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Abstract—Approximate operators have been developed to
overcome the performance limitations of the original accurate
arithmetic operators. They trade off the output quality of the
operator and its energy consumption, area or delay. To benefit
from this trade-off, the logic structure of the original accurate
operator is modified. When integrating approximate operators in
a complex system, numerous simulations of the application are
required to ensure the fulfillment of the application requirements,
despite the induced approximations. Because the hardware im-
plementation of approximate operators is not always available in
early phases of application prototyping, long software simulation
of their complex bit-level structure has to be used. This paper
proposes a fast simulator for approximate operators built from
the output values of the original accurate operator. The error due
to the approximation is modeled by a stochastic process whose
features are learned from the errors of the approximate operator.
The proposed simulator is compared to the bit-accurate logic-level
simulation and to a simulator of approximate operators built on
the input values of the operator. Experiments on 10-bit operators
show that the proposed method is up to 63× faster than a bit-
accurate logic level simulation.

I. INTRODUCTION

The current challenge, when designing algorithms for em-
bedded platforms, is to embed always more intricate algorithms
on over-constrained platforms, whether it be constraints on the
energy consumption or on the memory footprint.

To overcome this paradox, approximate computing tech-
niques have been proposed, taking advantage of the inherent
error-resilience of a majority of algorithms to embed. Indeed,
algorithms in the image, video processing or data mining
fields, or recursive algorithms are error-resilient by nature,
as presented in [4] for video coding algorithms. The output
quality of these algorithms is traded-off with their imple-
mentation cost using approximations, such that real-time and
power consumption constraints of embedded systems are met.
Among the numerous approximation techniques proposed,
inexact arithmetic operators (approximate operators) are under
consideration in this paper.

To overcome the current limitations in terms of power
consumption and/or area of the accurate arithmetic operators,
their boolean function can be modified. This functional approx-
imation induces errors to reduce the logic complexity and/or
the length of critical paths as presented in [5]. Approximate
operators, as the Almost Correct Adder (ACA) presented in [8]
or the Approximate Array Multiplier (AAM) in [7], are under
consideration in this paper. To use an approximate operator
in an application, a design space exploration is processed to
find the best approximation configuration as well as to ensure
that the application quality of service is still met despite the

induced approximations. To explore the whole design space
to fix the different parameters of the approximate operators
and find which operations should be approximated, a fast
simulation of the approximate operators is needed. However,
the simulation of approximate operators is intricate since
their hardware implementation is more complex than their
accurate implementation. To study the impact of the induced
approximations on the application, techniques as interval or
affine arithmetic [3] cannot be used. Indeed, they do not
monitor the impact of the approximation on the application
quality metric. Moreover, the frequency of error occurrence is
not taken into account.

Consequently, to study the impact of approximate operators
in an application, the simulation is required. To process the
design space exploration of an application, the approximate
operator is simulated within the application described with
a C code. Then, the different approximation perspectives
are simulated with a large set of input data to ensure the
quality of service of the application. Currently, simulating
approximate operators is complex since the operation cannot
be implemented directly with a single native instruction of
the host computer. To simulate them, three alternatives can
be considered. The simulation can be done in Hardware
Description Language (HDL) at the logic level as presented
in [6]. Hardware in the loop approach can be considered by
implementing the operator in an Field Programmable Gate
Array (FPGA). Nevertheless, these two alternatives require the
implementation of a complex interface with the C code or the
computer. The simplest solution is to simulate approximate
operators with an equivalent C code reproducing the internal
logic structure of the operator. This software simulation is
very long since, to be bit-accurate, the simulation must be
considered at the logic-level (BALL simulation). Despite being
prohibitively long, numerous simulations, with regards to the
set of inputs and the different approximation configurations,
are necessary. Without being able to test the impact of such
operators in an application, their use in real embedded systems
is compromised. Thus, a fast simulation of these operators
is strongly needed to quickly evaluate their impact on the
application quality.

In this paper, we propose a new approach to evaluate
quickly the application quality metric from simulation. To
accelerate the simulation compared to a BALL one, the error
ê due to approximate operators is modeled by a pseudo-
random variable (p.r.v.) ẽ. The error ê depends on the values
handled by the operators. Thus, the output set is decomposed
in subspaces and a p.r.v. ẽi is associated to each subspace. The
characteristics of each p.r.v. ẽi are stored in a table Terr.



Compared to our previous approach (FnFi) presented in [1],
in the proposed Fast and Fuzzy simulator (FnFo), the output set
is decomposed instead of the input set. Consequently, the size
of the table storing the statistical parameters ẽi is dramatically
decreased in the case of an addition or subtraction operator.
The p.r.v. ẽ combines a Bernouilli distributed p.r.v. to control
the error frequency and a uniform p.r.v. to control the error
amplitude. Moreover, the effect of the number of subspaces
on the result of the simulation is analyzed.

For a simple approximate adder on 16 bits, a simulation
time saving up to 5.5× is demonstrated. For a more sophis-
ticated approximate mutiplier on 10 bits, a simulation time
saving up to 63× is demonstrated while keeping a good quality
on the simulation output.

The paper is organized as follows: Section II details
the proposed FnFo simulation. The efficiency of the FnFo

simulation in terms of time savings and quality as well
as a comparison with the FnFi simulation, are exposed in
Section III. Finally, Section IV concludes the article.

II. PROPOSED TECHNIQUE

A. Modelization of the approximate operator error by a
stochastic process

In this part , the proposed method to accelerate the quality
evaluation process is presented. Let �̂ be an approximate oper-
ator whose input operands x ∈ Ix = [x;x] and y ∈ Iy = [y; y]
are coded on Nx and Ny bits respectively. x and x represent the
minimum and maximum value of x (same for y). The accurate
original operator is �. The output of the accurate operator � is
z = x � y and is coded on Nz bits. The set of all the possible
output values for the accurate operator � is O. For an addition
or subtraction, the output set O is composed of 2max(Nx,Ny)+1

values and for a multiplier O is composed of 2Nx+Ny values.

Let ê(x, y) be the error at the output of the approximate
operator whose inputs are x and y. ê(x, y) is expressed as:

ê(x, y) = x�̂y − x � y (1)

In case of fixed-point arithmetic, the error generated by
the finite word-length has been widely studied to derive
mathematical models as presented in [2]. Indeed, the fixed-
point error can be considered as a uniform random variable.
The frequency of error occurrence is equal to 1 since the error
is always present but the error amplitude is small compared
to the amplitude of the original signal. Contrary to fixed-point
errors, the error ê due to approximate operators can have a
high amplitude, but does not always occur. Consequently, when
using approximate operators, the frequency of error occurrence
must be low so as not to degrade too much the output quality
of the application. Thus, defining a mathematical model for
approximate operators is still an issue.

The straightforward approach to evaluate the degradation
on the application quality is to simulate the application with
the approximations on a set of representative data. To capture
the effects of approximate operators on the application quality,
the internal logic structure of the operator must be simulated.
Even if this simulation is carried-out with C language, the
logical level simulation slows down drastically the application
simulation process. A table storing the error ê and addressed by

x and y can be considered to reproduce the exact behavior of
the approximate operator. Nevertheless, this table is composed
of 2Nx+Ny elements. The amount of memory to store this table
is prohibitively big even for small values of Nx and Ny .

In the proposed approach, the error due to the approx-
imation is modeled by a stochastic process whose features
are determined with an operator characterization phase. The
proposed method aims to replace the approximate operator �̂
by the accurate version of the operator � plus an error ẽ with
the same statistical characteristics as the error ê generated by
the approximate operator, as:

x�̂y ⇔ x � y + ẽ (2)

B. Pseudo-random variables ẽi to model the error ê

Considering a single error ẽ to model the error of the entire
set Ix×Iy leads to a coarse model of the approximate operator
error ê. To model the approximate operator error more finely,
the proposed method decomposes the output set O in 2Nz−F

subspaces Oi. The number F is called the fuzziness degree and
impacts the accuracy of the modelization and the size of the
subspaces. For each subspace Oi, a p.r.v. ẽi is used to model
the error within the subspace Oi. Each subspace Oi contains
the output values z = x � y sharing the same Nz-F Most
Significant Bits (MSB). These output values are modeled by
the same p.r.v. ẽi. The bigger F, the bigger the subspaces Oi

and consequently the more information are summarized within
a single p.r.v. ẽi.

The statistical characteristics of the p.r.v. ẽi are stored in
a table Terr and the Nz-F MSB of the variable z are used to
address Terr. Rather than indexing this table with the inputs, as
in the simulator FnFi, the proposed approach uses the output
values to index the table Terr.

Numerous input combinations do not generate an error
at the output of the approximate operator �̂. Let fi be the
frequency of error occurrence in the subspace Oi. The error ê
is equal to 0 with a probability of 1− fi. To model the error
committed in the subspace Oi, the p.r.v. ẽi is generated with
the Equation 3.

ẽi = pi. (ai.ui + bi) (3)

In Equation 3, ui represents a uniform random variable
and pi a random boolean variable whose distribution follows
a Bernoulli law. The random variable pi is equal to 1 with a
probability fi and to 0 with a probability 1− fi. The random
variable pi is obtained from the random variable ui uniformly
distributed in the interval [0, 1] and presented in Equation 4.
The variables (ai, bi) are the coefficient of the affine form used
to compute an error value with the right amplitude.

pi =

{
1 if ui > fi
0 else. (4)

During the approximate operator error characterization
phase to build the proposed simulator, for each subspace Oi,
the characteristics of the error êi generated by the approximate
operator are extracted. For each Oi in O, the error values



êi are computed for the input combinations (x, y) such that
z = x � y ∈ Oi. Then, from these error values in Oi, the
error amplitude represented by (ai, bi) and the threshold fi to
generate an error with the same frequency of error occurrence
are computed and stored in the table Terr.

C. Algorithm to simulate x�̂y

The algorithm to simulate x�̂y is built with two pre-
computed tables, Tidx and Terr. Tidx is used to know if an
error occurs in Oi, and is of size 2Nz−F . The table Terr stores
the statistical characteristics (ai, bi, fi) of the different errors
ẽi.

The computation of x�̂y is detailed in Figure 1. Firstly, the
exact value z = x � y is computed. Then, the Nz-F MSB of z
are extracted, leading to the value z0, that addresses the table
Tidx. The value z0 indicates in which subspace Oi the output
value z belongs to.
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Fig. 1. Simulation of x�̂y

The value Tidx[z0] indicates if x�̂y may generate an error.
If Tidx[z0] is equal to zero, no error is generated and the
accurate version of the arithmetic operator already computed z
is directly used, thus avoiding any supplementary processing.
Otherwise, Tidx[z0] gives the index k to address the second
table Terr and allows to retrieve the parameters ai, bi and
fi of the p.r.v. ẽi. The error ẽi is finally generated from the
Equation 3.

To generate the uniform random variable ui used to com-
pute the error ẽi, the LSB of the accurate output value z
are considered. As described in [9], the LSB of z can be
considered as a uniform random variable. Widrow derived that
the LSB of a signal can be considered as a white random
additive noise non-correlated with the input signal. The LSB
of z are then xored with a constant K to scramble it. The
obtained result is the uniform random variable ui .

The C code developed to implement the proposed approach
has been optimized to waste the least cycles possible when
simulating operands that do not generate any error.

III. EXPERIMENTAL RESULTS

The proposed approach allows a fast simulation of approx-
imate operators to process the design space exploration of an

application with approximate operators. To demonstrate the
savings on the simulation time, the BALL simulation time
is compared to the FnFo and FnFi simulation time for two
operators and different input operands word-lengths. Then, the
impact of the fuzziness degree F on the simulation output qual-
ity is presented. Finally, the overhead in terms of computation
time and memory footprint due to the approximate operator
characterization phase is quantified for FnFo and FnFi.

A. Simulation time savings with the FnF simulation

To demonstrate the simulation time savings offered by the
use of the FnFo simulator, the simulation time of FnFo is
compared with the BALL and the FnFi simulation time. The
results have been obtained on a processor Intel i7-6700 with
32Go of memory for two operators, the ACA and the AAM.

The simulation time for different input operand bit-width
for the operator ACA is presented in Figure 2. The internal
logic structure of the ACA is simple to reproduce with a C
code since the approximation simply consists in cutting the
carry-chain length of an addition. The simulation time gains
are moderate due to the simplicity of the logic structure of this
adder and are up to 5.5× compared to the BALL simulation.
The FnFo simulator is faster than the FnFi since the tables to
store are much smaller, and less operations are needed when
computing a simulation with no errors.

The FnFi simulator was particularly useful for the design
space exploration of an algorithm with more complex oper-
ators, as for instance the AAM. Indeed, for the simulation
of a 16-bit AAM, the FnFi was 44× faster than the BALL
simulation. Neverheless, the behavior of the FnFo with a
multiplier is more complex, as presented in Figure 3. With
the AAM, the FnFo simulation time gains are increasing up
to 63× on a 10-bit AAM, to then decrease up to 37 on a 16-
bit AAM. The FnFi offers higher gains for multipliers whose
input bit-width is greater or equal to 11, but in both cases, the
simulation time savings on a 16-bit multiplier are considerable
for the design space exploration of an application.
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Fig. 2. Simulation time for the BALL and FnF simulation of the ACA



Operand bit-width
2 4 6 8 10 12 14 16

C
om

pu
ta

tio
n 

tim
e 

(n
s)

0

200

400

600

800

1000

1200

1400
BALL simulation
FnFo
FnFi
Floating-point reference operation

Fig. 3. Simulation time for the BALL and FnF simulation of the AAM

B. Impact of F on the quality of the simulation

The lower F is, the more accurate the simulation is, and
the bigger the tables to store are. F fosters a trade-off between
the memory space available for the simulator and the accuracy
needed to study the impact of the approximate operator on the
application. The simulation time depends on the number of
errors generated by the original approximate operator �̂ and
on F that impacts the size of the tables and consequently the
cache misses. The lower F , the slower the FnF simulation.

To study the impact of the fuzziness degree on the simu-
lation output quality, the relative error of normalized rooted
mean squared error (NRMSE) between the approximation
(computed with the BALL simulation) and the FnFo and FnFi

simulations are presented in Figure 4 for two operators, the
ACA on 8 bits with a carry chain-length cut at 4 and the ACA
on 16 bits with a carry chain-length cut at 8. The relative error
between both NRMSE is called δNRMSE and is expressed in
percent. For the ACA on 8 bits, δNRMSE stays under 10% if
F is lower or equal to half of the input bit-width. On the 16-
bit ACA, the margin is bigger. Indeed, δNRMSE stays under
10% until F is equal to 12. The supplementary error due to
the proposed model is acceptable for a number of Fuzzy bits
F between 50 to 75 % of the total operator word-length. As
shown in the next section, this leads to small tables for our
approach.

C. Approximate operator characterization phase

Compared to the BALL simulation, a pre-processing phase
is required to build the tables Terr and Tidx for each operator.
The approximate operator error êi is characterized and the
statistical characteristics of the p.r.v. ẽi are computed and
stored in the tables Tidx and Terr. In Table I, the memory
footprint to store the tables Terr and Tidx for an average value
of F i.e. F = bNz

2 c is provided, as well as the time to build the
tables. The characterization step is done once off-line for each
new operator and the tables used in this paper are available
online to avoid this step. The simulator FnFo is longer to
build by construction because consecutive output values of an
operator are not necessarily belonging to the same subspace,
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which induces a bad locality in terms of memory accesses. The
results are presented in the case of an exhaustive test of all the
value x and y. Nevertheless, for operators with a high operand
word-length, an exhaustive test is not mandatory. Accurate
estimation of the statistical parameters ai, bi and fi can be
obtained with a limited number of operand values reducing
dramatically the time required to build the tables. The main
advantage of the proposed approach compared to the FnFi is
the significant reduction of the size of the tables for the adder.
For the ACA on 16 bits, the memory footprint is divided by
166 with the proposed approach compared to tables obtained
with the FnFi simulator.

�̂ N t (FnFo) t (FnFi) Mem (FnFo) Mem (FnFi)
AAM 6 < 1ms < 1ms 764B 1KiB

7 < 1ms 0.2s 3KiB 3KiB
8 < 1ms 0.3s 45KiB 3KiB
10 0.4s 3.5s 12KiB 12KiB
16 4h20’ 137.5s 768KiB 768KiB

ACA 6 < 1ms < 1ms 192B 1.3KiB
7,8 < 1ms < 1ms 384B 4KiB
10 37s 2.98s 768B 16KiB
16 4h15’ 62.5s 6 KiB 1MiB

TABLE I. TIME AND MEMORY OVERHEAD TO CONSTRUCT THE FAST
AND FUZZY SIMULATOR

IV. CONCLUSION

This paper presents a fast simulator for the design space
exploration of an application with approximate operators. Built
on the output values of the original accurate operator, the
proposed FnFo simulator is always faster than the FnFi simu-
lator for the approximate adder ACA, and for the approximate
multiplier AAM up to an input bit-width equal to 10. The size
of the tables on which the simulator is based is significantly
lower than with the FnFi for the adder. This paper proposes
a comparison to help the approximate algorithm designer
to choose the best simulator depending on the considered
operator. As a future work, a method to characterize high
word-length operators with Monte-Carlo simulations will be
developed to avoid to exhaustively test all the operand values.
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[6] C. Valderrama, F. Naçabal, P. Paulin, and A. Jerraya. Automatic vhdl-
c interface generation for distributed cosimulation: Application to large
design examples. Design Automation for Embedded Systems, 3(2), 1998.

[7] L.-D. Van, S.-S. Wang, and W.-S. Feng. Design of the lower error fixed-
width multiplier and its application. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 47(10), 2000.

[8] A. K. Verma, P. Brisk, and P. Ienne. Variable latency speculative addition:
A new paradigm for arithmetic circuit design. In Proceedings of the
conference on Design, automation and test in Europe. ACM, 2008.

[9] B. Widrow and I. Kollár. Quantization noise. Cambridge University
Press, 2, 2008.


