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Abstract: X-ray phase contrast imaging offers higher sensitivity compared to conventional 
X-ray attenuation imaging and can be simply implemented by propagation when using a 
partially coherent synchrotron beam. We address the phase retrieval in in-line phase nano-CT 
using multiple propagation distances. We derive a method which extends Paganin’s single 
distance method and compare it to the contrast transfer function (CTF) approach in the case 
of a homogeneous object. The methods are applied to phase nano-CT data acquired at the 
voxel size of 30 nm (ID16A, ESRF, Grenoble, France). Our results show a gain in image 
quality in terms of the signal-to-noise ratio and spatial resolution when using four distances 
instead of one. The extended Paganin’s method followed by an iterative refinement step 
provides the best reconstructions while the homogeneous CTF method delivers quasi 
comparable results for our data, even without refinement step. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Imaging the three-dimensional (3D) organization of bone structures has been a pioneering 
application in micro-computerized tomography (micro-CT) [1]. Conventional X-ray micro-
CT based on laboratory X-ray sources is now routinely used to assess 3D bone micro-
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architecture. When coupled to synchrotron radiation (SR), with the possibility to use 
monochromatic or quasi-monochromatic sources, image quality is improved since beam 
hardening artifacts are avoided, which permits to obtain a quantitative map of the linear 
attenuation coefficient [2]. Over the past two decades, a number of third-generation SR 
sources have been actively developed and most of them have designed SR micro-CT setups. 

An additional advantage of SR micro-CT is the facility to implement X-ray phase imaging 
with the high degree of spatial coherence. This technique is attracting more attention with the 
progresses in SR sources, detectors and computing facilities. Since its sensitivity can be more 
than three-orders of magnitude higher than attenuation-based imaging, it enables imaging of 
weakly absorbing samples such as soft tissue and of materials with small changes in 
attenuation [3,4]. Phase micro-CT has been used in many biomedical areas and has provided 
valuable images of small animals or biological samples at micrometric scale. For example, it 
was used to image small animals [5], brain tissue [6] and lung microstructure [7]. 

Phase contrast can be obtained experimentally by various techniques either on 
synchrotron radiation or laboratory sources (for a review see [8,9]). Here, we will focus on 
propagation-based phase contrast imaging [10] as it provides the highest spatial resolution. 
This technique can be used with one or several propagation distances. In previous works, the 
optimization of experimental parameters such as the source size and the detector resolution 
has been studied using a single propagation distance [11,12]. 

Phase retrieval can be expressed as solving a non-linear inverse problem. The 
corresponding direct problem of image formation in X-ray propagation based phase contrast 
imaging can be modeled by Fourier optics and Fresnel diffraction considering the weak 
interaction of X-rays with matter inside the object [13]. Under these circumstances, the 
intensity recorded by the detector can be expressed as the squared magnitude of the Fresnel 
transform of the transmittance function of the object. 

While the phase retrieval inverse problem is intrinsically non-linear, various approaches 
have been proposed to linearize it. The first one is the transport of intensity equation (TIE) 
which linearizes the intensity by Taylor expansion of the propagator to the first order with 
respect to the propagation distance. The resulting partial derivative in the propagation 
direction is then approximated by a finite difference, which is only valid for small 
propagation distances and low spatial frequencies [14]. The other one is the contrast transfer 
function (CTF) which linearizes the intensity by expanding the transmittance function to the 
first order with respect to the amplitude and phase. This yields a linear relationship which is 
valid for weak absorption and slowly varying phase [15]. The TIE generally needs to take 
different images at two sufficiently close planes from the object, while the CTF is still limited 
to low absorbing objects. A mixed method which extends the validity to both long distances 
and strongly absorbing (but slowly varying) objects has been proposed with the asymptotical 
combination of CTF and TIE [16]. The different algorithms have been quantitatively 
compared in previous work on numerical and experimental phantoms [17]. Generally, phase 
retrieval in the Fresnel region suffers from sensitivity to noise in the low spatial frequency 
range yielding cloud-like artefacts due to a slowly varying background. This has prompted the 
introduction of a priori knowledge on the object in order to regularize the problem [18]. 

By adding an assumption on the homogeneity of the object directly in the TIE model, 
Paganin’s method has been derived [19]. This method has proven popular since it only 
requires a single phase contrast image. It is essentially based on a Fourier low-pass filter 
which can be applied directly on the recorded projection image as a correction for the 
propagation effect. Recently, the effectiveness of the method for increasing signal-to-noise 
ratio while preserving spatial resolution was analyzed by modeling the properties of the noise 
with propagation [20]. It is essentially based on a Fourier low-pass filter which can be applied 
directly on the recorded projection image as a correction for the propagation effect. However, 
although it has been used in a number of applications, it requires setting the nδ β  ratio of the 

imaged material, which is the ratio between the real and imaginary part of the refractive index 
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of the object, a material and energy dependent constant [19]. For a given chemical 
composition, this ratio can be calculated from tabulated values, e.g. by the X-ray optics 
software XOP [21]. Besides, this method has also been extended to two-materials objects by 
modifying the filter [22] or by using 3D filtering based corrections in the object space [23]. 

In this paper, we focus on imaging bone tissue at the cellular scale by using a new 
magnified phase nano-CT set-up installed on the beamline ID16A at the ESRF. The beamline 
is capable of focusing the beam to the nanoscale while keeping a high photon flux. This setup 
permits to record one or several data sets at different propagation distances. However, 
acquiring data sets at different distances generates long scan time (about 1h per distance), and 
possibly more radiation-induced damage to the sample. Thus, we propose to investigate the 
gain of using several propagation distances instead of one in terms of quality of the 
reconstructed images, on one hand, and to evaluate phase retrieval algorithms for this type of 
relatively dense samples, on the other hand. To this aim, we first extend Paganin’s single 
distance formula to multiple distance acquisitions. Then, for comparability, we describe the 
multi-distance CTF method for homogeneous objects with a known nδ β  ratio. Further, we 

examine the relationships between these two methods by an analysis in the Fourier domain. 
The solution obtained with one of these two methods is then refined iteratively by a non-
linear conjugate gradient (NLCG) method. The two phase retrieval methods are applied to 
data sets of bone tissue samples acquired at the voxel size of 30 nm. In order to compare these 
different phase retrieval approaches, we use qualitative visual assessment and quantitative 
evaluation based on the SNR (Signal-to-Noise Ratio) and an estimate of spatial resolution. 
From a visual point of view, we show that the reconstructed images from the two multiple 
distances methods are sharper than those reconstructed from one propagation distance only. 
This is corroborated by the quantitative study, which showed an increase in estimated spatial 
resolution when using images recorded at several propagation distances. 

2. Single distance phase retrieval methods 

We briefly recall the notations of the forward problem and two solutions to the inverse phase 
retrieval problem using single distance data. An overview of single distance phase retrieval 
methods can be found in [24]. 

2.1 Model of image formation 

The interaction between the 3D object and X-rays at a given wavelength λ  can be modeled 
by the complex refractive index distribution [16], 

 ( ) ( ) ( ), , 1 , , , , ,nn x y z x y z i x y zδ β= − +  (1) 

where nδ  is the refractive index decrement, β  the absorption index and ( ), ,x y z  the 3D 

spatial coordinates. 
If the propagation direction is z , and the illumination considered flat, the wave after 

passing through the object can be expressed by the transmittance function ( )T x  which can be 

written as: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

exp exp

2 , , ,

2 , ,n

T a i B i

B x y z dz

x y z dz

ϕ ϕ

π λ β

ϕ π λ δ

= = − +      

=

= −




x x x x x

x

x

 (2) 

where ( )a x  is the amplitude, ( )B x  the attenuation, ( )ϕ x  the phase shift of the wave and 

( ),x y=x  the coordinates in the plane transverse to z . 
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When this wave is recorded on a detector at a propagation distance kD  from the object, 

the recorded intensity ( )
kDI x  can be modeled as the squared modulus of the Fresnel 

transform of ( )T x : 

 

( ) ( ) ( )

( )

2

2
,1

exp

k k

k

D D

D
k k

I T P

P i
i D D

π
λ λ

= ∗

 
=  

 

x x x

x x
 (3) 

with ( )
kDP x  the Fresnel propagator and k  the distance index. 

X-ray phase CT reconstructs the refractive index decrement nδ  which is about three-

orders of magnitude higher than the absorption index β , thus the technique offers higher 

sensitivity than conventional X-ray CT. The 3D phase CT images are obtained from phase 
maps retrieved at each projection angle as inputs of reconstruction instead of absorption 
images [15]. Therefore, it is necessary to estimate the phase shift ( )ϕ x  from recorded phase 

contrast images before tomographic reconstruction. 

2.2 Paganin’s method 

The single distance Paganin’s method can be derived from the TIE model by using an 
additional homogeneity constraint on the sample [19]. This is introduced directly in the 
contrast model. In the case of homogeneous composition, the phase map is proportional to the 
absorption map. The proportionality constant is given by the ratio between the real and 
imaginary part of the refractive index nδ β  and is supposed to be known a priori. By using 

this constraint, the following retrieval formula is obtained: 

 ( ) ( )( )
( )1

2

1
ln ,

2 1

kD Incn

n
k

F I I
F

D

δϕ δβ λ π
β

−

  
    = ⋅ ⋅    +    

f
x x

f
 (4) 

where IncI  is the incident intensity, and F  (resp. 1F − ) denote the 2D direct (resp. inverse) 

Fourier transform operator. 

2.3 Homogeneous CTF method 

The CTF method relies on a linearization of the direct problem, based on the first order 
Taylor expansion of the transmittance function (Eq. (2)), which can be written as: 

 ( ) ( ) ( )1 .T B iϕ≈ − +x x x  (5) 

The CTF model at one distance can be expressed as [15]: 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
2cos 2sin ,

kD Dirac k kI D B Dδ πλ πλ ϕ= − +  f f f f f f  (6) 

where ( )Diracδ f  is the Dirac function, ( )B f  the Fourier transform of ( )B x  and ( )ϕ f  the 

Fourier transform of ( )ϕ x  . 

Similarly to Paganin’s method, the CTF method can be combined with the homogeneity 
assumption [25]. With the assumption of a known nδ β , the absorption is proportional to the 

phase: 
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 ( ) ( ) ( )2 1 1
, , .n

n n

B x y z dz
π δ ϕ
λ δ β δ β

= = −x x  (7) 

Substituting Eq. (7) to (6), the solution of the CTF method in the Fourier domain can be 
expressed as: 

 ( ) ( ) ( )

( ) ( )2 2

1
.

2 cos sin

kD Diracn

n
k k

I

D D

δδϕ δβ πλ πλ
β

−
= ⋅ ⋅

+




f f
f

f f
 (8) 

Because of zero crossings in the denominator of Eq. (8), some frequencies of ϕ  cannot be 

recovered. This generates artifacts in retrieved phase maps. This problem can be overcome by 

combining intensity information ( )
kDI f at several propagation distances [26]. 

3. Multi-distance phase retrieval methods 

In this section, we derive multiple distance versions of the previous methods: the extended 
Paganin’s method and the homogeneous CTF method. Then we discuss the relationships 
between the two methods. 

3.1 Multi-distance Paganin’s method 

To make the notations more concise, we introduce the three following variables: 

 

( ) ( ) ( )

( ) ( ) ( )
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, 1
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Inc
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I D
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δ λπ
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δ

 
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 
   =   
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 



f f f f

f x f

 (9) 

According to Eq. (9), Eq. (4) becomes: 

 ( ) ( ) ( ), 1 .norm k kI T H=  f f f  (10) 

When considering different propagation distances, the phase retrieval problem consists in 

estimating ( )1T f  from ( ),norm kI f  for kD  for 1, ,k K=  . This problem can be solved using 

an optimization method. We consider a regularized least squares minimization according to: 

 ( ) ( ) ( ) ( )2 2

1 , 11
min .

K

k norm kk
T H I Tε α

=
= − +    f f f f  (11) 

The first term is the data fidelity term and the second is a Tikhonov regularization term, 
where α  is a regularization parameter. The solution can be written as: 
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The phase map estimated from acquisitions at different distances is finally obtained as: 
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3.2 Multi-distance homogeneous CTF method 

Similarly, we introduce a new variable to express the CTF filter, 

 ( ) ( ) ( )2 2
cos sin .n

k k kG D D
δπλ πλ
β

= + f f f  (14) 

The forward model of the homogeneous CTF can then be expressed as: 

 ( ) ( ) ( ) ( )2 .
kD Dirac kI Gδ ϕ= +  f f f f  (15) 

Then the regularized least-squares solution in the case of homogeneous CTF and multi-
distance acquisition can be written as: 

 ( )
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f f f
f

f
 (16) 

3.3 Relationships between the two approaches 

Following Eq. (13) and (16), both methods can be interpreted as a linear combination of 
filtering of the recorded intensities in the Fourier domain. It may be noted that the frequency 
filters involved in both methods are radial. 

Let us first examine the single distance situation. The multi-distance expressions (13) and 
(16) obviously simplify to the standard methods when 1K = . In Paganin’s method, the filter 

is expressed by ( )1 kH f , which can be interpreted as a low-pass Butterworth filter. For the 

homogeneous CTF method, the filter is given by ( )1 kG f  which is a combination of chirp-

like functions. The expression of the phase as a function of the filters differs in the two 
methods due to the natural logarithm term in the Paganin’s expression. 

If we consider the weak absorption case where ( )2
1

n

ϕ
δ β

x , by the Taylor expansion 

at the first order, we get: 
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Then calculating the Fourier transform of ( )1T x , 
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Substituting it into Eq. (4) yields, 
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Finally, we obtain the solution of ( )ϕ f , 
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Now, it can be observed that Eq. (8) and (20) have the same structures except that the 
involved filters are different. However, if we make use of Taylor expansion at the first order 

on ( )kG f , we obtain, 

 ( ) ( ) ( )2 2 2
cos sin 1 .n n

k k k kG D D D
δ δπλ πλ λ π
β β

= + ≈ + f f f f  (21) 

Under the assumptions of weak absorption and low spatial frequencies, Paganin’s method 
and the homogeneous CTF method are identical. However, for higher spatial frequencies, the 
two filters essentially differ at locations corresponding to the zero crossings of the direct CTF 
model. 

Let us now consider the case where information from several distances is used. 
In this case, we can summarize the homogeneous CTF method as: 
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and the extended Paganin’s method as: 
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As previously, the homogeneous CTF method and the extended Paganin’s method at 
multiple distances will be equivalent in the low frequency range when the absorption is weak, 
but will differ for higher frequencies. 

4. Experiment 

4.1 Data acquisition 

Data were acquired at the beamline ID16A, ESRF (Grenoble, France). This beamline 
combines coherent imaging techniques and X-ray fluorescence microscopy at a spatial 
resolution down to about 30 nm, enabling quantitative 3D characterization of morphology and 
elemental composition of specimens in their native state [27]. ID16A provides a high-
brilliance beam at two specific energies (17 keV or 33.6 keV). The incoming parallel X-ray 
beam is monochromatized and focused into a focal spot by multilayer coated curved 
reflective optics (Kirkpatrick-Baez mirrors). After passing through the sample, the X-ray 
beam is converted into visible light by a scintillator and recorded by a lens-coupled FReLoN 
(Fast Readout Low Noise) camera developed by the instrument support group of ESRF with a 
binned CCD size of 2048 × 2048 pixels. 

X-ray phase nano-CT data acquisition consisted in recording sets of angular projections at 
different sample positions between the focus and the detector. After being focused, the beam 
turns from parallel to divergent so that the images recorded at different distances contain not 
only phase contrast but also geometric magnifications. In practice, the position of the detector 
is fixed while the sample is moved downstream of the focus [28,29]. The magnification was 
chosen to obtain an object voxel size of 30 nm. 

The samples were extracted from transverse cross-sections cut from mid-diaphysis in 
femurs from female cadavers (50-95 years old). Then, small cortical bone samples (0.4 × 0.4 
× 3 mm3) were prepared using a high precision low-speed circular saw. Each sample was 
positioned on the vacuum sample stage and rotated around a vertical rotation axis. In total, 
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2000 projections were acquired over a range of 180° at 4 different sample-to-detector 
distances. The acquisition time for a complete data set (i.e. with 4 propagation distances) was 
approximately 4 hours. 

 

Fig. 1. Scheme of experimental setup of magnified X-ray phase nano-CT. 1Z , 2Z , 3Z  and 

4Z  are 4 different focus-to-sample distances, dZ  the focus-to-detector distance. 

4.2 Data processing 

First the images are so-called flat-field corrected by subtraction of the dark current image and 
division with the empty beam image recorded without sample. Next, the images at different 
propagation distances must be registered for each rotation angle. This is done after correction 
of the magnification kM  that depends on the focus-to-sample distance kZ  and the focus-to-

detector distance dZ  according to the expression (Fig. 1): 

 .k d kM Z Z=  (24) 

The images were rescaled at the highest magnification. 
Phase maps were estimated by using different retrieval methods. We used the equivalent 

propagation distance that can be expressed as: 

 ( ) .k k d k dD Z Z Z Z= ⋅ −    (25) 

Table 1 lists some specific experimental parameters such as 4 different focus-to-sample 
distances, the focus-to-detector distance, the wavelength of the X-ray, the voxel size and 
Fresnel number kF  which is calculated by: 

 2 ,k kF A Dλ=  (26) 

where A  is the is the characteristic object size, λ  the wavelength and kD  the propagation 

distance. The Fresnel numbers are provided both for the osteocyte lacunae and the canaliculi 
by setting A  as different typical sizes, 10 µm and 200 nm respectively. 

The nδ β  ratio was set to 645 according to the complex refractive index of cortical bone 

at 33.6 keV, which was calculated from tabulated values by the software XOP. To improve 
image quality we also considered refining the estimated phase maps by using a non-linear 
conjugate gradient method (NLCG) based on the direct nonlinear image formation model. 
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Finally, the extracted phase maps were used as the input to tomographic reconstruction to get 
the 3D structure of the sample. As there are a sufficient number of angular projections, the 
reconstruction can be performed by the Filtered Back-Projection (FBP) algorithm. We used 
the ESRF implementation PyHST2 for tomographic reconstruction [30]. 

Table 1. Specific experimental parameters. 

Focus-to-sample 
distances (mm) 

Focus-to-detector 
distance (m) 

Wavelength 
(nm) 

Fresnel numbers 
for lacunae 

Fresnel numbers 
for canaliculi 

Voxel size 
(nm) 

50.54; 52.70; 
1.2648 0.0369 

55.86; 53.66; 0.0223; 0.0215; 30.00; 31.29; 
61.37; 79.37 46.41; 36.43 0.0186; 0.0146 36.43; 47.12 

4.3 Quantitative evaluation of the 3D reconstructions 

To get a quantitative assessment of the different reconstruction methods, we computed the 
Signal-to-Noise Ratio (SNR) and an estimate of the spatial resolution. 

The SNR was estimated by calculating the ratio of the average of the signal sigμ  to the 

standard deviation of noise bkgσ  of a homogeneous area in the background. In our case, we 

defined the signal as being the regions occupied by bone in the reconstructed image, and the 
background as the regions inside osteocyte lacunae. 

The spatial resolution of the image was evaluated experimentally from the measurement 
of the Edge Spread Function (ESF). The border of the lacunae was considered as an edge 
model, and was fitted with an error function. The analytic first derivative of this function 
yields the Line Spread Function (LSF). Since the error function is the primitive function of 
the Gaussian, the Full Width Half Maximum (FWHM) of the LSF can be obtained 
analytically. The spatial resolution r , defined here from the 10% cut-off frequency of the 
Fourier Modulation Transfer Function, can be expressed as: 

 
( )

1
,

4 log 2 log 1

w
r

a

π= ⋅
⋅

 (27) 

where w  is the FWHM and 0.1a =  the position of the cut-off frequency. 
The estimation of the SNR and the spatial resolution was repeated at different locations to 

obtain average and standard deviation values. To calculate the spatial resolution, edges are 
selected in the middle slices of different lacunae from the reconstructed volumes. 

5. Results 

Figure 2(a) displays the filters of the CTF and Paganin’s methods using a single distance 
given by Eq. (8) and (4); (c) (resp. (e)) shows the filters of the homogeneous CTF method 
given by Eq. (22) (resp. the extended Paganin’s method given by Eq. (23)) using 1 to 4 
different propagation distances omitting the image term; (b), (d) and (f) are zooms of the 
filters shown in (a), (c) and (e), respectively. We can see that the CTF method and Paganin’s 
method behave similarly in the low frequency range when using a single or multiple 
distances. However, the filter corresponding to the single distance CTF method clearly 
contains numerous jump points with large amplitudes in the high frequency range, as opposed 
to Paganin’s method which is a simple low-pass filter (Fig. 2(a)). When considering multi-
distance acquisitions, the amplitudes of the CTF filters are bound in the high frequency range, 
which shows that the use of multiple distances correctly handles the zero crossings in the 
direct CTF model. The homogeneous CTF filters again overlap with the extended Paganin’s 
method filters in the low frequency range. However, while the filters in Paganin’s method are 
essentially low-pass filters, the filters involved in the homogeneous CTF method (Fig. 2(d)) 
enable to retrieve the high frequency information during phase retrieval. 

Minimum Intensity Projections (MIPs) of the 3D reconstructed volumes for a human 
cortical bone sample are shown in Figs. 3 and 4, respectively for the homogeneous CTF and 
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the extended Paganin’s method. In our case, the MIPs are calculated by selecting the 
minimum intensity value along the Z-axis for each XY coordinate. The MIPs permit to see 
lacunae (ellipsoidal-like black structures), and also to enhance canaliculi which are the very 
small channels connecting bone lacunae. Figures 3(a)–3(c) illustrate MIPs retrieved without 
refinement (“no it.”) using 1, 2 and 4 distances respectively; Figs. 3(d)–3(f) display MIPs 
retrieved with 10 iterations refinement using 1, 2 and 4 distances respectively. Figure 4 shows 
the same MIPs, when the phase retrieval is performed using the extended Paganin’s method. 

First the impact of the iterative NLCG refinement is studied. Generally, the slices 
reconstructed and refined with 10 iterations look sharper and better contrasted than ones with 
no refinement. However, the gain in image quality is somehow different when considering the 
CTF or Paganin’s method. For the CTF method, the non-linear refinement does not improve 
image quality very significantly, whatever the number of distances used (1, 2, or 4), as shown 
in Fig. 3. However, the non-linear refinement clearly improves the image quality for the 
extended Paganin’s method. In Figs. 4(a)–4(c) the MIPs retrieved by the extended Paganin’s 
method without iterations look blurred, which is in agreement with the low pass nature of the 
corresponding filters. It turns sharper with more high frequency information after the NLCG 
refinement as shown in Figs. 4(d)–4(f). 

 

Fig. 2. Plots of the filters in the Fourier domain. (a) The filters of both the homogeneous CTF 
method and Paganin’s method using a single distance; (c) the filters of the homogeneous CTF 
method using 4 different propagation distances; (e) the filters of the extended Paganin’s 
method using 4 different propagation distances; (b), (d) and (f) zoom on the filters 
corresponding to (a), (c) and (e) respectively. 
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Now, we consider the impact of using multiple distances rather than one on the 
reconstructed image quality. For the homogeneous CTF method, if we compare the single 
distance case (Figs. 3(a) and 3(d)) with the 4 distances case (Figs. 3(c) and 3(f)), it can be 
seen that the image using one propagation distance is more blurred and that the sharpness is 
improved when using 4 propagation distances, regardless the use of iterative refinement. For 
the extended Paganin’s method without refinement, we observe that the difference between 
reconstructions using a single distance and multiple distances (see Figs. 4(a) and 4(c)) is 
barely visible. However after performing NLCG refinement, a better contrast of small channel 
structures as well as a decrease of noise can be observed when using multiple distances 
instead of one (see Figs. 4(d) and 4(f)). Additional slices corresponding to the results obtained 
in Figs. 3 and 4 are provided in supplementary material. Visualization 1, Visualization 2, 
Visualization 3, and Visualization 4 (resp. 5–8) display movies of 100 consecutive slices in 
the middle of the volumes reconstructed of Figs. 3(a), 3(d), 3(c) and 3(f) (resp. Figures 4(a), 
4(d), 4(c) and 4(f)). 

Table 2 presents the estimated SNR and spatial resolution in the reconstructed images for 
both the homogeneous CTF and extended Paganin’s methods. These quantities are also 
displayed in Figs. 5(a) and 5(b) respectively. For the homogeneous CTF method, both the 
SNR and the spatial resolution get improved with the number of distances. In the single 
distance case, the iterative refinement improves the spatial resolution but decreases the SNR. 
For the extended Paganin’s method without iterative refinement, the use of multiple distances 
does not yield significant differences. However, if we consider the non-linear refinement, the 
use of multiple distances obviously improves the SNR and to some extent the spatial 
resolution. Besides, the best results are obtained by the extended Paganin’s and homogeneous 
CTF methods using 4 distances with 10 iterations. 

 

Fig. 3. Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved 
by the homogeneous CTF method. (a), (b), (c) phase retrieved without iterative refinement 
using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ 
refinement using 1, 2 and 4 distances respectively (see Visualization 1, Visualization 2, 
Visualization 3, and Visualization 4). 
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Fig. 4. Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved 
by the extended Paganin’s method. (a), (b), (c) phase retrieved without iterative refinement 
using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ 
refinement using 1, 2 and 4 distances respectively (see Visualization 5, Visualization 6, 
Visualization 7, and Visualization 8). 

6. Discussion 

In this study, we compared and evaluated two phase retrieval methods for homogeneous 
objects based on the CTF and TIE approaches. We studied an extension of the single distance 
Paganin’s method to multi-distance acquisitions and provided a similar formula for the multi-
distance CTF method using a homogeneity assumption on the sample. Moreover, assuming 
weak absorption, we derived relationships between the extended Paganin’s and the 
homogeneous CTF methods. Considering the case of a single propagation distance, the 
homogeneous CTF and Paganin’s filters are almost identical when restricted to low spatial 
frequencies and low absorption. Nevertheless, the filters differ at higher spatial frequency and 
particularly around the zero crossings of the direct CTF model where the homogeneous CTF 
filter reaches large values. When it comes to multi-distance acquisitions, the filters of both 
methods are still similar in the low frequency range. However, the amplitudes of the CTF 
filters are bound and different from zero which permits to retrieve the high frequency 
information while Paganin’s method always acts as a low-pass filter. 

These findings were confirmed by reconstructions performed on an experimental bone 
data set with a voxel size of 30 nm. From those reconstructions, we observed that the 
structures such as lacunae and canaliculi are similarly reconstructed in the images from the 
extended Paganin’s and homogeneous CTF methods using 4 distances. The quantitative 
criteria, such as the SNR and the spatial resolution corroborate the visual observation. In this 
paper, we calculate the standard SNR which is used in the very large majority of studies and 
comparable to the literature. Other quality measures such as the recently proposed spatial 
SNR could be investigated to evaluate the quality of X-ray images [31]. 
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Table 2. Measurements of SNR and estimation of the spatial resolution in the 
reconstructed images for different phase retrieval methods. 

Distance 
number Iteration 

CTF Paganin 
SNR Resolution (nm) SNR Resolution (nm) 

1 
0 5.44 ± 1.00 81.12 ± 4.84 7.89 ± 0.79 108.18 ± 8.14 
10 4.73 ± 0.99 77.66 ± 6.57 5.29 ± 1.06 77.51 ± 4.84 

2 
0 6.27 ± 0.77 78.76 ± 3.45 8.29 ± 0.38 120.36 ± 9.60 
10 5.41 ± 0.89 76.35 ± 3.19 6.55 ± 0.97 74.96 ± 4.53 

4 
0 7.13 ± 0.84 76.06 ± 6.02 8.32 ± 0.50 115.96 ± 8.39 
10 7.11 ± 1.16 71.71 ± 2.62 8.33 ± 0.94 71.50 ± 3.21 

 

Fig. 5. Quantitative evaluation of SNR and spatial resolution of the reconstructions at 30 nm 
voxel size for both homogeneous CTF and Paganin’s methods followed by a refinement with 0 
iteration or 10 iterations, using 1, 2 or 4 distances. (a) SNR; (b) spatial resolution. Blue: 1 
distance, Red: 2 distances, Green: 4 distances. 

The phase retrieval and tomographic reconstruction were performed sequentially. This has 
many practical advantages as only a large number of 2D problems have to be solved. 
Recently some methods have been proposed to combine the two steps together [32–34]. 
However, 3D approaches require extensive computer resources both in terms of computing 
time and memory. Therefore they are not practical for standard use on large data sets today, 
but they will be increasingly important in the future. 

In previous works, Paganin’s method was compared with the modified Bronnikov 
algorithm and was shown to provide better reconstructions on low-attenuating samples [35], 
but only one propagation distance was considered. Similarly, a good agreement was shown 
between the TIE and the CTF method in the low-spatial frequency range [25]. However, the 
work was limited to one propagation distance and not applied to CT reconstruction. Burvall et 
al. detailed the processing involved in seven phase retrieval methods found in the literature 
and made a comprehensive analysis of these methods [24]. The Paganin’s and CTF methods 
considered here corresponding to their “single material” and “Fourier-Born” methods have 
the expected behavior. But again their analysis was performed for a single propagation 
distance and results were provided on 2D phase maps but not on 3D reconstructed images. 
Besides, Krenkel et al. proposed a Holo-TIE algorithm to address the phase retrieval in hard 
x-ray in-line holography and extended it from single-distance recordings to multiple-distance 
cases for achieving single-cell imaging [36]. 

In our experimental conditions, the best reconstructed images (i.e. with a sharper display 
of edge information and a better detection of small structures) were obtained after applying a 
non-linear conjugate gradient method to refine the results of the filtering based phase retrieval 
methods. Actually, iterative near-field methods have been recently developed a lot in phase 
contrast imaging. However, they are mostly based on a single distance and generally use 
iterative algorithms, such as Fienup’s error reduction (ER) [37] or the Gerchberg-Saxton (GS) 
algorithms [38]. In this work, we used a NLCG algorithm, taking as initialization, the phase 
maps retrieved from the extended Paganin’s or homogeneous CTF method. Our results 
indicate that this refinement critically improves the spatial resolution if the extended 
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Paganin’s method is used, while the homogeneous CTF alone is already close to the optimal 
result. Both initial linear estimates converge in the end to similar solutions. However, it is 
worth underlining that the improvement obtained with the non-linear refinement is marginal 
in the case of the homogeneous CTF method which is probably due to the fact that our 
samples approximately satisfy the weak absorption assumption. Thus, it would also be 
possible to use the multi-distance homogeneous CTF method without iterative refinement if 
computing time is an issue. 

7. Conclusion 

Phase retrieval which is a non-linear ill-posed inverse problem is a necessary step in the 
reconstruction of propagation-based SR X-ray phase nano-CT. The choice of the phase 
retrieval method and the best experimental conditions remained open questions in the 
multiple distance case. This has motivated our detailed study of two phase retrieval 
approaches in the case of multiple propagation distances from a theoretical and experimental 
point of view. Paganin’s method using a single distance is one popular phase retrieval method 
due to its simple implementation. In this paper, we extended Paganin’s method to multi-
distance acquisitions, and compared it to a homogeneous version of the CTF method for the 
reconstruction of bone samples at nanoscale spatial resolution. Our results showed that using 
4 propagation distances generally improves image quality except in the case of the Paganin’s 
method without non-linear refinement. When iterative refinement was used, the multi-
distance case provided the sharpest reconstruction with a higher spatial resolution and flatter 
background. In this case, the homogeneous CTF and the extended Paganin’s method give 
comparable results. The advantage of using several propagation distances is that it provides a 
better coverage of the Fourier domain of the phase projections. 

Our perspectives concern the quantitative analysis of the bone ultra-structure on which 
there are still very few data due to the limited 3D imaging modalities available for this 
purpose. In this respect, it is important to optimize image quality since the latter may have a 
considerable impact on the further quantification. While it is experimentally more demanding 
to use four propagation distances than one, our results showed that a clear gain is obtained in 
image quality. Future works will focus on the quantitative analysis of the data, from which we 
expect to obtain quantitative parameters, of the lacuno-canalicular network such as porosity 
and connectivity but also information about the extra cellular matrix. 
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