   , h = 0, 1, . . . . ( 1 
)
For the observations X 1 , . . . , X n , the sample extremogram is given by

ρ X A,B,n (h) := n-h i=1 I {u -1 m X i+h ∈B,u -1 m X i ∈A} n i=1 I {u -1 m X i ∈A} , ( 2 
)
where u m is the 

Our framework

The aim of this work is to study the extremogram of X when in the time series X some observations might be missed. For this, we suppose that the observations of the data (X i ) i=1,...,n occur at times

1 = i 1 < i 2 < • • • < i m = n.
From [START_REF] Parzen | On spectral analysis with missing observations and amplitude modulation[END_REF], we use the amplitude modulated observations of X, which is defined by

Y i := b i X i , i = 1, . . . , n (3) 
where b i = 1 if X i is observed and b i = 0 if X i is missing. Moreover, we will assume that (X i ) i and (b i ) i are independent sequences. 

Results

Proposition 1 Suppose that (b i ) i satisfy the condition (A.1) and that X is regularly varying. Then, for two sets A and B bounded away zero, ρ X A,B (h) and ρ Y A,B (h) exist for h = 0, 1, 2, . . ., and the following equality holds

ρ Y A,B (h) = ρ b (h) ρ X A,B (h), (6) 
for each h = 0, 1, 2, . . ., where ρ b (h

) := P(b h = 1|b 0 = 1) = ν b (h)/µ b .
From Proposition 1, we can naturally provide an estimator of the extremogram of the sequence X = (X i ) i through its amplitude modulated version (Y i ) i and the sequence (b i ) i as follows:

ρ X A,B,n (h) = ρ Y A,B,n (h) ρ b,n (h) ,
provided that ρ b,n (h) = 0, where ρ b,n (h) := ν b,n (h)/ µ b .

Theorem 1 Suppose that (b i ) i satisfies the conditions (A.1)-(A.4) and assume that X = (X i ) i is regularly varying with index α > 0.

If condition (D) holds, α r = o(m/n) and m = o(n 1/3 ), then       n m       1/2    ρ X A,B,n (h) -ρ X A,B,n (h)    h=0,1,...,H D -→ N (0, Σ A,B ), (7) 
where the asymptotic covariance is defined in [2, Corollary 3.3] and ρ X A,B,n (h After following the imputation strategy presented in [START_REF] Cugliari | Imputation of Temperature Extremes using Generalized Additive Models[END_REF], we obtain the extremogram for the original and imputed data. The graphic of this object is in Figure 2. Both lines (black and red) follow a reasonable similar pattern. Then, both series present the same extreme behavior and thus we conclude that the imputation scheme is appropriate.

) := P(u -1 m X h ∈ B|u -1 m X 0 ∈ A).

Application on real data

Figure 2: Extremogram for the original and imputed series, both by the method proposed in [START_REF] Cugliari | Imputation of Temperature Extremes using Generalized Additive Models[END_REF] and using a naive approach.

Conclusion & future work

• Use measures of extremes constructed from cluster functionals [START_REF] Gómez | Dependent Lindeberg central limit theorem for the fidis of empirical processes of cluster functionals[END_REF].

• Adaptation for usage on climatological random fields.

• Modeling the absence/presence of missing data through a 2-state Markov process.

• Assume only local stationarity on the X processes.
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 1 1/m)-quantile of the distribution of |X 0 |. In order to have a consistent result, we require m = m n -→ ∞ with m = o(n) as n → ∞, and u m is the sequence used in the definition of regularly varying time series in [2, § 1.2].

P

  Assumptions for the process (b i ) (A.1) (b i ) has finite second moments and, for h = 0, 1, . . ., γ b (h) := Cov (b i , b i+h ) is independent of i ∈ Z. (A.2) µ b,n := 1 b := Eb 0 = P(b 0 = 1) (A.3) ν b,n (h) := 1 b (h) := Eb 0 b h , h = 0, 1, . . .. (A.4) µ b = 0 and ν b (h) = 0 for each h = 0, 1, . . .. Assumptions for the process (X i ) (D) (X i ) i∈Z is α-mixing with rate function (α l ) l∈N . Moreover, there exist m = m n and r = r n -→ ∞ with m/n -→ 0 and r/m -→ 0, such that lim n→∞ m (|X h | > a m , |X 0 | > a m ) = 0, ∀ > 0. (5)

Data.Figure 1 :

 1 Figure 1: Geographical location of measuring stations (l.) and missing values patterns (r.).