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Abstract In this paper we present a novel approach to automatically infer param-
eters of spiking neural networks. Neurons are modelled as timed automata waiting
for inputs on a number of different channels (synap-ses), for a given amount of
time (the accumulation period). When this period is over, the current potential
value is computed considering current and past inputs. If this potential overcomes
a given threshold, the automaton emits a broadcast signal over its output chan-
nel, otherwise it restarts another accumulation period. After each emission, the
automaton remains inactive for a fixed refractory period. Spiking neural networks
are formalised as sets of automata, one for each neuron, running in parallel and
sharing channels according to the network structure. Such a model is formally
validated against some crucial properties defined via proper temporal logic formu-
lae. The model is then exploited to find an assignment for the synaptical weights
of neural networks such that they can reproduce a given behaviour. The core of
this approach consists in identifying some correcting actions adjusting synaptical
weights and back-propagating them until the expected behaviour is displayed. A
concrete case study is discussed.

Keywords Neural Networks · Parameter Learning · Timed Automata, Temporal
Logic · Model Checking.

1 Introduction

The brain behaviour is the object of thorough studies: researchers are interested
not only in the inner functioning of neurons (which are its elementary compo-
nents), their interactions and the way these aspects participate to the ability to
move, learn or remember, typical of living beings; but also in reproducing such
capabilities (emulating nature), e.g., within robot controllers, speech/text/face
recognition applications, etc. In order to achieve a detailed understanding of the
brain functioning, both neurons behaviour and their interactions must be stud-
ied. Several models of the neuron behaviour have been proposed: some of them
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make neurons behave as binary threshold gates, other ones exploit a sigmoidal
transfer function, while, in many cases, differential equations are employed. Ac-
cording to [29,26], three different and progressive generations of neural networks
can be recognised: (i) first generation models handle discrete inputs and outputs
and their computational units are threshold-based transfer functions; they include
McCulloch and Pitt’s threshold gate model [28], the perceptron model[15], Hop-
field networks [21], and Boltzmann machines [1]; (ii) second generation models
exploit real valued activation functions, e.g., the sigmoid function, accepting and
producing real values: a well known example is the multi-layer perceptron [8,32];
(iii) third generation networks are known as spiking neural networks. They extend
second generation models treating time-dependent and real valued signals often
composed by spike trains. Neurons may fire output spikes according to thresh-
old-based rules which take into account input spike magnitudes and occurrence
times [29].

The core of our analysis are spiking neural networks [16]. Because of the intro-
duction of timing aspects they are considered closer to the actual brain functioning
than other generations models. Spiking neurons emit spikes taking into account
input impulses strength and their occurrence instants. Models of this sort are of
great interest, not only because they are closer to natural neural networks be-
haviour, but also because the temporal dimension allows to represent information
according to various coding schemes [30,29]: e.g., the amount of spikes occurred
within a given time window (rate coding), the reception/absence of spikes over dif-
ferent synapses (binary coding), the relative order of spikes occurrences (rate rank
coding), or the precise time difference between any two successive spikes (timing
coding).

Several spiking neuron models have been proposed in the literature, having
different complexities and capabilities. In [24], Izhikevich classifies spiking neu-
ron models according to some behaviour (i.e., typical responses to an input pat-
tern) that they should exhibit in order to be considered biologically relevant. The
leaky integrate & fire (LI&F) model [25], where past inputs relevance exponen-
tially decays with time, is one of the most studied neuron models because it is
straightforward and easy to use [24,29]. On the other end of the spectrum, the
Hodgkin-Huxley (H-H) model [20] is one of the most complex being composed
by four differential equations comparing neurons to electrical circuits. In [24], the
H-H model can reproduce all behaviours under consideration, but the simulation
process is really expensive even for just a few neurons being simulated for a small
amount of time. Our aim is to produce a neuron model being meaningful from a
biological point of view but also amenable to formal analysis and verification, that
could be therefore used to detect non-active portions within some network (i.e.,
the subset of neurons not contributing to the network outcome), to test whether a
particular output sequence can be produced or not, to prove that a network may
never be able to emit, to assess if a change to the network structure can alter
its behaviour, or to investigate (new) learning algorithms which take time into
account.

In this paper we focus on the leaky integrate & fire (LI&F) model originally pro-
posed in [25]. It is a computationally efficient approximation of single-compartment
model [24] and is abstracted enough to be able to apply formal verification tech-
niques such as model-checking. Here we work on an extended version of the discre-
tised formulation proposed in [13], which relies on the notion of logical time. Time
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is considered as a sequence of logical discrete instants, and an instant is a point in
time where external input events can be observed, computations can be done, and
outputs can be emitted. The variant we introduce here takes into account some
new time-related aspects, such as a lapse of time in which the neuron is not active,
i.e., it cannot receive and emit. We encode LI&F networks into timed automata:
we show how to define the behaviour of a single neuron and how to build a network
of neurons. Timed automata [2] are finite state automata extended with timed be-
haviours: constraints are allowed to limit the amount of time an automaton can
remain within a particular state, or the time interval during which a particular
transition may be enabled. Timed automata networks are sets of automata that
can synchronise over channel communications.

Our modelling of spiking neural networks consists of timed automata networks
where each neuron is an automaton. Its behaviour consists in accumulating the
weighted sum of inputs, provided by a number of ingoing weighted synapses, for
a given amount of time. Then, if the potential accumulated during the last and
previous accumulation periods overcomes a given threshold, the neuron fires an
output over the outgoing synapse. Synapses are channels shared between the timed
automata representing neurons, while spike emissions are represented by broadcast
synchronisations occurring over such channels. Timed automata are also exploited
to produce or recognise precisely defined spike sequences.

As a first main contribution, we analyse some intrinsic properties of the pro-
posed model, e.g., the maximum threshold value allowing a neuron to emit, or
the lack of inter-spike memory, preventing the behaviour of a neuron from being
influenced by what happened before the last spike. Furthermore, we encode in
temporal logics all the behaviours (or capabilities) a LI&F model should be able
to reproduce according to Izhikevich and we exploit model checking to prove these
behaviours are reproducible in our model. Izhikevich also identifies a set of be-
haviours which are not expected to be reproducible by any LI&F model. We prove
these limits to hold for our model, too, and we provide, for each non-reproducible
behaviour, an extension of the model allowing to reproduce it.

As a second main contribution, we exploit our automata-based modelling to
propose a new methodology for parameter inference in spiking neural networks. In
particular, our approach allows to find an assignment for the synaptical weights of
a given neural network such that it can reproduce a given behaviour. We apply the
proposed approach to find suitable parameters in mutual inhibition networks, a
well studied class of networks in which the constituent neurons inhibit each other
neuron’s activity [27].

This paper is an extended and revised version of the conference papers [10] and
[11]. In particular, in section 5 we propose a refined version of the Advice Back-
Propagation algorithm. Furthermore, we add a second learning technique that is
based on simulation instead of model checking.

The rest of the paper is organised as follows: in Section 2 we recall definitions
of timed automata networks, temporal logics, and model checking; in Section 3 we
describe our reference model, the LI&F one, and its encoding into timed automata
networks; in Section 4 we study some intrinsic properties of the obtained model
and we validate it against its ability of reproducing or not some behaviours; in
Section 5 we develop the novel parameter learning approach and we introduce a
case study; in Section 6 we give an overview of the related work. Finally, Section
7 summarises our contribution and presents some future research directions.
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2 Preliminaries

In this section we introduce the formal tools we adopt in the rest of the paper,
namely timed automata and temporal logics.

2.1 Timed Automata.

Timed automata [2] are a powerful theoretical formalism for modelling and verify-
ing real time systems. A timed automaton is an annotated directed (and connected)
graph, with an initial node and provided with a finite set of non-negative real vari-
ables called clocks. Nodes (called locations) are annotated with invariants (pred-
icates allowing to enter or stay in a location), arcs with guards, communication
labels, and possibly with some variables upgrades and clock resets. Guards are con-
junctions of elementary predicates of the form x op c, where op ∈ {>,≥,=, <,≤},
x is a clock, and c a (possibly parameterised) positive integer constant. As usual,
the empty conjunction is interpreted as true. The set of all guards and invariant
predicates will be denoted by G.

Definition 1 A timed automaton TA is a tuple (L, l0, X,
Σ,Arcs, Inv), where

– L is a set of locations with l0 ∈ L the initial one
– X is the set of clocks,
– Σ is a set of communication labels,
– Arcs ⊆ L × (G ∪ Σ ∪ U) × L is a set of arcs between locations with a guard

in G, a communication label in Σ ∪ {ε}, and a set of variable upgrades (e.g.,
clock resets);

– Inv : L→ G assigns invariants to locations.

It is possible to define a synchronised product of a set of timed automata
that work and synchronise in parallel. The automata are required to have disjoint
sets of locations, but may share clocks and communication labels which are used
for synchronisation. We restrict communications to be broadcast through labels
b!, b? ∈ Σ, meaning that a set of automata can synchronise if one is emitting; notice
that a process can always emit (e.g., b!) and the receivers (b?) must synchronise if
they can.

Locations can be normal, urgent or committed. Urgent locations force the time
to freeze, committed ones freeze time and the automaton must leave the location
as soon as possible, i.e., they have higher priority.

The synchronous product TA1 ‖ . . . ‖ TAn of timed automata, where TAj =
(Lj , l

0
j , Xj , Σj ,Arcsj , Inv j) and Lj are pairwise disjoint sets of locations for each

j ∈ [1, . . . , n], is the timed automaton

TA = (L, l0, X,Σ,Arcs, Inv)

such that:

– L = L1 × . . .× Ln and l0 = (l01, . . . , l
0
n), X =

⋃n
j=1Xj , Σ =

⋃n
j=1Σj ,

– ∀l = (l1, . . . , ln) ∈ L : Inv(l) =
∧
j Inv j(lj),
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– Arcs is the set of arcs (l1, . . . , ln)
g,a,r−→ (l′1, . . . , l

′
n) such that for all 1 ≤ j ≤ n

then l′j = lj .

Its semantics is the one of the underlying timed automaton TA with the fol-
lowing notations. A location is a vector l = (l1, . . . , ln). We write l[l′j/lj , j ∈ S] to

denote the location l in which the jth element lj is replaced by l′j , for all j in some
set S. A valuation is a function ν from the set of clocks to the non-negative reals.
Let V be the set of all clock valuations, and ν0(x) = 0 for all x ∈ X. We shall
denote by ν � F the fact that the valuation ν satisfies (makes true) the formula F .
If r is a clock reset, we shall denote by ν[r] the valuation obtained after applying
the clock reset r ⊆ X to ν; and if d ∈ R>0 is a delay, ν + d is the valuation such
that, for any clock x ∈ X, (ν + d)(x) = ν(x) + d.

The semantics of a synchronous product TA1 ‖ . . . ‖ TAn is defined as a timed
transition system (S, s0,→), where S = (L1×, . . . × Ln) × V is the set of states,
s0 = (l0, ν0) is the initial state, and →⊆ S × S is the transition relation defined
by:

– (silent): (l, ν)→ (l′, ν′) if there exists li
g,ε,r−→ l′i, for some i, such that l′ = l[l′i/li],

ν � g and ν′ = ν[r],

– (broadcast): (l̄, ν) → (l̄′, ν′) if there exists an output arc lj
gj ,b!,rj−→ l′j ∈ Arcsj

and a (possibly empty) set of input arcs of the form lk
gk,b?,rk−→ l′k ∈ Arcsk such

that for all k ∈ K = {k1, . . . , km} ⊆ {l1, . . . , ln}\{lj}, the size of K is maximal,
ν �

∧
k∈K∪{j} gk, l′ = l[l′k/lk, k ∈ K ∪ {j}] and ν′ = ν[rk, k ∈ K ∪ {j}];

– (timed): (l, ν)→ (l, ν + d) if ν + d � Inv(l).

The valuation function ν is extended to handle a set of shared bounded integer
variables: predicates concerning such variables can be part of edges guards or
locations invariants, moreover variables can be updated on edges firings but they
cannot be assigned to or from clocks.

Example 1 In Figure 1 we consider the network of timed automata TA1 and TA2

with broadcast communications, and we give a possible run. TA1 and TA2 start
in the l1 and l3 locations, respectively, so the initial state is [(l1, l3); x = 0]. A
timed transition produces a delay of 1 time unit, making the system move to state
[(l1, l3); x = 1]. A broadcast transition is now enabled, making the system move
to state [(l2, l3); x = 0], broadcasting over channel a and resetting the x clock.
Two successive timed transitions (0.5 time units) followed by a broadcast one will
eventually lead the system to state [(l2, l4); x = 1]. �

Throughout our modelling, we have used the specification and analysis tool
Uppaal [4], which provides the possibility of designing and simulating timed au-
tomata networks on top of the ability of testing networks against temporal logic
formulae. All figures depicting timed automata follow the graphic conventions of
the tool (e.g., initial states are denoted with a double circle).

2.2 Temporal Logics and Model Checking

Model checking is one of the most common approaches to the verification of soft-
ware and hardware (distributed) systems [7]. It allows to automatically prove
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TA1 l1 l2

x < 2 x < 2

G : x = 1
S : a!
U : x := 0

G : x > 0
S : b!
U : −

TA2l3 l4
G : x = 1
S : −
U : −

G : true
S : a?
U : x := 0

(a) The timed automata network TA1 ‖ TA2.

[(l1, l3); x = 0]
↓

[(l1, l3); x = 1]
↓

[(l2, l3); x = 0]
↓

[(l2, l3); x = 0.5]
↓

[(l2, l3); x = 1]
↓

[(l2, l4); x = 1]
(b) A possible run.

Fig. 1: A network of timed automata with a possible run.

whether a system verifies or not a given specification. In order to apply such a
technique, the system at issue should be encoded as a finite transition system and
the specification should be written using propositional temporal logic. Formally, a
transition system over a set AP of atomic propositions is a tuple M = (Q,T, L),
where Q is a finite set of states, T ⊆ Q × Q is a total transition relation, and
L : Q → 2AP is a labelling function that maps every state into the set of atomic
propositions that hold at that state.

Temporal formulae describe the dynamical evolution of a given system. The
computation tree logic CTL∗ allows to describe properties of computation trees.
Its formulas are obtained by (repeatedly) applying boolean connectives (∧, ∨, ¬,
→), path quantifiers, and state quantifiers to atomic formulas. The path quantifier
A (resp., E) can be used to state that all the paths (resp., some path) starting
from a given state have some property. The state quantifiers are X (next time),
which specifies that a property holds at the next state of a path, F (sometimes
in the future), which requires a property to hold at some state on the path, G
(always in the future), which imposes that a property is true at every state on the
path, and U (until), which holds if there is a state on the path where the second
of its argument properties holds and, at every preceding state on the path, the
first of its two argument properties holds. Given two formulas ϕ1 and ϕ2, in the
rest of the paper we use the shortcut ϕ1  ϕ2 to denote the liveness property
AG(ϕ1 → AFϕ2), which can be read as “ϕ1 always leads to ϕ2 ”.

The branching time logic CTL is a fragment of CTL∗ that allows quantification
over the paths starting from a given state. Unlike CTL∗, it constrains every state
quantifier to be immediately preceded by a path quantifier.

Given a transition system M = (Q,T, L), a state q ∈ Q, and a temporal logic
formula ϕ expressing some desirable property of the system, the model checking
problem consists of establishing whether ϕ holds at q or not, namely, whether
M, q |= ϕ.
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3 Leaky Integrate and Fire Model and Mapping to Timed Automata

Spiking neural networks [26] are modelled as directed weighted graphs where ver-
tices are computational units and edges represent synapses. The signals propa-
gating over synapses are trains of impulses: spikes. Synapses may modulate these
signals according to their weight: excitatory if positive, or inhibitory if negative.

The dynamics of neurons is governed by their membrane potential (or, simply,
potential), representing the difference of electrical potential across the cell mem-
brane. The membrane potential of each neuron depends on the spikes received
over the ingoing synapses. Both current and past spikes are taken into account,
even if old spikes contribution is lower. In particular, the leak factor is a measure
of the neuron memory about past spikes. The neuron outcome is controlled by
the algebraic difference between its membrane potential and its firing threshold :
it is enabled to fire (i.e., emit an output impulse over all outgoing synapses) only
if such a difference is non-negative. Spike propagation is assumed to be instan-
taneous. Immediately after each emission the neuron membrane potential is reset
and the neuron stays in a refractory period for a given amount of time. During this
period it has no dynamics: it cannot increase its potential as any received spike is
lost and therefore it cannot emit any spike.

Definition 2 (Spiking Integrate and Fire Neural Network) A spiking in-
tegrate and fire neural network is a tuple (V, A, w), where:

– V are spiking integrate and fire neurons,
– A ⊆ V × V are synapses,
– w : A→ Q∩ [−1, 1] is the synapse weight function associating to each synapse

(u, v) a weight wu,v.

We distinguish three disjoint sets of neurons: Vi (input neurons), Vint (intermedi-
ary neurons), and Vo (output neurons), with V = Vi ∪ Vint ∪ Vo.
A spiking integrate and fire neuron v is characterized by a parameter tuple

(θv, τv, λv, pv, yv),

where:

– θv ∈ N is the firing threshold,
– τv ∈ N+ is the refractory period,
– λv ∈ Q ∩ [0, 1] is the leak factor.

The dynamics of a spiking integrate and fire neuron v is given by:

– pv : N→ Q+
0 is the [membrane] potential function defined as

pv(t) =

{∑m
i=1 wi · xi(t), if pv(t− 1) > θv∑m
i=1 wi · xi(t) + λv · pv(t− 1), otherwise.

with pv(0) = 0 and where xi(t) ∈ {0, 1} is the signal received at the time
t by the neuron through its ith out of m input synapses (observe that the
past potential is multiplied by the leak factor while current inputs are not
weakened),
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– yv : N→ {0, 1} is the neuron output function, defined as

yv(t) =

{
1 if pv(t) > θv
0 otherwise.

As shown in the previous definition, the set of neurons of a spiking integrate
and fire neural network can be classified into input, intermediary, and output
ones. Each input neuron can only receive as input external signals (and not other
neurons’ output). The output of each output neuron is considered as an output
for the network. Output neurons are the only ones whose output is not connected
to other neurons.

We present here our modelling of spiking integrate and fire neural networks
(in the following denoted as neural networks) via timed automata networks. Let
S = (V,A,w) be a neural network, G be a set of input generator neurons (these
fictitious neurons are connected to input neurons and generate input sequences
for the network), and O be a set of output consumer neurons (these fictitious
neurons are connected to the broadcast channel of each output neuron and aim at
consuming their emitted spikes). The corresponding timed automata network is
obtained as the synchronous product of the encoding of input generator neurons,
the neurons of the network (referred as standard neurons in the following), and
output consumers neurons. More formally:

JSK = ( ‖
ng∈G

JngK) ‖ ( ‖
vj∈V

JvjK) ‖ ( ‖
nc∈O

JncK)

Input generators. The behaviour of input generator neurons is part of the spec-
ification of the network. Here we define two kinds of input behaviours: regular and
non-deterministic ones. For each family, we provide an encoding into timed au-
tomata.

Regular input sequences. Spike trains are “regular” sequences of spikes and pauses:
spikes are instantaneous while pauses have a non-null duration. Sequences can be
empty, finite or infinite. After each spike there must be a pause, except when the
spike is the last event of a finite sequence. Infinite sequences are composed by two
parts: a finite and arbitrary prefix and an infinite and periodic part composed
by a finite sequence of spike–pause pairs which is repeated infinitely often. More
formally, such sequences are given in terms of the following grammar:

G ::= Φ.(Φ)ω | P (d).Φ.(Φ)ω

Φ ::= s.P (d).Φ | ε

with s representing a spike and P (d) a pause of duration d. It is possible to generate
an emitter automaton for any regular input sequence:

Definition 3 (Input generator) Let I ∈ L(G) be a word over the language gen-
erated by IS, then its encoding into timed automata is JIK = (L(I), first(I), {t},
{y}, Arcs(I), Inv(I)). It is inductively defined as follows:

– if I := Φ1.(Φ2)ω

– L(I) = L(Φ1) ∪ L(Φ2), where last(Φ2) is urgent
– first(I) = first(Φ1)
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(a) JΦ1.(Φ2)ωK (b) JP (d).Φ1.(Φ2)ωK

(c) JεK (d) Js.P (d).Φ′K

Fig. 2: Representation of the encoding of an input sequence

– Arcs(I) = Arcs(Φ1) ∪Arcs(Φ2) ∪
{(last(Φ1), true, ε, ∅, first(Φ2)),
(last(Φ1), true, ε, ∅, first(Φ2))}

– Inv(I) = Inv(Φ1) ∪ Inv(Φ2)
– if I := P (d).Φ1.(Φ2)ω

– L(I) = {P0} ∪ L(Φ1) ∪ L(Φ2), where last(Φ2) is urgent
– first(I) = P0

– Arcs(I) = Arcs(Φ1) ∪Arcs(Φ2) ∪
{(P0, t ≤ d, , {t := 0}, first(Φ1)),
(last(Φ1), true, ε, ∅, first(Φ2)),
(last(Φ1), true, ε, ∅, first(Φ2))}

– Inv(I) = {P0 7→ t ≤ d} ∪ Inv(Φ1) ∪ Inv(Φ2)
– if Φ := ε

– L(Φ) = {E}
– first(Φ) = last(Φ) = E
– Arcs(Φ) = ∅
– Inv(Φ) = ∅

– if Φ := s.P (d).Φ′

– L(Φ) = {S,P} ∪ L(Φ′)
– first(Φ) = S, last(Φ) = last(Φ′)
– Arcs(Φ) = Arcs(Φ′) ∪ {(S, true, y!, ∅,P),

(P, t = d, ε, {t := 0}, first(Φ′))}
– Inv(Φ) = {P 7→ t ≤ d} ∪ Inv(Φ′)

Figure 2 depicts the shape of input generators. Figure 2(a) shows the generator
JIK, obtained from I := Φ1.(Φ2)ω. The edge connecting the last state of JΦ2K to
the first one allows Φ2 to be repeated infinitely often. Figure 2(b) shows the case
of an input sequence I := P (d).Φ1.(Φ2)ω beginning with a pause P (d): in this
case, the initial location of JIK is P0, which imposes a delay of d time units. The
remainder of the input sequence is encoded as for the previous case. Figure 2(c)
shows the induction basis for encoding a sequence Φ, i.e., the case Φ := ε. It is
encoded as a location E having no edge. Finally, Figure 2(d) shows the case of
a non-empty spike–pause pair sequence Φ := s.P (d).Φ′. It consists of an urgent
location S: when the automaton moves from S, a spike is fired over channel y and
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the automaton moves to location P, representing a silent period. After that, the
automaton proceeds with the encoding of Φ′.

Non-deterministic input sequences. This kind of input sequences is useful when no
assumption is available on neuron inputs. These are random sequences of spikes
separated by at least Tmin time units.

Such sequences can be generated by an automaton defined as follows:

Definition 4 (Non-deterministic input generator) A non-deterministic in-
put generator Ind is a tuple

(L,B, X,Σ,Arcs, Inv),

with:

– L = {B, S, W}, with S urgent,
– X = {t}
– Σ = x
– Arcs = {(B, t = D,x!, ∅,S), (S, true, ε, {t := 0},W),

(W, t > Tmin, x!, ∅,S)}
– Inv(B) = (t ≤ D)

where D is the initial delay.

The behavior of such a generator depends on clock t and broadcast channel x,
and can be summarized as follows: it waits in location B an arbitrary amount of
time before moving to location S, firing its first spike over channel x. Since location
S is urgent, the automaton instantaneously moves to location W, resetting clock t.
Finally, from location W, after an arbitrary amount of time t, it moves to location
S, firing a spike. Notice that an initial delay D may be introduced by adding the
invariant t ≤ D to the location B and the guard t = D on the edge (B→ S).

Standard neurons. The neuron is a computational unit behaving as follows: i)
it accumulates potential whenever it receives input spikes within a given accu-
mulation period, ii) if the accumulated potential is greater than the threshold, it
emits an output spike, iii) it waits during a refractory period, and restarts from
i). Observe that the accumulation period is not present in the definition of neuron
(Definition 2). It is indeed introduced here to slice time and therefore discretise
the decrease of the potential value due to the leak factor. We assume that two
input spikes on the same synapse cannot be received within the same accumula-
tion period (i.e., the accumulation period is shorter than the minimum refractory
period of the input neurons of the network). Next, we give the encoding of neurons
into timed automata.

Definition 5 Given a neuron v = (θ, τ, λ, p, y) with m input synapses, its encod-
ing into timed automata is N = (L,A, X, V ar,Σ,Arcs, Inv) with:

– L = {A,W,D} with D committed,
– X = {t}
– V ar = {p, a}
– Σ = {xi | i ∈ [1..m]} ∪ {y},
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A

DW

t ≤ T

Ct ≤ τ

G : t = T
S : −
U : p := a+ bλpc

t := 0

G : p ≥ θ
S : y!
U : −

G : t = τ
S : −
U : t := 0
a := 0
p := 0

∀i = 1, ...,m
G : t ≤ T
S : xi?
U : a := a+ wi

G : p < θ
S : −
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Fig. 3: Automata for standard neuron and output consumer.

– Arcs = {(A, t ≤ T, xi?, {a := a + wi},A) | i ∈ [1..m]} ∪ {(A, t = T, , {p :=
a+ bλpc},D),
(D, p < θ, , {a := 0},A), (D, p ≥ θ, y!, ,W),
(W, t = τ, , {a := 0, t := 0, p := 0},A)} ;

– Inv(A) = t ≤ T, Inv(W) = t ≤ τ, Inv(D) = true.

The neuron behavior, described by the automaton in Figure 3(a), depends on
the following channels, variables and clocks:

– xi for i ∈ [1..m] are the m input channels,
– y is the broadcast channel used to emit the output spike,
– p ∈ N is the current potential value, initially set to zero,
– a ∈ N is the weighted sum of input spikes occurred within the current accu-

mulation period; it equals zero at the beginning of each round.

The behaviour of the automaton modelling neuron v can be summed up as
follows:

– the neuron keeps waiting in state A (for Accumulation) for input spikes while
t 6 T and, whenever it receives a spike on input xi, it updates a with a :=
a+ wi;

– when t = T , the neuron moves to state D (for Decision), resetting t and
updating p according to the potential function given in Definition 2:

p := a+ bλ · pc

Since state D is committed, it does not allow time to progress, so, from this
state, the neuron can move back to state A resetting a if the potential has not
reached the threshold p < θ, or it can move to state W, firing an output spike,
otherwise;

– the neuron remains in state W (for Wait) for τ time units (τ is the length of
the refractory period) and then it moves back to state A resetting a, p and t.
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Output consumers. In order to have a complete modelling of a spiking neural
network, for each output neuron we build an output consumer automaton Oy.
The automaton, whose formal definition is straightforward, is shown in Figure
3(b). The consumer waits in location W for the corresponding output spikes on
channel y and, as soon as it receives the spike, it moves to location O. This location
is only needed to simplify model checking queries. Since it is urgent, the consumer
instantly moves back to location W resetting s, the clock measuring the elapsed
time since last emission, and setting e to its negation, with e being a boolean
variable which differentiates each emission from its successor.

Definition 6 (Output consumer) An output consumer is a timed automaton

N = (L,W, X, V ar,Σ,Arcs, Inv)

with:

– L = {W,O} with O urgent,
– X = {s}
– V ar = {e}
– Σ = {yi | yi is an output neuron}
– Arcs = {(W, , y?, ,O),

(O, s := 0, , {e := not(e)},W)}
– Inv(W) = true, Inv(O) = true.

We have a complete implementation of the spiking neural network model pro-
posed in the paper via the tool Uppaal. It can be found on the web page [6]. We
have validated our neuron model against some characteristic properties studied
in [24] (tonic spiking, excitability, integrator, etc.). These properties have been
formalised in temporal logics and checked via model-checking tools.

Observe that, since we rely on a discrete time, we could have used tick automata
[17], a variant of Büchi automata where a special clock models the discrete flow of
time. However, to the best of our knowledge, no existing tool allows to implement
such automata. We decided to opt for timed automata in order to have an effective
implementation of our networks to be exploited in parameter learning algorithms.

4 Validation of the model

In this section we show some properties of the neuron model of Definition 5. The
first group of properties are structural. We can compute a minimum value such
that any neuron, having a threshold greater than or equal to it, will never be able
to fire.

Property 1 Let N = (θ, τ, λ, p, y) be a neuron and amax be the maximum value
received during each accumulation period. Then, if θ ≥ amax

1−λ , the neuron is not
able to fire.

Proof Without loss of generality, we suppose that, during each accumulation pe-
riod, N receives the maximum possible input amax. Then, its potential function
is:

pn = amax + bλ · pn−1c
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which is always lower than or equal to its undiscretized version:

pn ≤ p′n = amax + λ · p′n−1

The same inequality can be written in explicit form:

pn ≤ p′n =
n∑
k=0

an−k · λk

and, since we assumed the neuron always receives amax, an−k is constant and does
not depend on k:

pn ≤ amax ·
n∑
k=0

λk

The rightmost factor is a geometric series:

pn ≤ amax ·
1− λn

1− λ

which reaches its maximum value 1
1−λ for n→∞, therefore:

pn ≤
amax
1− λ.

Thus, if θ ≥ amax

1−λ , it is impossible for the neuron potential to reach the threshold
and, consequently, the neuron cannot fire. ut

In what follows, we only consider neurons that respect the previous constraint.
Apart from the minimum threshold, we can also quantify the amount of time

that the neuron requires to complete an accumulate–fire–rest cycle. We show that
there exists a minimum delay between neuron emissions.

Property 2 Let N = (θ, τ, λ, p, y) be a neuron. Then the time difference between
successive firings cannot be lower than T + τ .

Proof Let An =
∑T
k=1 ak+t0 be the sum of weighted inputs during the n-th accu-

mulation period, then the neuron behaviour can be described as follows:

pn = An + bλ · pn−1c

which is the potential value after the n-th accumulation period. If the neuron
eventually fires an output spike, then there exists n̂ > 0 such that:

n̂ = argmin
n∈N

{pn : pn ≥ θ}

i.e., the firing will occur at the end of the n̂-th accumulation period, which means
during the t̂-th time unit since t0, thus:

t̂ = n̂ · T + t0

where t0 is the last reset time, i.e., the last instant back in time when the neuron
completed its refractory period. Then the next reset time t′, i.e., the next instant
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in future when the neuron will complete its refractory period, after having emitted
a spike, is:

t′ = t̂+ τ = n̂ · T + τ + t0

At instant t′, the neuron quits its refractory period, n is reset to 0, t0 is set to t′,
and n̂, t̂ and t′ must be consequently re-computed as described above.

Such a way to describe our model dynamics allow us to express the inter-firing
period as a function of n̂:

t′ − t0 = n̂ · T + τ

So, the minimum inter-firing period is T + τ for n̂ = 1. ut

Such a property can also be verified as follows: let I be the non-deterministic
input generator having Tmin = 1 and, without loss of generality1, let the initial
delay D = T +τ . Then the timed automata network I‖N‖O satisfies the following
formula:

AG(stateO(O)→ evalO(s) ≥ T + τ)

where s measures the time elapsed since last firing, meaning that, whenever the
output consumer receives a spike, the time elapsed since the previous received
spike cannot be lower than T + τ .

The next fact states that only positive stimulations are necessary for the neuron
to produce emissions.

Fact 1 Let N = (θ, τ, λ, p, y) be a neuron, a(t) the sum of weighted inputs received
during the current accumulation period, and p(t − 1) the neuron potential at the
end of the previous accumulation period. If p(t− 1) < θ and a(t) < 0, the neuron
cannot fire at the end of the current accumulation period. Moreover, if p(t) ≥ θ
then a(t) > 0.

The neuron potential is affected by every input spike it received since the last
reset time, but every event that occurred before that instant is forgotten: i.e.,
neurons are memoryless.

Definition 7 (Inter-emission memory) Let N be a neuron, ZN its reset times
set, and I an input sequence. Then N has inter-emission memory if and only if
there exist two different t, t′ ∈ ZN such that the output sequences produced by N
as a response to I starting from t and t′ are different.

Property 3 Neurons have not inter-emission memory.

Proof When the neuron moves from location W to A, it resets clock t and variables
p and a, making them equal to their initial values. This entails that the neuron, if
subjected to the same input sequence, will always behave in the same way. ut

Next, we validate the neuron model against its ability of reproducing or not
some behaviours, as described by Izhikevich in [24]. We introduce first three be-
haviours that are verified by our model.

1 the initial delay is required in order to make the formula hold for the first output spike
too
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Tonic Spiking. Tonic spiking is the behaviour of a neuron producing a periodic
output sequence as a response to a persistent excitatory constant input sequence.

Property 4 (Tonic spiking) Let N = (θ, τ, λ, p, y) be a neuron having only one
ingoing excitatory synapse of weight w and let I be the input source connected
to N producing a persistent input sequence. Then N produces a periodic output
sequence.

The property holds by construction. It can be tested via model checking in
the following way. Let I be the fixed-rate input generator having arbitrary initial
delay D, and let O be an output consumer. Then the timed automata network
I‖N‖O satisfies the following formulae:{

stateO(O) ∧ evalO(e) ; stateO(O) ∧ ¬evalO(e)

stateO(O) ∧ ¬evalO(e) ; stateO(O) ∧ evalO(e)

where O is the location that the consumer automaton O reaches after consuming a
spike and e is an alternating boolean variable whose value flips whenever O moves
into location O. So, whenever automaton O reaches location O, it will eventually
reach it again.

One may also find the value P of the period of some given neuron N by means
of simulations, thus the periodic behaviour can be proven verifying the following
formula:

AG(stateO(O) ∧ evalN (f)→ evalO(s) = P )

where s is the clock measuring the time elapsed since last spike consumed by O,
and f is a boolean variable of automaton N which is initially false and is set to
true when edge (W → A) fires (i.e., it indicates whether N has already emitted
the first spike and waited the first refractory period or not).

Integrator. Integrator is the behaviour of a neuron producing an output spike
whenever it receives at least a specific number of spikes from its input sources in
the same accumulation period.

Property 5 (Integrator) Let N = (θ, τ, λ, p, y) be a neuron having m synapses with
maximum excitatory weight R and a threshold n ≤ m. Then the neuron emits if
it receives a spike from at least n input sources during the same accumulation
period.

As in the previous case, we can use model checking tools and test the formula
stating that, if at least n generators are ready to emit (location S) while N is in
A, then O will eventually capture an output of N :(

m∑
i=1

statei(S) ≥ n

)
∧ stateN (A) ; stateO(O)

Notice that, since potential depends on past inputs too, the neuron may still
be able to fire in other circumstances, e.g., if it keeps receiving less than n spikes
for a sufficient number of accumulation periods, then it may eventually fire.
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Fig. 4: The extended neuron model for phasic spiking.
Additions are colored in blue.

Excitability. Excitability is the behaviour of a neuron emitting sequences having
a decreasing inter-firing period, i.e., an increasing output frequency, when stimu-
lated by an increasing number of excitatory inputs.

Property 6 (Excitability) Let N = (θ, τ, λ, p, y) be a neuron having m excitatory
synapses. Then the inter-spike period decreases as the sum of weighted input spikes
increases.

Proof If we assume the neuron is receiving an increasing number of excitatory
spikes, generated by an increasing number of input sources emitting persistent
inputs, then at is the non-negative, non-decreasing and progressing (i.e., ∀u ∃t :
at > u) succession representing the weighted sum of inputs within the t-th time
unit. Consequently, An =

∑T
k=1 ak+t0 is the non-negative, non-decreasing and

progressing succession counting the total sum of inputs within the n-th accumu-
lation period. Since An is positive and Property 2 holds, we can prove that the
inter-spike period tn − tn−1 decreases. ut

The following behaviours are not satisfied by the LI&F model, we show that
our encoding cannot verify them as well.

Phasic Spiking. Phasic spiking is the behaviour of a neuron producing a single
output spike when receiving a persistent and excitatory input sequence and then
remaining quiescent for the rest of it. Such a behaviour depends on the neuron to
have inter-emission memory.

Property 7 Neurons cannot reproduce the phasic spiking behaviour.

Proof The phasic spiking behaviour requires the neuron to ignore any excitatory
input spike occurring after its first emission. This means producing different out-
comes, before and after the first emission, as a response to the same input sequence,
which is impossible for a memoryless neuron, as stated in Property 3. ut
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We can extend our model to reproduce phasic spiking, see Figure 4. This variant
makes the neuron able to “remember” if it is receiving a persistent excitatory input
sequence. After each refractory period, the neuron moves to location AH, instead
of A. The only difference between AH and A is that AH ignores positive values
of a at the end of each accumulation period. Conversely, a non-positive value of a
(denoting the end of the persistent input), at the end of some accumulation period,
leads the neuron back in location A.

Bursting. A burst is a finite sequence of high frequency spikes. More formally:

Definition 8 A spike output sequence is a burst if it is composed by spikes having
an occurrence rate greater than 1/τ , with τ being the refractory period of the
neuron.

A burst sequence is a sequence composed by bursts, subject to the following
constraint: the time difference between the last spike of each burst and the first
spike of the next burst it greater than τ .

Property 8 Neurons cannot produce bursts.

Proof A neuron N cannot emit spikes having a rate greater than 1/(T + τ), as
stated by Property 2, so it cannot produce bursts. ut

In order to reproduce bursts our model can be extended by allowing several
subsequent emissions in an interval period smaller than τ . After this period all
clocks and variables are reset and the accumulation-fire-rest cycle can start again.

Several bursting behaviours are described in [24]. Here we discuss only three
of them, as all impossibility results depend on Property 8 and all the automata
extensions are similar.

Tonic Bursting is the behaviour of a neuron producing a burst sequence as
a response to a persistent and excitatory input sequence. Phasic Bursting is the
behaviour of a neuron producing a burst as a consequence of a persistent excitatory
input sequence and then remaining quiescent. Obviously the preceding behaviours
require the ability of producing bursts.

Bursting-then-Spiking is the behaviour of a neuron producing a burst as re-
sponse to a persistent excitatory input sequence and then producing a periodic
output sequence. Such a behaviour, similarly to Phasic and Tonic Bursting, de-
pends on the neuron ability of producing bursts. Moreover it requires inter-emission
memory, in order to detect the beginning of a persistent sequence.

Property 9 Neurons cannot exhibit the Tonic Bursting, Phasic Bursting and Bursting-
then-Spiking behaviours.

Proof Follows from Property 8. ut

Spike Frequency Adaptation. Spike Frequency Adaptation is the behaviour
of a neuron producing a decreasing-frequency output sequence as a response to
a persistent excitatory input sequence. In other words, the inter-emission time
difference increases as the time elapses. This behaviour requires the neuron to
have inter-emission memory as it should be able to keep track of the time elapsed
since the beginning of the input sequence.
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Fig. 5: The extended model for Spike Frequency Adaptation behaviour. Additions
are colored in blue.

Property 10 Neurons cannot reproduce the Spike Frequency Adaptation behaviour.

Proof The Spike Frequency Adaptation behaviour requires the neuron to detect
the beginning of an excitatory input sequence and to increase the time required
to fire a spike, after each emission. This means the neuron will produce different
outcomes as response to equal inputs, which is impossible, as stated in Property
3. ut

An extended neuron model able to reproduce Spike Frequency Adaptation
behaviour is shown in Figure 5. This variant allows the refractory period to increase
after each neuron emission, thus making the output frequency decrease.

Spike Latency. Spike Latency is the behaviour of a neuron firing delayed spikes,
with respect to the instant when its potential reached or overcame the threshold.
Such a delay is proportional to the strength of the signal which leads it to emission,
i.e., the sum of weighed inputs received during the accumulation period preceding
the emission. This behaviour requires the neuron to be able to postpone its output.

Property 11 Neurons cannot reproduce the Spike Latency behaviour.

Proof The property holds by construction. As location D is committed, no firing
can be delayed. ut

An easy solution to extend our model is to introduce a delay between the
instant the neuron reaches or overcomes its threshold and the actual emission
instant. Such a delay δ depends on the sum of weighted inputs received during the
last accumulation period. If the potential is greater than or equal to the threshold,
the neuron computes the delay duration δ(a), assigning it to an integer variable d,
and then waits in location Del for d time units before emitting a spike on channel
y. The extended version is depicted in Figure 6.
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Fig. 6: The extended model for the Spike Latency behaviour. Additions are colored
in blue.
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Fig. 7: The extended model for the Threshold variability behaviour. Additions
colored are in blue.

Threshold Variability. Threshold variability is the behaviour of a neuron allow-
ing its threshold to vary according to the strength of its inputs. More precisely, an
excitatory input will rise the threshold while an inhibitory input will decrease it.
As a consequence, excitatory inputs may more easily lead the neuron to fire when
occurring after an inhibitory input.

Property 12 Neurons cannot reproduce the Threshold Variability behaviour.

Proof By construction the neuron threshold never changes. ut

The neuron model can be extended allowing the threshold to vary after each
accumulation period according to the current sum of weighted inputs (see Figure
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Fig. 8: The extended model for Bistability behaviour.
Additions are colored in blue.

7). The threshold variable initial value is θ0. On every firing of edge (A → D),
the threshold variable is increased of ∆(a), where a is the sum of weighted inputs
occurred during the last accumulation period and ∆(a) is an integer value whose
sign is opposite to the sign of a and whose magnitude is proportional to the
magnitude of a.

Bistability. Bistability is the behaviour of a neuron alternating between two op-
eration modes: periodic emission and quiescence. Upon reception of a single exci-
tatory spike, it emits a periodic output sequence and switches to a quiescent mode
(no emission) as soon as it received another spike. Such a behaviour requires the
neuron to (i) be able to produce a periodic output sequence, even if no excitatory
spike is received, (ii) be able to remain silent when no spike is received, and (iii) be
able to switch between the two operation modes upon reception of an excitatory
spike.

Property 13 Neurons cannot reproduce the Bistability behaviour.

Proof The only possibility of obtaining a periodic output as a result of no exci-
tatory input spike is to set θ = 0. This is a limit case of Property 4. Since, by
construction, the threshold cannot vary, the neuron cannot switch between the
two operation modes. ut

The neuron model can be modified as shown in Figure 8. This variant makes
its threshold switch between 0 and a positive value at the end of any accumulation
period during which it received an excitatory sum of weighted inputs a. A null
threshold would make the neuron emit even if no input is received. Conversely, a
positive threshold would prevent the neuron from emitting, if no input is received.
Thus, on every firing of edge (A→ D), the threshold value θ is computed by the
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function bist(·):

bist(θ, a) =


0 if θ > 0 ∧ a > 0

θ0 if θ = 0 ∧ a > 0

θ if a ≤ 0.

Inhibition-induced activities. This is the behaviour of a neuron producing a
spike output sequence as a response to a persistent inhibitory input sequence. We
thus require the neuron to be able to emit as a consequence of some inhibitory
input spikes.

Property 14 Neurons cannot reproduce the Inhibition-induced Spiking behavior.

Proof Follows from Fact 1. ut

An easy extension to our automata is to consider the absolute value of all inputs
instead of their signed values.

Rebound activities. Rebound Spike is the behaviour of a neuron producing an
output spike after it received an inhibitory input. Similarly to Inhibition-induced
activities, this behaviour requires the neuron to emit as a consequence of an in-
hibitory input spike.

Property 15 Neurons cannot exhibit the Rebound Spiking behaviour.

Proof Follows from Fact 1. ut

We can modify our encoding by setting the neuron potential to be always
non-negative and by fixing the threshold to be 0 as response to an inhibitory
stimulation. Recall that a null threshold would make the neuron emit even if its
potential is 0. Thus, on every firing of the edge (A → D), if the current sum of
weighted inputs a is negative, the threshold θ is set to 0, otherwise it is set to a
θ > 0. This will allow an inhibitory stimulus to produce a rebound spike.

5 Parameter inference

In this section we examine the Learning Problem: i.e., how to determine a pa-
rameter assignment for a network with a fixed topology and a given input such
that a desired output behaviour is displayed. Here we only focus on the estimation
of synaptic weights in a given spiking neural network; the generalisation of our
methodology to other parameters is left for future work.

Our analysis takes inspiration from the SpikeProp algorithm [5]; in a similar
way, here, the learning process is led by supervisors. Differently from the previous
section, each output neuron N is linked to a supervisor instead of an output
consumer. Supervisors compare the expected output behaviour with the one of
the output neuron they are connected to (function Evaluate(N ) in Algorithm
1). Thus either the output neuron behaved consistently or not. In the second case
and in order to instruct the network, the supervisor back-propagates advices to
the output neuron depending on two possible scenarios: i) the neuron fires a spike,
but it was supposed to be quiescent, ii) the neuron remains quiescent, but it was
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Algorithm 1 The advice back-propagation algorithm

1: function ABP
2: discovered = ∅
3: for all N ∈ Output do
4: if N /∈ discovered then
5: discovered = discovered ∪ N
6: if Evaluate(N ) = SHF then
7: SHF(N )
8: else if Evaluate(N ) = SNHF then
9: SNHF(N )

Algorithm 2 Should Have Fired algorithm

1: procedure Should-Have-Fired(N )
2: if N ∈ discovered ∪ Output then
3: return
4: discovered = discovered ∪ N
5: for all M∈ Pred(N ) do
6: if M /∈ Input then
7: if Wt(N ,M) ≥ 0 ∧ ¬ F(M) then
8: SHF(M)

9: if Wt(N ,M) < 0 ∧ F(M) then
10: SNHF(M)

11: Increase-Weight(N ,M)

12: return

supposed to fire a spike. In the first case the supervisor addresses a should not
have fired message (SNHF) and in the second one a should have fired (SHF). Then
each output neuron modifies its ingoing synaptic weights and in turn behaves as
a supervisor with respect to its predecessors, back-propagating the proper advice.

The advice back-propagation (ABP), Algorithm 1, basically lies on a depth-
first visit of the graph topology of the network. Let Ni be the i-th predecessor of an
automaton N , then we say that Ni fired, if it emitted a spike during the current or
previous accumulate-fire-wait cycle of N . Thus, upon reception of a SHF message,
N has to strengthen the weight of each ingoing excitatory synapse and weaken the
weight of each ingoing inhibitory synapse. Then, it propagates a SHF advice to
each ingoing excitatory synapse (i.e., an arc with weight greater than 0: Wt ≥ 0)
corresponding to a neuron which did not fire recently (¬F(N ) ), and symmetrically
a SNHF advice to each ingoing inhibitory synapse (Wt < 0) corresponding to a
neuron which fired recently (see Algorithm 2 for SHF, and Algorithm 3 for the dual
case of SNHF). When the graph visit reaches an input generator, it will simply
ignore any received advice (because input sequences should not be affected by the
learning process). The learning process ends when all supervisors do not detect
any more errors.

Example 2 (Turning on and off a diamond structure of neurons.) This example
shows how the ABP algorithm can be used to make a neuron emit at least once
in a spiking neural network having the diamond structure shown in Figure 9. We
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Algorithm 3 Abstract ABP: Should Not Have Fired advice pseudo-code

1: procedure Should-Not-Have-Fired(neuron)
2: if N ∈ discovered ∪ Output then
3: return
4: discovered = discovered ∪ N
5: for all M∈ Predecessors(N ) do
6: if M /∈ Input then
7: if Wt(N ,M) ≥ 0 ∧ F(M) then
8: SNHF(M)

9: if Wt(N ,M) < 0 ∧ ¬ F(M) then
10: SHF(M)

11: Decrease-Weight(N ,M)

12: return
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x y 1
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Fig. 9: A neural network with a diamond structure.

assume that N1 is fed by an input generator I that continuously emits spikes.
No neuron in the network is able to emit because all the weights of their input
synapses are equal to zero and their thresholds are higher than zero. We want
the network to learn a weight assignment so that N4 is able to emit, that is, to
produce a spike after an initial pause.

At the beginning we expect no activity from neuron N4. As soon as the initial
pause is elapsed, we require a spike but, as all weights are equal to zero, no emission
can happen. Thus a SHF advice is back-propagated to neurons N2 and N3 and
consequently to N1. The process is then repeated until all weights stabilise and
neuron N4 is able to fire. �

There are several possibilities on how to realise supervisors and the ABP algo-
rithm. We propose here two approaches. The first one is model checking oriented
and it is based on the idea that supervisors are represented by temporal logic
formulae. The second one is simulation oriented, and the implementation of the
algorithm is embedded into the timed automata modelling of the neuron.

Model-checking-oriented approach. Such a technique consists in iterating
the learning process until a desired CTL property concerning the output of the
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network is verified. The hypothesis we introduce are the following ones: (i) input
generators, standard neurons, and output consumers share a global clock which
is never reset and (ii) for each output consumer, there exists a clock measuring
the elapsed time since the last received spike. The CTL formula specifying the
expected output of the network can only contain predicates relative to the output
consumers and the global clock. At each step of the algorithm, we make an external
call to the model checker to test whether the network satisfies the formula or not.
If the formula is verified, the learning process ends; otherwise, the model checker
provides a trace as a counterexample. Such a trace is exploited to derive the proper
corrective action to be applied to each output neuron, that is, the invocation of
either the SHF procedure, or the SNHF procedure previously described (or no
procedure).

More in detail, given a timed automata network representing some spiking
neural network, we extend it with a global clock tg which is never reset and, for
each output consumer OK relative to the output neuron Nk, we add a clock sk
measuring the time elapsed since the last spike consumed by Ok. Furthermore, let
stateOk

(O) be an atomic proposition evaluating to true if the output consumer
OK is in its O location, and let evalOk

(sk) be an atomic proposition indicating
the value of the clock sk in OK . In order to make it possible to deduce the proper
corrective action, we impose the CTL formula describing the expected outcome of
the network to be composed by the conjunction of sub-formulae respecting any of
the patterns presented in the following.

Precise Firing. The output neuron Nk fires at time t:
AF ( tg = t ∧ stateOk

(O) ).
The violation of such a formula requires the invocation of the SHF procedure.

Weak Quiescence. The output neuron Nk is quiescent at time t:
AG ( tg = t =⇒ ¬stateOk

(O) ).
The SNHF procedure is called in case this formula is not satisfied.

Relaxed Firing. The output neuron Nk fires at least once within the time window
[ t1, t2 ]:
AF ( t1 ≤ tg ≤ t2 ∧ stateOk

(O) ).
The violation of such a formula leads to the invocation of the SHF procedure.

Strong Quiescence. The output neuron Nk is quiescent for the whole duration of
the time window [ t1, t2 ]:
AG ( t1 ≤ tg ≤ t2 =⇒ ¬stateOk

(O) ).
The SNHF procedure is needed in this case.

Precise Periodicity. The output neuron Nk eventually starts to periodically fire a
spike with exact period P :
AF (AG( evalOk

(sk) 6= P =⇒ ¬stateOk
(O) )

∧AG( stateOk
(O) =⇒ evalOk

(sk) = P ) ).
If Nk fires a spike while the sk clock is different than P or it does not fire a
spike while the sk clock equals P , the formula is not satisfied. In the former
(resp. latter) case, we deduce that the SNHF (resp. SHF) procedure is required.

Relaxed Periodicity. The output neuron Nk eventually begins to periodically fire
a spike with a period that may vary in [Pmin, Pmax ]:
AF (AG( evalOk

(sk) /∈ [Pmin, Pmax ] =⇒
¬stateOk

(O) ) ∧
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AF ( stateOk
(O) =⇒

Pmin ≤ evalOk
(sk) ≤ Pmax ) ).

For the corrective actions, see the previous case.

As for future work, we intend to extend this set of CTL formulae with new formulae
concerning the comparison of the output of two or more given neurons. Please
notice that the Uppaal model-checker only supports a fragment of CTL where the
use of nested path quantifiers is not allowed. Another model-checker should be
called in order to fully exploit the expressive power of CTL.

Next we give a couple of examples.

Example 3 (Diamond network.) In this example, we apply the model-checking
approach to the diamond network of Figure 9. Neuron N4 cannot emit a spike
with the initial weights and parameters, which are:

w0,1 w1,2 w1,3 w2,4 w3,4

0.1 0.1 0.1 0.1 0.1

Neuron T θ τ λ

N1 2 0.35 3 7/9
N2 2 0.35 3 7/9
N3 2 0.35 3 7/9
N4 2 0.55 3 1/2

We expect N4 to spike every 20 time units. After three cycles of the algo-
rithm (i.e., three checks of the formula and modifications of weights), we reach the
following weight assignment:

w0,1 w1,2 w1,3 w2,4 w3,4

0.3 0.3 0.3 0.3 0.3

�

Example 4 (Mutual inhibition networks.) In this example we focus on mutual inhi-
bition networks, where the constituent neurons inhibit each other neuron’s activity.
These networks belong to the set of Control Path Generators (CPGs), which are
known for their capability to produce rhythmic patterns of neural activity with-
out receiving rhythmic inputs [22]. CPGs underlie many fundamental rhythmic
activities such as digesting, breathing, and chewing. They are also crucial building
blocks for the locomotor neural circuits both in invertebrate and vertebrate ani-
mals. It has been observed that, for suitable parameter values, mutual inhibition
networks present a behaviour of the kind ”winner takes all”, that is, at a certain
time one neuron becomes (and stays) activated and the other ones are inhibited
[13].

We consider a mutual inhibition network of four neurons, as shown in Figure
10. This example, although being small, it is not trivial as it features inhibitor and
excitatory edges as well as cycles.

We look for synaptical weights such that the ”winner takes all” behaviour is
displayed. We assume each neuron to be fed by an input generator I that contin-
uously emits spikes. At the beginning, all the neurons have the same parameters
(that is, firing threshold, remaining coefficient, accumulation period, and refrac-
tory period), and the weight of excitatory (resp. inhibitory) edges is set to 1 (resp.
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I

N1

N2

N3

N4

S1

S2

S3

S4

Fig. 10: We denote neurons by Ni. The network is fed by an input generator I
and the learning process is led by the supervisors Si. Dotted (resp. continuous)
edges stand for inhibitions (resp. activations).

B R

A

C

S : bad?

S : restart!
U : reset()

S : ok?

G : handle[n]

U : SHF (n)

G : handlenot[n]
U : SNHF (n)

Fig. 11: The automata responsible of the ABP − alg

-1). We use the ABP algorithm to learn a weight assignment so that the first neu-
ron is the winner. More precisely, we find a weight assignment so that, whatever
the chosen path in the corresponding automata network is, the network stabilises
when the global clock tg equals 70. The weight of the edges from the input gen-
erator I to the four neurons equals 0.041. The weight of the edges inhibiting N1

(resp. N2, N3, and N4) is -0.719 (resp. -0.817).

�

Simulation-oriented approach. In this second approach, parameters are modi-
fied during the simulation of the network. This entails that the encoding of neurons
needs to be adjusted in order to take care of the adaptation of such parameters.
Algorithm ABP is realised by a dedicated automaton ABP −alg, that is depicted
in Figure 11, and the role of supervisor is given to output consumers, that are
modified as in Figure 12.



Spiking Neural Networks modelled as Timed Automata 27

W O C

S : x4?

S : ok!
G : s <= 20 ∧ nbS4 >= 100

U : s := 0

G : s <= 20
U : s := 0;nbS4 + +;

G : s == 21
S : bad!

U : SHF ()

S : restart?

U : reset()

s ≤ 21

Fig. 12: Example of an output consumer in the simulation approach for the dia-
mond structure

The idea is that, according to the function Evaluate, if the corresponding
output neuron misbehaves, then its output consumer sets whether it has to be
treated according to the SHF or the SNHF function. Furthermore, it signals to
the ABP − alg through the message bad! that some adjustments on the network
have to be done. Then the ABP −alg automaton takes the lead and it recursively
applies the function SHF or SNHF (this is achieved by setting a proper variable in
a vector named handle) on the predecessors of the output neuron. Once there is no
more neuron to whom the algorithm should be applied (for instance all neurons in
the current run have been visited), the simulation is restarted in the network with
the new parameters. If the output consumer does not recognise any misbehaviour,
than it sends an ok! message to the ABP − alg automaton, that in turn moves to
an accepting state A.

More formally:

Definition 9 (Output consumer for the simulation approach) An output
consumer for the simulation approach is a timed automaton

N = (L,A, X, V ar,Σ,Arcs, Inv)

with:

– L = {W,O} with O committed,
– X = {s}
– V ar = {nb, handle[N ], handlenot[N ]}
– Σ = {xi | xi is an output neuron} ∪ {bad, restart, ok},
– Arcs = {(W, s < Tmin, bad!, {SHF ()},W),

(W, , restart?, {s := 0, nb := 0},W),
(W, , xi?, ,0), (O, s > Tmax, bad!, {SNHF ()},W),
(O, , restart?, {s := 0, nb := 0},O),
(O, good pattern, ok!, {s := 0},W),
(O, good not finished, , {s := 0},W)} ;

– Inv(W) = s ≤ T , Inv(O) = true

where the functions SHF and SNHF modify the global variables handlei and
handlenoti respectively, that are used in the ABP − alg automaton.
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Notice that the precise definition (for instance the value of parameters good pattern,
good not finished, Tmin, Tmax) of the output consumer depends on the expected
behaviour of the supervisor. As an example, in Figure 12, that depicts the output
consumer for the diamond network, we expect the output neuron to emit a spike
within each window of 20 seconds for at least 100 times.

More in detail, the cycle from W to W is taken whenever a spike has not been
sent before T time units. Thus the automaton sends to the ABP −alg automaton
a bad message (signalling that an adjustment to the network should take place),
and the update part handles the fact that we should perform the SHF algorithm
(a variable corresponding to the concerned output neuron is set to true in the
array handle). From the same state, whenever the message restart is received,
all the variables of the automaton are reset to 0. When a spike from the output
neuron x is received, the output consumer moves to the state O. In this state,
if the spike was received too late (and similarly as in the previous case), a bad
message is sent to the ABP − alg. Otherwise, if everything was received on time
and if the expected pattern has been completely verified, then an ok message is
sent and the automaton moves to the initial state.

In the following, we give the formal definition of the ABP − alg automaton:

Definition 10 (ABP − alg automaton)

– L = {A,B,R} with R committed,
– X = ∅
– V ar = {handle[N ], handlenot[N ]}
– Σ = {bad, ok, restart},
– Arcs = {(B, , ok?, ,A), (B, , bad?, ,R)

(R, handle[n], , SHF (n),R)
(R, handlenot[n], , SNHF (n),R)
(R, finished?(), restart!, reset(),B)} ;

– Inv(A) = true, Inv(B) = true, Inv(R) = true.

The arc from the state B to the accepting state A is taken whenever the Output
consumer has finished the analysis of its pattern. Conversely, the arc from the state
B to R is adopted when one of the output neurons has misbehaved (signalled by
the reception of the message bad). In the committed state R, the parameters of
the neural network are changed accordingly to the Algorithms 2 and 2. The arrays
handle (respectively handlenot) have the information on the neurons to which
the Algorithm for SHF (respectively SNHF) has to be applied. Once the cycle
of updates finishes (checked through the function finished?()), the simulation is
restarted by broadcasting a message restart to all the neurons and the output
consumer.

Last, we give the definition of the changes induced in the standard neuron. As
the update of the neuron parameters is done at the level of ABP − alg, the only
change concerns the treatment of the signal restart. To this aim an arc handling
the reception of the message is added to the states W and A.

Definition 11 ( Standard Neuron for the simulation approach) Given a
neuron v = (θ, τ, λ, p, y) with m input synapses, its encoding into timed automata
is N = (L,A, X, V ar,Σ,Arcs, Inv) with:

– L = {A,W,D} with D committed,
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Fig. 13: Example of a neuron in the simulation approach for the diamond network

A

DW

t ≤ T

Ct ≤ τ

G : t == T
U : p := a+ bλpc

G : p ≥ θ
S : y!

G : t == τ
U : Reset()

S : x?
U : a := a+ wi

G : p < θ
U : a := 0

S : restart?
U : Reset()

S : restart?
U : Reset()

– X = {t}
– V ar = {p, a}
– Σ = {xi | i ∈ [1..m]} ∪ {y},
– Arcs = {(A, t ≤ T, xi?, {a := a + wi},A) | i ∈ [1..m]} ∪ {(A, t = T, , {p :=
a+ bλpc},D),
(D, p < θ, , {a := 0},A), (D, p ≥ θ, y!, ,W),
(W, t = τ, , {a := 0, t := 0, p := 0},A),
(A, , restart?, {a” = 0, t := 0, p := 0}A),
(W, , restart?, {a” = 0, t := 0, p := 0}A)} ;

– Inv(A) = t ≤ T, Inv(W) = t ≤ τ, Inv(D) = true.

Notice that the algorithm can be refined by setting some priorities on the
neurons. For instance, if any additional information is known in advance on the
behaviour of a specific neuron, its actions can be constrained and the corrective
operations could be ignored. In some cases, the type of synapse (excitatory or
inhibitory) can also be set, disallowing the possibility of changing its nature (e.g.,
from inhibitory to excitatory).

Example 5 (Diamond network) In this example, we apply the simulation-oriented
approach on the diamond network on Figure 9. We take the same parameters and
aim as in Example 3.

After the simulation, we obtain the following resulting weights :

w0,1 w1,2 w1,3 w2,4 w3,4

0.2 0.3 0.3 0.3 0.3

We obtain these weights when the global clock equals 42 and after only 2 sends
of the message bad (meaning that the neuronal network is stabilising in only two
applications of the ABP algorithm). Note that the resulting weights for the model-
checking-oriented approach, seen in the precedent example, are different. Indeed,
different sets of weights can give the same behaviour.
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I

N1

N2

N3

S1

S2

S3

Fig. 14: A second neural network with ”winner takes all” behaviour

�

Example 6 (Mutual inhibition network ) This example shows the weight estimation
for the network of Figure 14 with the simulation approach. As before, we require
a “winner takes all” behaviour where N1 is the winner. We expect that N1 spikes
every 10 time units at most, and the neurons N2 and N3 do not spike. We take a
network with the following initial parameters:

Neuron T θ τ λ

N1 2 0.75 3 1/2
N2 2 0.75 3 1/2
N3 2 0.75 3 1/2

wx,y I N1 N2 N3

I 0 0.1 0.1 0.1

N1 0 0 -0.1 -0.1

N2 0 -0.1 0 -0.1

N3 0 0.1 0.1 0

And we obtain the following weights in 5 executions of the ABP algorithm:

wx,y I N1 N2 N3

I 0 0.6 0.1 0.1

N1 0 0 -0.1 -0.1

N2 0 -0.1 0 -0.1

N3 0 0.6 0.1 0

�

Notice that, as the application of the ABP algorithm in the simulation approach is
non-deterministic, the parameters we found may depend on the precise execution
and several solutions are therefore possible. The complete encoding of the examples
shown here can be found at [12].
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6 Related Work

To the best of our knowledge, there are few attempts of giving formal models for
LI&F. Apart from the already discussed approach of [13], where the authors model
and verify LI&F networks thanks to the synchronous language Lustre, the closest
related work we are aware of is [3]. In this work, the authors propose a mapping
of spiking neural P systems into timed automata. The modelling is substantially
different from ours. They consider neurons as static objects and the dynamics
is given in terms of evolution rules while for us the dynamics is intrinsic to the
modelling of the neuron. This, for instance, entails that inhibitions are not just
negative weights as in our case, but are represented as forgetting rules. On top of
this, the notion of time is also different: while they consider durations in terms of
number of applied rules, we have an explicit notion of duration given in terms of
accumulation and refractory period.

As far as our parameter learning approach is concerned, we borrow inspira-
tion from the SpikeProp rule [5], a variant of the well known back-propagation
algorithm [32] used for supervised learning in second generation learning. The
SpikeProp rule deals with multi-layered cycle-free spiking neural networks and
aims at training networks to produce a given output sequence for each class of
input sequences. The main difference with respect to our approach is that we are
considering here a discrete model and our networks are not multi-layered. We also
rest on Hebb’s learning rule [19] and its time-dependent generalisation rule, the
spike timing dependent plasticity (STDP) rule [33], which aims at adjusting the
synaptical weights of a network according to the time occurrences of input and
output spikes of neurons. It acts locally, with respect to each neuron, i.e., no prior
assumption on the network topology is required in order to compute the weight
variations for some neuron input synapses. Differently from the STDP, our ap-
proach takes into account not only recent spikes but also some external feedback
(advices) in order to determine which weights should be modified and whether they
must increase or decrease. Moreover, we do not prevent excitatory synapses from
becoming inhibitory (or vice versa), which is usually a constraint for STDP im-
plementations. A general overview on spiking neural network learning approaches
and open problems in this context can be found in [18].

7 Conclusion

In this paper we formalised the LI&F model of spiking neural networks via timed
automata networks. We have a complete implementation of the proposed model
and examples via the tool Uppaal, that can be found at the pages [6] and [12]. In
our modeling framework, information processing is based on the precise timing of
spike emissions rather than the average numbers of spikes in a given time window.
Timed automata turned out to be very suited to model spiking neural networks,
allowing us to take into account time-related aspects, such as the exact spike
occurrence times and the refractory period, a lapse of time immediately following
each spike emission, when the neuron emission capability is reduced.

In this work, we exploited model checking to automatically validate our automaton-
based mapping of the LI&F model according to a number of behaviours (i.e., typ-
ical responses to an input pattern) the LI&F model should be able to reproduce,
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namely tonic spiking, excitability, and integrator. Formal methods of computer
science turned out to be an effective tool to validate our modelling approach. As
for future work concerning the modeling aspects, we plan to provide analogous
formalisations for more complex spiking neuron models, such as the theta-neuron
model [14] or the Izhikevich one [23]. We also intend to extend our model to include
propagation delays, which are considered important within the scope of spiking
neural networks [29]. Our extension is intended to add suitable states and clocks
to model synapses. We also plan to perform a robustness analysis of the obtained
model, in order to detect which neuron parameters influence most the verification
of some wished temporal properties.

As key contribution, we proposed a novel technique to infer the synaptical
weights of spiking neural networks. At this aim, we adapted machine learning
techniques to bio-inspired models, which makes our work original and comple-
mentary with respect to the main international projects aiming at understanding
the human brain, such as the Human Brain Project [9], which mainly relies on
large-scale simulations.

For our learning approach, we have focussed on a simplified type of supervi-
sors: each supervisor describes the output of a single neuron in isolation from the
other ones. Nonetheless, notice that the back-propagation algorithm is still valid
for more complex scenarios that specify and compare the behaviour of groups of
neurons. As for future work, we intend to formalise more sophisticated supervi-
sors, allowing to compare the output of several neurons. Moreover, to refine our
learning algorithm, we could exploit results coming from the gene regulatory net-
work domain, where a link between the topology of the network and its dynamical
behaviour is established [31].

As a last step, we plan to generalise our technique in order to be able to infer
not only synaptical weights but also other parameters, such as the leak factor or
the firing threshold.

Acknowledgements We are grateful to Giovanni Ciatto for his preliminary implementation
work and for his enthusiasm in collaborating with us.
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