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ABSTRACT

Code reuse is a good strategy to avoid code duplication and speed
up software development. Existing object-oriented programming
languages propose different ways of combining existing and new
code such as e.g., single inheritance, multiple inheritance, Traits or
Mixins. All these mechanisms present advantages and disadvan-
tages and there are situations that require the use of one over the
other. To avoid the complexity of implementing a virtual machine
(VM), many of these mechanisms are often implemented on top of
an existing high-performance VM, originally meant to run a sin-
gle inheritance object-oriented language. These implementations
require thus a mapping between the programming model they pro-
pose and the execution model provided by the VM. Moreover, reuse
mechanisms are not usually composable, nor it is easy to implement
new ones for a given language.

In this paper, we propose a modular meta-level runtime architec-
ture to implement and combine different code reuse mechanisms.
This architecture supports dynamic combination of several mecha-
nisms without affecting runtime performance in a single inheritance
object-oriented VM. It includes moreover a reflective Meta-Object
Protocol to query and modify classes using the programming logical
model instead of the underlying low-level runtime model. Thanks
to this architecture, we implemented Stateful Traits, Mixins, CLOS
multiple inheritance, CLOS Standard Method Combinations and
Beta prefixing in a modular and composable way.
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1 INTRODUCTION

Existing object-oriented programming languages propose differ-
ent ways of reusing and combining existing and new code, e.g.,
single inheritance [15], multiple inheritance [18], Traits [17] or
Mixins [11]. All of these mechanisms present advantages and disad-
vantages. Ideally, depending on the characteristics of the software
under development, the software developer should be able to decide
which mechanism to use, although in reality this is not true for
most scenarios.

Each programming language implements only a subset of these
mechanisms. When designing a language, the designer selects the
set of reuse mechanisms that best fits the desired characteristics of
the language. For example, Java only implements single inheritance,
Pharo implements single inheritance and stateless traits, Scala [31]
implements single inheritance and Mixins!, CLOS [16] implements
multiple inheritance and after, around and before methods.

Several programming languages (e.g., Pharo [7], Groovy [26],
Scala, Jython [24]) are implemented on top of well-known high
performance virtual machines (VMs) to benefit from the existing
infrastructure and optimisations such as the HotSpot Java Virtual
Machine [28], the .NET Common Language Runtime [10], the An-
droid Runtime [20] and the Cog Smalltalk Virtual Machine [29].

!t also implements the Trait concept but only as a variation of mixins. It is intended
to prevent the diamond problem [31].
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However, these VMs are originally only meant to execute single
inheritance object-oriented languages. Indeed, they implement spe-
cial optimisation techniques such as stack-to-register mapping [23],
polymorphic inline caches [22], just-in-time compilation [14] and
adaptative optimizations [2] assuming a single-inheritance object-
oriented language. To support their reuse mechanisms on top of
these VMs, language designers have to map the programming lan-
guage model to a runtime model as the one expected by the VM.

Therefore, implementing different reuse mechanisms on top of a
single inheritance VM works at two levels, the logical level and the
VM runtime level [33]. In the logical level a program is represented
using the provided language constructs. In the VM runtime level
the program is represented as low level structures representing
classes that use single-inheritance. The program representation in
the logical level is used to generate the classes in the VM runtime
level. When the VM runtime level is executed the result is the same
as the expected execution of the logical level [33]; both models have
the same semantics when executed.

Moreover, current programming languages do not allow the
easily combination or definition of new code reuse mechanisms.
The set of available mechanisms are embedded in the language
implementation. The only way a developer is able to select the
set of reuse mechanisms is by selecting a different programming
language. However, this is not always possible. For example, if
older parts of the application are already implemented with a given
language changing the programming language requires rewriting
the existing code. In addition, a developer cannot choose to use
different reuse mechanisms in two different parts of her program
e.g., using Traits for some classes and multiple inheritance for other
classes.

The main contribution of this paper is a modular meta-level
runtime architecture that: (1) supports different reuse mechanisms
that can be applied to different parts of an application; (2) supports
the combination of these reuse mechanisms; (3) provides a clear
meta-object-protocol (MOP) to implement new reuse mechanisms
that can be efficiently executed on a single inheritance VM; and (4)
provides a reflective MOP to access and modify the logical model.
Propagating the changes to the runtime model. This MOP allows
the polymorphic use of different reuse mechanism during runtime.
Finally, we have validated our solution by implementing a prototype
in Pharo.

2 A META-LEVEL ARCHITECTURE TO
MODULARIZE REUSE MECHANISMS

We propose a new meta-level architecture that transforms a pro-
gram logical model into the runtime model expected by the VM (Fig-
ure 1). This meta-level architecture allows us to transform a logical
model adding different language features, for example using dif-
ferent reuse mechanisms. A program is defined at the base-level,
in terms of a logical model constituted by logical classes. A logical
class is then extended by using a contributing part. The contributing
part exposes a meta-object protocol (MOP) that language designers
extend to define new reuse mechanisms such as traits or multiple
inheritance. A new language feature is implemented in the meta-
level through the extension of ContributingPart class. Once a new
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contributing part is available in the meta-level, it is possible to use
it in logical classes.

A class builder takes as input a logical class and creates a run-
time class from it in collaboration with the contributing part. This
runtime class is a class as expected by the VM i.e., it contains the
class methods, instance variable definitions and superclass, as re-
quired by a single-inheritance model. This approach is similar to
the one of multiple inheritance or mixin implementation based on
inheritance linearization [11]. The VM executes the code in the gen-
erated runtime classes, taking advantage of all its high performance
optimizations.

superclass
LogicalClass RuntimeClass
name uses enerates name
instanceVariables |_ "7 generate instanceVariables
methods ! ! methods
contributingPart 1 1
1 1
] : :
ClassBuilder
[ generateClassFor(logicalClass) |
ContributingPart

-

calculateSuperclass()
calculatelnstanceVariables(originallnstance Variables)
calculateMethods(originallMethods)

[_TraitPart_| [_SinglelnheritancePart |

Figure 1: Meta-Level Architecture Components. Logical
classes have a contributing part defining what reuse mecha-
nism it uses. A class builder uses a logical class to generate a
runtime class following the single inheritance model as the
VM requires.

2.1 Automatic Accessor Generation: Our
Architecture By Example

Let’s imagine we want to extend our language with automatic acces-
sor (getter and setter) generation. We chose this language extension
to focus here on the meta-level architecture. Section 3 shows how
this same architecture is used to implement more complex mecha-
nisms such as traits, Beta prefixing and multiple inheritance.

To implement such a behaviour in our architecture, we will add
AutomaticAccessorPart, a subclass of ContributingPart doing the cor-
responding accessors generation. Figure 2 shows how this new
extension follows our model and how a logical Person class imports
it by using an instance of the contributing part. In this example, we
implement the method calculateMethods(originalMethods) in Automat-
icAccessorPart to create a getter and a setter method for each of the
instance variables in the logical class.

A naive implementation of such language extension (expressed
in Pharo) is illustrated in Listing 1. We then return a collection
containing the original and the new methods. A more robust im-
plementation, out of the scope of this paper, would also take care
of possible conflicts.

The listing shows the implementation of calculateMethods. This
method is executed by the class builder to get the methods in the
generated class. This method takes the collection of instance vari-
ables defined in the logical class, and per each of the variables it
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ContributingPart
calculateSuperclass()
calculatelnstanceVariables(originallnstance Variables)
calculateMethods(originallMethods)

[ AutomaticAccessorPart |

2

LogicalClass
name
instanceVariables
methods
contributingPart

instance of

-

[ :AutomaticAccessorPart |

instance of

meta-level

base-level

<<logical>>
Person
age

name

print()

Figure 2: Implementing Automatic Accessors. The auto-
matic accessor extension is implemented as a new contribut-
ing part. On the base-level, a Person logical class uses such
extension.

AutomaticAccessorPart >> calculateMethods: originals
"Generates a new collection with the newly created methods
to be added to the runtime class"
| newMethods |
newMethods := logicalClass instanceVariables
flatCollect: [ :instVar |
{ self createGetterFor: instVar.
self createSetterFor: instVar}].
"Concatenates the original methods and the new ones".
A originals , newMethods

Listing 1: Automatic Accessor Implementation. The method
calculateMethods is overridden to provide new getter and
setter methods for each of the logical class instance
variables.

generates two methods (a setter and a getter). The generated meth-
ods are concatenated with the original ones, as none of the original
methods are modified. To use this extension, a developer defines a
logical Person class defining two instance variables age and name
and using thi

:AutomaticAccessorPart | .
<<runtime>>

Person
<<logical>> age
Person Class name
age >  Builder getAge()
name setAge(age)
print() getName()
setName(name)
print()

Figure 3: Resulting Runtime Class. The class builder gener-
ates a runtime class that contains the expected getters and
setters in addition to the original methods and instance vari-
ables defined in the logical class.

Listing 2 illustrates how we can define such a class. Our lan-
guage extension will automatically generate the methods getAge(),
setAge(age), getName() and setName(name) in the runtime class. Fig-
ure 3 shows the resulting runtime class generated when the logical
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Object
subclass: #Person
withParts: AutomaticAccessorPart
instanceVariables: 'age name'

Person >> print
StdOut print:(self name, ': ', self age, ' years')

Listing 2: Person Logical Class Definition. Code definition of
the Person class. It contains only two instance variables and
a print method.

AutomaticAccessorPart >> createGetterFor: instVar

| sourceCode |
sourceCode := instVar name , String newLine.
sourceCode := sourceCode , ' "', instVar.name.

A CreateMethod newWith: sourceCode

AutomaticAccessorPart >> createSetterFor: instVar
| sourceCode |
sourceCode := instVar name, ': aValue', String newLine.
sourceCode := sourceCode , ' ', instVar.name, ':= aValue'.
A CreateMethod newWith: sourceCode

Listing 3: Creating the Operations for Accessors Method.
AutomaticAccessorPart generates two CreateMethod operations
that will compile the corresponding methods from the
source code.

class uses the AutomaticAccessorPart, the generated runtime class
contains the elements originally in the logical class Person and all
the generated elements. In the following sections, we extend and
explain in detail the MOP proposed by ContributingPart, and logical
classes.

2.2 The Class Building Process

The ClassBuilder class reifies the building process transforming a
logical class into a runtime class. It encapsulates all the low-level
details of class creation, including the runtime representation of
the runtime class and the bytecode used by the compiler.

To build a runtime class from a logical class, a class builder cal-
culates the superclass, methods and instance variables that will
compose such runtime class. For this, it calculates a set of mod-
ification operations that should be applied on the logical class to
reach the runtime class definition. Such operations are calculated
in collaboration with the class contributing part. The initial set of
modifications of a class builder are the additions of the instance
variables and methods locally defined in the logical class. In turn,
the contributing part overrides, removes or adds new definitions
to that set (c.f.,, Section 2.3). Finally, the resulting operations are
applied to the new runtime class.

More concretely, the class builder invokes the contributing part
calculatelnstanceVariables and calculateMethods methods with the
initial set of definitions as addition operations. In our motivating
example, the AutomaticAccessorPart class generates a CreateMethod
operation for each accessor, so the class builder compiles the ac-
cessor methods in the runtime class. The code of such change is
illustrated in listing 3. The code shows how we could implement the
methods createGetterFor(instVar) and createSetterFor(instVar) from
the example in Listing 1.
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2.3 Contributing Parts MOP

In our architecture, a reuse mechanism is modeled as a meta-object,
a (sub-)instance of ContributingPart. When the class builder generates
the underlying VM runtime model, a contributing part calculates
the methods, instance variables and superclass of the generated
class. Figure 4 shows the interface implemented by a ContributingPart.
The contributing part includes the information needed to construct
the runtime classes (e.g., the superclass in single inheritance, or the
traits in the Trait contributing part). Our architecture is modular:
contributing parts do not need to be included by default in the
programming language runtime. Indeed, they can also be packaged
and loaded separately and as any other library or module. By default,
our solution packages the single inheritance mechanism, explained
in Section 3.

ContributingPart
calculateSuperclass()
calculatelnstanceVariables(originallnstance Variables)
calculateMethods(originallMethods)

Figure 4: Contributing parts interface.

A runtime class is created by combining several first-class modifi-
cation operations on methods and instance variables. The methods
calculatelnstanceVariables and calculateMethods receive as argument
the set of original operations as provided by the logical class, and
may return a new set by applying some modifications to it. We mod-
elled such operations as first-class objects for two main purposes.
First, first-class operations can be easily composed and extended
with new operations. For example, a rename method is defined by
wrapping the original method in a rename method object. Second,
composing operations instead of directly modifying the original
collection allows to more easily represent complex operations like
flattening or aliasing, useful to model traits or beta-prefixing as we
will show in Section 3. Figure 5 shows examples of such operations
including installing, removing or renaming methods and instance
variables.

Operations Operations
on Methods on Inst. Var
N

Create Install Add Inst.
Method Method Var
Rewrite | | Alias Alias Inst.
Method Method Var
Deep Remove Remove
Rename |— Method Inst. Var
Message
Rename
Inst. Var.

Figure 5: Operations on Methods and Instance Variables.

3 MODULAR REUSE MECHANISMS

In this section, we present how to implement different reuse mech-
anisms using this architecture. As a validation, we implemented
four different reuse mechanisms as contributing parts: the default
single inheritance mechanism, stateful traits, Beta prefixing and
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CLOS multiple inheritance. In the last example, we show how we
can focus on performance of the generated code to demonstrate
how such a mechanism can be optimized for a single inheritance
VM.

3.1 Single Inheritance

In our architecture, a class using single inheritance contains only
one contributing part, the single inheritance contributing part. The
implementation of this contributing part in the runtime level is also
the simplest one. It sets the real superclass to the configured super-
class and does not add or modify any of the methods or instance
variables. As the underlying implementation in the VM is already
providing method lookup. The contributing part is not modifying
the originals methods and instance variables. The calculateSuper-
class() method returns the configured superclass in the contributing
part.

This first reuse mechanism is straightforward because the seman-
tics between the implemented reuse mechanism (single inheritance)
and the semantics of the VM match.

3.2 Stateful Traits

This contributing part introduces support for stateful traits [5].
Compared to our previous example, this model does not directly
match with the VM semantics. Our traits contributing part will
flatten stateful traits in classes that use them. The contributing part
is configured with a trait composition. A trait composition is a set
of traits and operations defining how to resolve conflicts.

This part does not modify the superclass of the generated class,
it keeps the one defined in the logical class. It adds all the instance
variables and methods defined in the trait composition. It also han-
dles the aliasing of methods and instance variables. The resulting
runtime class contains all the methods and instance variables that
are defined in the trait composition. The execution of the runtime
code is transparent to the Virtual Machine, as the method lookup
is already solved.

A trait composition [5] is an algebra implemented with objects
used to solve the conflicts. It is able to answer the methods and
instance variables that form the trait. The simplest possible one gets
all the methods and instance variables of a given class. The trait
composition is then used by the trait part to calculate the required
methods and instance variables.

3.3 Beta Prefixing

In Beta, a subpattern is an extension of a previously defined prefix
pattern [27]. It is possible to see the subpatterns as subclasses and
the prefix patterns as superclasses. A developer defines new imple-
mentations in subclasses. However, in this reuse model the methods
in the prefix cannot be modified, and every time a message is sent
the prefix method is the one that is activated. The methods in the
subpatterns are only activated if the prefix invokes them explicitly
through the use of inner.

The Beta contributing part knows the prefix (superclass) to be
used in the definition of the class, and this is the superclass used
in the generated class. The part contributes with the methods and
instance variables defined in the superclass. The instance variables
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in the subclasses follow the same behaviour as the single inheritance
model, so there is no need for special conversion.

For the methods only defined in the prefix or only defined in the
subpattern, there is no need to execute anything special. They are
defined in the corresponding class and they are normally resolved
by the method lookup in the VM.

However, for the methods that redefines a prefix, the method
lookup has to be modified. As the VM cannot be modified, the
contributing part installs a stub in the generated class. This stub will
lookup the method in the top-most class of the subclass hierarchy
and activates this method on the receiving object. The method
defined in the subpattern is also installed in the generated class but
with an aliased name.

To implement the inner operand, the contributing part installs

in the generated class the inner() and innerWithArgs(args) methods.

These methods activate the following method in the subpattern
chain, handling the de-aliasing of methods’ name.

The implementation of the contributing parts should guarantee
that the resulting runtime class does not have conflicting methods
or instance variables. When two or more methods with the same
selectors should be installed in the generated class, as is happening
with the generated stub and the real method. One of the methods
should be aliased with another selector. The architecture provides
an operation, AliasMethod, to easily alias a method.

A more complex but more efficient alternative for avoiding the
lookup stub is implemented in the next section on CLOS multiple
inheritance contributing part.

3.4 CLOS multiple inheritance and Standard
Method Combinations

CLOS implements multiple inheritance and execution of after and
before methods, surrounding the normal methods (called primary
methods) [25].

We implemented a contributing part that provides the same
behaviour in the generated classes. This contributing part also
implements the call-next-method mechanism, following the rules
of inheritance and before and after methods. CLOS also implements
the around methods, that are called before the before methods. For
implementing around methods, the same implementation technique
is applicable. For the clarity of the explanation we will only present
before, primary and after methods.

The inheritance in CLOS is linearised using an algorithm to avoid
the diamond problem [19]. Our contributing part implements this
same strategy.

The contributing part calculates the expected execution chain
methods for each of the messages in a class. The chain is calculated
following the rules expressed in the definition Standard Method
combination of CLOS.

Synthetically, these rules are:

o Primary methods form the main body of the effective method.
Only the most specific primary method is called. However,
the method is able to call the next most specific primary
method by doing (call-next-method).

o Before methods are all called before the primary method,
with the most specific before method called first.

SAC 2018, April 9-13, 2018, Pau, France

o After methods are all called after the primary method, with
the most specific after method called last.

After calculating the method chain to execute for a given message
the contributing part performs the following steps:

(1) It takes the first method in the chain, and it aliases the
method with the expected message selector. So the VM will
activate this method when an object receives the expected
message.

(2) It aliases all the other methods in the chain, so they do not
conflict with each other, as they have the same message
selector.

(3) It includes a nextWithArgs(args) method used to call the next
method in the chain. The next method in the chain is acti-
vated from the information already calculated.

(4) It rewrites all the calls to nextWithArgs(args) with the corre-
sponding call to the calculated next method, using the aliases
selectors.

Figure 6 shows the definition of a logical class Dog. This class
extends Mammal and Quadruped, giving Mammal precedence over
the other superclass. This definition is performed using the CLOS
contributing part. For this example, we will suppose that all the
defined methods have a call-next-method operation. If the message
walk() is sent to an instance of Dog, the expected activation of meth-
ods is the following: before walk() in Dog, before walk() in Mammal,
before walk() in Quadruped, walk() in Dog, walk() in Mammal, walk()
in Quadruped, after walk() in Quadruped, after walk() in Dog.

Wammal Quadruped
walk
walk
after walk
(A before walk
\ <
Dog 1 2
walk parts
beforewalk ~ }--------- :CLOSPart
after walk

Figure 6: The Dog class with its contributing part, imple-
menting CLOS-like multiple inheritance

Figure 7 depicts the resulting generated classes thanks to our
CLOS contributing part. In the generated Dog class, the first method
in the chain (before walk() in Dog class) is aliases as walk(), as it will
be the first method activated by the VM. The other methods are
installed with aliases selectors, to avoid name clashes.

The instance variables are collected from all the superclasses
and combined with the locally defined instance variables. For the
instance variables, our current implementation does not handle the
conflicts, although the conflict is solvable using instance variables
aliasing. The implementation creates the runtime classes with Ob-
ject as the superclass. As all the inheritance mechanism is handled
as explained before.

The implementation of Mixins is simpler than the CLOS multiple
inheritance mechanism. However, it uses the same techniques used
in this implementation of CLOS multiple inheritance. It is also
possible to use this approach to implement the C3 linearisation
algorithm used in Dylan [3].
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Object
Quadruped
Mammal
walk
Dog walk after walk
Ak before walk before walk
Mammal_before_walk 1
Quadruped_before_walk 2
parts
Dog_walk .
Mammal_walk [ > :CLOSPart

Quadruped_walk

Quadruped_after_walk
Dog_after walk
nextWithArgs:

Figure 7: The runtime representation of the Dog class

4 COMPOSING REUSE MECHANISMS

Our proposed architecture allows the composition of the reuse
mechanisms. In this way the developer is able to use different reuse
mechanisms at once. This feature improves the modularity of the
solution and provides easier paths for its extension. The composi-
tion of contributing parts is performed through the implementation
of a Chain of Responsibility pattern [21].

Named Mammal Quadrupe
1 2
parts next
Dog :TraitPart :CLOSPart
Named Employee Technique Person
1 2
Tech parts ’ next . next :Single
Employee TraitPart MixinPart InheritancePart

Figure 8: Combining different mechanisms.

The logical classes have a chain of reuse mechanisms. This chain
is used to calculate the elements in the generated class. Each con-
tributing part in the chain can contribute and/or pass the control
to a subsequent part to generate the runtime classes, e.g., adding,
filtering, or changing new elements. The generated runtime classes
contain the methods and instance variables produced by this chain.
Each class defined in the system has its own unique chain of con-
tributing parts, allowing them to have different combination of
mechanisms. Figure 8 shows how different contributing parts are
combined in different classes.

To help implementing the combining reuse mechanisms, we
provide an abstract implementation of a contributing part. This
AbstractContributingPart implements the handling of the chain of
responsibility and provide default implementations for the required
methods. Figure 9 shows how the different contributing parts extend
the AbstractContributingPart with their custom behaviour.

Even though, the proposed architecture allows the arbitrary com-
position of reuse mechanisms. Some of the possible combinations
could be invalid. We have successfully implemented combinations
of the four reuse mechanisms (Section 6.1).
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AbstractContributingPart

nextPart

calculateSuperclass()
calculatelnstanceVariables(originallnstance Variables)
calculateMethods(originallMethods)

[ I ]
Single
InheritancePart

TraitPart MixinPart

Figure 9: Introducing AbstractContributingPart that imple-
ments the chaining mechanism

5 MODULAR REFLECTIVE MOP

Each class in the logical level is defined by (a) a set of elements
defined in the class (methods and instance variables) and (b) a
configured contributing part. The instance variables and methods
defined in a runtime class depend on (1) the elements defined in
its corresponding logical class and (2) the reuse mechanism used
in this class. To allow this distinction at runtime, by the different
programs using reflection, we propose also a modular reflective
MOP. Logical classes expose a reflection MOP that allow us to
modify the class in terms of the code-reuse mechanisms used in
the language. On the other hand, runtime classes expose a MOP
that allow us to modify their low level representation. In practice,
logical and runtime classes can be seen as high-level and low-level
mirrors [12]. The main difference between our reflective MOP and
the one of mirrors is that we designed ours with modularity in
mind.

In our model, we can then define for each logical class two sets
of elements, the local elements set and the all elements sets. The
local elements set includes all the elements (methods and instance
variables) that are defined in the class itself. The all elements sets in-
cludes the result of applying the contributing part to the class. This
MOP provides a polymorphic way of interacting with all the logical
classes, hiding the details of how the contributing parts calculate
the elements in the runtime class. Continuing with the example in
Figure 3, the local elements set of Person contains the print() method
and the age and name instance variables, as they are defined locally
in the logical class. And the all elements set contains the locally de-
fined elements elements (print(), age and name) and the elements pro-
vided by the used contributing part (AutomaticAccessorPart), those
elements are getAge(), setAge(age), getName() and setName(name).

Our defined MOP does allow us to query and modify the logical
model. Each modification in the logical class triggers a regeneration
of the runtime model according to the changes done. The logical
MOP includes the following set of messages:

e Local Elements Query. Access information about the ele-
ments defined in the logical class.

o All Elements Query. Access information about all the el-
ements in a logical class. It includes all the locally defined
elements and the contributed ones.

e Modify Local Elements. Addition, removal and modifica-
tions of the locally defined elements.

o Accessing Contributing Parts. Access and modification a
contributing part.

o Regenerating class. Regeneration of the runtime class, im-
pacting any changes performed in the logical class.
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The contributing parts are also subject to modifications during
the execution of the system. They also present an interface to
get all the elements contributed to a logical class, and they also
provide messages to modify its configuration. Any modification in
the contributed part requires the execution of the regenerating class
in the modified logical class.

6 VALIDATION

We validated our architecture by implementing it in the Pharo [7]
programming language. This implementation served us to evaluate
how several contributing parts are implemented and combined.

Our implementation is available as a Github project and it runs
in Pharo 6. This implementation includes all the mechanisms de-
scribed in this paper as well as a set of tests and benchmarks com-
bining these mechanisms. We selected Pharo because: (1) it runs in
a highly optimized VM that expects a single inheritance model, (2)
it provides an easy modification of the class creation process, (3)
it represents basic concepts of the language and the environment
as first-citizen objects and (4) most of the infrastructure is imple-
mented in itself. These characteristics ease the implementation of
our modular solution as an independent and regular package.

6.1 Evaluating Part Composition

Even though the proposed architecture allows the arbitrary com-
position of reuse mechanisms, some of the possible permutations?
could indeed be invalid. It is outside the scope of this paper the
analysis of the validity of possible combinations of reuse mecha-
nisms. However, we have successfully implemented the following
combinations:

o Traits / Single Inheritance. Extending classes using traits
or using as traits classes that are part of a single inheritance
hierarchy.

e Traits / CLOS Multi inheritance. Using classes with traits
as superclasses or using multi inheritance classes as traits.

e CLOS Multi inheritance / Single Inheritance. Having a
single inheritance class extending a multi inherited class and
the other way around.

e Traits / Beta prefixing. Using classes with traits as prefixes,
adding prefixes and traits to the same class and using beta’s
classes as traits.

6.2 Benchmarks

The architecture and the implemented contributing parts have been
validated to assure that they do not introduce differences in the
execution time. We have benchmarked different scenarios, but only
one of them introduces an impact in the execution time once the
runtime classes are generated. The scenario is when the super-
like message sends are overridden. It occurs in the CLOS and Beta
implementation.

We have detected that the naive implementation in Beta’s inner
is 100 times slower than a normal super message send. However,
a more carefully implemented solution of it does not present this
problem. The implementation of CLOS call-next-method is compa-
rable to a normal super call.

Zsince contributing parts are organized as a chain of responsibility, order is important
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7 DISCUSSION

QOur solution allows us to introduce new reuse mechanisms, to ex-
tend the ones defined in the language, to develop new mechanisms
and load them as a library. With this solution, it also possible to
combine different mechanisms and use them in different parts of
the application.

Our solution relies on a contributing parts model to easily im-
plement modular reuse mechanisms thanks to different elements
to represent the changes on the instance variables and methods
such as: renaming, removing and adding methods. Reifying those
elements make the implementation high-level and simpler. Indeed,
having the class building operations internally to the architecture
and letting only expressing the changes through objects make it
easier implementing reuse mechanisms because details are hidden
from their contributing parts. Meta programmers are able to extend
the existing modifications to elements, providing more flexibility
to implement reuse mechanisms.

Our solution does not permit the generation of more classes.
The mechanisms only generates one runtime class per class in the
logical level. We decided so, to keep the runtime model similar to
the logical model. When inspecting the objects, the classes of these
objects are the same as the ones in the logical model.

To achieve performance comparable to the execution of single in-
heritance code, our solution duplicates methods. This is performed
also when the method lookup is overridden for a given mechanism.
This optimization produces bigger runtime programs (memory
overhead) but the performance is not affected.

When a class or a method is modified in the logical model, the
generated classes should be updated, making the compilation longer.
Because the architecture keeps the logical and runtime models in
sync. However, we decided to do it in this way as the dynamic
modification of the program is less frequent compared with the
execution of the methods.

8 RELATED WORKS

Kotlin?, Scala, Groovy and Jython provide high performance im-
plementations of the reuse mechanisms presented in this paper on
top of the Java Virtual Machine through the direct generation of
bytecode. However, their implementation does not allow the modifi-
cation of these reuse mechanisms or the loading of new mechanisms
as a library module. The Traits implementation existing in Pharo
does not allow the modification of reuse mechanism without the
modification of the core classes [32].

Cazzola et al. [13] propose a modular implementation for the
development of interpreters. By the modification of the interpreter
is possible to modify the reuse mechanisms existing in a given
language. However, this technique requires the development of
low level interpreters. Also the resulting code executes in the de-
veloped interpreters, without taking advantage of the underlying
JVM. As in our solution, the custom interpreter implementation
is very sensitive to the performance of the execution. Although
having to implement a lower level mechanism requires a deeper
understanding of the underlying execution environment.

Bouraqadi et al. [8, 9] show how classes can be extended in
a reflective language using metaclasses. Metaclasses can then be

Shttps://kotlinlang.org/
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used as an extension mechanism to add new properties to class
in a per-class basis. While the Metaclass proposal is indeed good,
it mixes both the low level representations of classes with the
high level representations. In our meta-level architecture there is
a clear separation of these concepts, what we believe is necessary
for maintenance purposes. Bettini et al. [6] show how to statically
extend Java with traits by static generation of code. This approach
has the advantage of providing full IDE integration. Composition
filters [1] and MixDecorator [30] also propose variations of GOF
design patterns to change the behaviour of a program. We chose
instead to use a chain of responsibility pattern, hiding from the user
the complexity of combinations and identify of objects. Finally, our
model proposes the creation and combination of reuse mechanisms
but it is out of the scope of this paper to work on the validation of
the possible combinations, as done in GenVoca [4].

9 CONCLUSION

In this paper, we propose a novel architecture for the modularization
of reuse mechanisms. This architecture allows the developer to work
with different reuse mechanisms, taking advantage of the different
benefits of each of them. Also, it allows meta programmers to
implement new reuse mechanisms and combine them in novel ways
without the need to modifying the underlying VM. The architecture
is intended to generate classes to be run in a high-performance
single inheritance VM as the Java Virtual Machine or the Cog
Smalltalk Virtual Machine.

Even though our solution allows a high level of flexibility. It
allows to be extend in different ways (from the contributing parts
to the modifications of methods and instance variables). It still
requires optimized implementations of the reuse mechanisms if the
performance is a must-have.

As future work, we are interested in the detection of patterns
in the contributing parts and common problems of performance.
Also we are interested in how this runtime and logical level MOP
interacts with the tools in the IDE.
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