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Competition is a central part of the evolutionary process, and silicification is no exception:

between biomineralized and non-biomineralized organisms, between siliceous and

non-siliceous biomineralizing organisms, and between different silicifying groups. Here

we discuss evolutionary competition at various scales, and how this has affected

biogeochemical cycles of silicon, carbon, and other nutrients. Across geological

time we examine how fossils, sediments, and isotopic geochemistry can provide

evidence for the emergence and expansion of silica biomineralization in the ocean,

and competition between silicifying organisms for silicic acid. Metagenomic data from

marine environments can be used to illustrate evolutionary competition between groups

of silicifying and non-silicifying marine organisms. Modern ecosystems also provide

examples of arms races between silicifiers as predators and prey, and how silicification

can be used to provide a competitive advantage for obtaining resources. Through

studying the molecular biology of silicifying and non-silicifying species we can relate how

they have responded to the competitive interactions that are observed, and how solutions

have evolved through convergent evolutionary dynamics.

Keywords: diatoms, silicifiers, radiolarians, silicic acid transporters, silicification

INTRODUCTION

Biomineralization refers to the precipitation of minerals by living organisms (Simkiss and
Wilbur, 1989). It may occur as a by-product of the normal metabolism of the organism under
indirect genetic control—related to the cellular processes that create the conditions for incidental
biomineral formation—and with no pre-concentration of specific mineral ions. Alternatively,
the composition of the biominerals formed can be entirely dependent on the environmental
conditions, for example, the formation of iron oxide by brown algae (Lee and Kugrens, 1989).
By contrast, biologically controlled biomineralization requires direct genetic control, generates
characteristically patterned structures, and involves selective uptake and pre-concentration of
mineral ions.
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In nature, we observe a wide array of biominerals (see
Figure 1), ranging from iron oxide to strontium sulfate (Raven
and Knoll, 2010), with calcareous biominerals being particularly
notable (Knoll, 2003; Knoll and Kotrc, 2015). However, the most
taxonomically widespread biomineral is silica (SiO2·nH2O),
being present in all eukaryotic supergroups (Marron et al.,
2016b). Notwithstanding, the degree of silicification can vary
even between closely related taxa, from being found in composite
structures with other biominerals (e.g., limpet teeth; Sone
et al., 2007), to forming minor structures (e.g., ciliate granules;
Foissner et al., 2009) or being a major structural constituent
of the organism (Preisig, 1994). The most extreme degree
of silicification is evident in the diatoms, where almost all
species have an obligate requirement for silicon to complete
cell wall formation and cell division (Darley and Volcani, 1969;
Martin-Jézéquel et al., 2000). Biogeochemically and ecologically,
diatoms are believed to be the most important silicifiers in
modern marine ecosystems, with radiolarians (polycystine and
phaeodarian rhizarians), silicoflagellates (dictyochophyte and
chrysophyte stramenopiles), and sponges with prominent roles
as well. In contrast, the major silicifiers in terrestrial ecosystems
are the land plants (embryophytes), with other silicifying groups
(e.g., testate amoebae) having a minor role.

Broadly, biomineralized structures are believed to have
evolved and diversified where the energetic cost of biomineral
production is less than the expense of producing an equivalent
organic structure (Mann, 2001; Raven and Waite, 2004; Finkel
and Kotrc, 2010). Raven (1983) calculated that the energetic
costs of silicic acid uptake and silica structure formation is
substantially more efficient than forming the same volume
of an organic structure (∼20x more for lignin and 10x for
polysaccharides like cellulose). Based on the structural model of
biogenic silica of Hecky et al. (1973), Lobel et al. (1996) identified
by biochemical modeling a low-energy reaction pathway for
nucleation and growth of silica. The combination of organic and
inorganic components within biomineralized structures often
results in enhanced properties compared to exclusively organic or
inorganic materials.With respect to biogenic silica, this can result
in the production of much stronger structures, such as siliceous
diatom frustules having the highest strength per unit density of
any known biological material (Hamm et al., 2003; Aitken et al.,
2016), or sponge spicules being many times more flexible than
an equivalent structure made of pure silica (Ehrlich et al., 2008;
Shimizu et al., 2015). As a result, biogenic silica structures are
utilized for support (Weaver et al., 2007), feeding (Nesbit and
Roer, 2016), predation defense (Pondaven et al., 2007; Friedrichs
et al., 2013; Hartley et al., 2016) and environmental protection as
a component of cyst walls (Preisig, 1994). Biogenic silica also has
useful optical properties for light transmission and modulation
in organisms as diverse as plants (Schaller et al., 2013), diatoms
(Fuhrmann et al., 2004; Yamanaka et al., 2008; Romann et al.,
2015), sponges (Sundar et al., 2003), and molluscs (Dougherty
et al., 2014). There is also evidence that silicification is used as
a detoxification response in snails (Desouky et al., 2002) and
plants (Neumann and zur Nieden, 2001), sequestering harmful
substances such as aluminum and zinc within the biogenic silica
to ensure the correct functioning of cellular metabolism. Diatom

biosilica has even been suggested to play a role as a pH buffer
for the enzymatic activity of carbonic anhydrase, aiding the
acquisition of inorganic carbon for photosynthesis (Milligan and
Morel, 2002).

The myriad of functions and benefits of biomineralization
raises an important question: why do some organisms
biomineralize while others do not? Furthermore, why is
there such a diversity of biominerals besides silicon, when
silicon is so abundant, comprising 28% of the Earth’s crust?
The answer to these questions lies in the evolutionary interplay
between biomineralization and geochemistry, and in the
competitive interactions that have arisen from these dynamics.
Fundamentally whether an organism produces silica or not
involves evolutionary trade-offs and competition between
silicifiers themselves, and with non-silicifying organisms (both
those which utilize other biominerals, and non-mineralizing
groups). Mathematical models and controlled experiments of
resource competition in phytoplankton have demonstrated
the rise to dominance of different algal species based on
nutrient backgrounds in defined media. These have been part of
fundamental studies in ecology (Tilman, 1977; Sommer, 1994).
However, the vast diversity of organisms that thrive in a complex
array of biotic and abiotic interactions in oceanic ecosystems
are a challenge to such minimal models and experimental
designs, whose parameterization and possible combinations,
respectively, limit the interpretations that can be built on them.
Here we broadly extend our attention into other types of data
from which competition can be inferred: the geological record,
the distribution of species in modern marine ecosystems, and
phenomena at the cellular and molecular levels (summarized in
Table 1).

EVOLUTIONARY COMPETITION ACROSS
GEOLOGICAL TIME

Competition between organisms is usually driven by a limited
supply of a commonly used resource. For organisms that are
biomineralizers of silica, orthosilicic acid—which we will refer to
as silicic acid throughout, to distinguish from cellular silicon—
is one such important limiting resource (Tilman et al., 1982).
Silicic acid is released by the dissolution of biogenic silica and
silicateminerals by biological and chemical weathering processes,
and by hydrothermal activity, up to a solubility limit of 1.2–
2.2mM in water depending on the ambient physicochemical
properties (Gunnarsson and Arnórsson, 2000). The drawdown
of oceanic silicic acid through geological time has been attributed
to biological utilization (Siever, 1991) and may have resulted in
skeletal changes in marine silicifiers (Maldonado et al., 1999;
Racki and Cordey, 2000; Lazarus et al., 2009; Finkel and Kotrc,
2010; Finkel et al., 2010; van Tol et al., 2012). To what extent
these changes are a result of competition between silicifiers is still
matter of debate.

The evolution of organisms that transport silicon into their
cells has a long history (Marron et al., 2016b), likely going
back to the evolution of cyanobacteria in the Archean (Dvorák
et al., 2014). As silicic acid is a small molecule, and is mostly
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FIGURE 1 | The diversity of biomineralization across the eukaryotes. The phylogeny is based on that of Adl et al. (2012) with major eukaryotic supergroups named in

boxes. Letters next to taxon names denote the presence of biomineralization, with circled letters indicating prominent and widespread use of that biomineral. S, silica;

C, calcium carbonate; P, calcium phosphate; I, iron (magnetite/goethite); X, calcium oxalate; SO4, sulfates (calcium/barium/strontium), ? denotes uncertainty in report.

Based on Ensikat et al. (2016), Gal et al. (2012), Knoll (2003), Knoll and Kotrc (2015), Marron et al. (2016b), Raven and Knoll (2010), Weich et al. (1989), and

references therein.

present in an undissociated form (Si(OH)4) under seawater pH
conditions (Del Amo and Brzezinski, 1999), it is possible for
silicic acid to diffuse across the cell membrane (Raven, 1983;
Thamatrakoln and Hildebrand, 2008). In the high silicic acid
Precambrian ocean, diffusion from the surrounding Si-saturated
seawater could result in silica precipitating freely within the
cytoplasm, interfering with cellular processes and disabling the
functioning of the cell. Consequently, silicon transporters are
proposed to have arisen initially to prevent intracellular toxicity
by removing it from the cytoplasm (Marron et al., 2016b).
Recently, cyanobacteria microfossils that contain nanocrystals of
greenalite with the approximate composition of Si2O5(OH)4Fe

2+

(Lepot et al., 2017) have been found in the 1.88 Ga Gunflint
Iron Formation, suggesting Fe biomineralization, whichmay also
have protected oxygenic photosynthesisers against Fe2+ toxicity
during the Paleoproterozoic.

It is inferred from the proliferation of biomineralized fossils
in the geological record at the end of the Proterozoic and into the
early Paleozoic that the ocean witnessed large reductions in silicic
acid (Conley et al., 2017). The appearance of biomineralization
(Kouchinsky et al., 2011; Knoll and Kotrc, 2015) likely led to
evolutionary “arms races” with organisms using biomineralized
structures to reduce predation rates, resulting in competition for
an important shared resource (Smith and Szathmáry, 1995). This
arms race produced a proliferation of non-silicic acid users and
some highly efficient silicic acid users, the latter outcompeting
inefficient users leading to their extinction.

There is widespread evidence in the geological record for
such a decline in silicic acid and coincidental macroevolutionary
changes in silicifying groups. For example, changes in chert

precipitation occurred due to the increased abundance of
radiolarians in the lower to early Middle Ordovician, which may
have reduced the abundance of sponges overall and forced the
relocation of remaining sponge species from shallow to deep-
water environments as surface waters became depleted in silicic
acid (Kidder and Tomescu, 2016). In addition to the geological
record, the timing of independent losses of silicon transporters
(Marron et al., 2016b) further support the hypothesis that
significant declines in silicic acid concentrations during the
Paleozoic (Conley et al., 2017) led to evolutionary changes in
the biochemical pathways of silicification and efficiency of silicon
uptake.

However, it was the evolution of diatoms with their superior
ability to utilize Si, due to their unique complement of Silicon
Transporter (SIT) genes (Hildebrand et al., 1997, 1998), that
led to the reduction of oceanic silicic acid concentrations to
the low levels observed in the global ocean today (Tréguer and
De La Rocha, 2013). Diatoms, with their obligate requirement
for Si to complete their cell cycle, are strong competitors for
silicic acid. This, combined with diatom features not related to
Si (e.g., nutrient acquisition and storage, light harvesting, bloom
formation), must have produced new competitive interactions
that were previously unseen in the Paleozoic oceans (Knoll and
Follows, 2016). Recent studies have robustly demonstrated the
presence of very low oceanic silicic acid concentrations since at
least 60Ma, most likely as a result of the drawdown of silicic acid
by diatom biomineralization (Fontorbe et al., 2016, 2017), which
is tens of millions of years before the time period envisioned by
Siever (1991) and others. Conley et al. (2017) have hypothesized
that if such a global decrease in oceanic silicic acid concentrations
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TABLE 1 | Examples of competitive interactions involving the use of silica, as seen from geology, ecology, and cellular/molecular biology.

Level Competitors Description Reference

Geological times Radiolarians and sponges Reduction of abundance and relocation of

sponges in the early Middle Ordovican

Kidder and Tomescu, 2016

Rise of diatoms: Diatoms

and other silicifiers

Reduction of oceanic silicic acid in the

Cenozoic (or even Mesozoic) era

Sims et al., 2006; Fontorbe et al., 2016, 2017

Diatoms and sponges Post-Mesozoic decline of certain sponge

spicule morphologies

Maldonado et al., 1999

Diatoms and radiolarians;

Diatoms and silicoflagellates

Silicificaton and shell-thickness/spine

morphology, decline of radiolarians in the low

latitudes throughout the Cenozoic (reason still

debated)

Lazarus et al., 2009; van Tol et al., 2012; Cermeño et al., 2015

Ecology in modern

oceans

Diatoms and polycystines Main users of silica de Vargas et al., 2015

Within silicifiers Resistance against predators Lebour, 1922; Marshall and Orr, 1955; Campbell et al., 2009;

van Tol et al., 2012

Silicifiers and others Segregative pattern Lima-Mendez et al., 2015

Cellular and

molecular biology

Diatoms Different morphologies that affect sinking,

predation, light capture, viral resistance and

nutrient uptake

Hamm et al., 2003; Fuhrmann et al., 2004; Raven and Waite,

2004; Losic et al., 2006; Sims et al., 2006; Pondaven et al.,

2007; Yamanaka et al., 2008; Finkel and Kotrc, 2010; Nakov

et al., 2014; Romann et al., 2015

Diatoms and other silicifiers Independent inventions of SITs in other

silicifiers; SIT diversification in diatoms

Thamatrakoln et al., 2006; Durkin et al., 2016; Marron et al.,

2016b

Secondary loss of biosilicification in other

silicifiers

Maldonado, 2009; Kozhemyako et al., 2010; Lahr et al., 2013,

2015; Zlatogursky, 2016

Facultative biosilicification Sandgren et al., 1996; Kessenich et al., 2014; Yamada et al.,

2014; Leadbeater, 2015; Morueta-Holme et al., 2016

occurred, it must predate the Cenozoic and perhaps began with
the appearance of silicifying diatoms in the Mesozoic (Sims et al.,
2006).

Both the geological record and molecular phylogenetics
concur that, whilst the majority of the main morphological
groups of diatoms had arisen by the end of the Cretaceous (Kotrc
and Knoll, 2015), there was a rapid expansion and diversification
of diatoms in the Cenozoic (Siever, 1991; Figure 2). The
most recent compilations have shown two short-lived major
abundance peaks near the Eocene–Oligocene boundary and in
the late Oligocene, with a shift in diatom abundance in sediments
during the middle Miocene to globally higher values which
have largely persisted to the modern day (Lazarus et al., 2014;
Renaudie, 2016). There remains a lively debate in the scientific
literature surrounding the drivers of the diatom expansion,
mostly relating to shifts in the supply of silicic acid to the ocean
due to changes in climate and weathering regimes. A correlation
between a recent diatom diversity compilation and paleoclimate
archives (oxygen and carbon isotopes from carbonates) indicates
that there could be a direct link between temperature and
diatom evolution throughout the Neogene (Lazarus et al., 2014).
Climatically induced changes in oceanic circulation and mixing
due to the opening of marine gateways may have altered nutrient
availability in the euphotic zone and driven macroevolutionary
shifts in the size of marine pelagic diatoms through the Cenozoic
(Finkel et al., 2005). For example, geochemical archives point
toward an increase in silicic acid supply to the surface Southern
Ocean at the Eocene-Oligocene boundary, likely due to the

opening of the Drake Passage and Tasman Seaway and the
formation of a “proto circum-Antarctic current,” and coinciding
with the large peak in diatom diversification (Egan et al., 2013).
The rapid rise of diatoms in the Cenozoic has also been attributed
to the impact of orogeny on weathering (Misra and Froelich,
2012) with periods of enhanced continental weathering fluxes
and increased silicic acid input to the oceans (Cermeño et al.,
2015). Correlation between diatom abundance peaks and shifts in
seawater strontium and osmium isotopic composition also hint
at a strong control by silicate weathering on diatom deposition
(Finkel et al., 2005). However, it is a major challenge to tease apart
the impacts of oceanic circulation and weathering on diatom
diversification and abundance due to the inherent coincidence
in timing of the major orogenic episodes and shifts in oceanic
circulation throughout the Cenozoic (Benoiston et al., 2017).

The expansion of diatoms, with their strong affinity for silicic
acid, is likely to have led to competition with other silificiers,
especially in intermediate and shallow depths where silicic acid
is present only in low—and potentially limiting—concentrations.
Here the fossil record provides an archive for examining possible
signs of competition in the geological past. The post-Mesozoic
decline of certain sponge spicule morphologies, indicative of high
silicic acid conditions in specimens from shallower waters, has
been interpreted as showing competitive exclusion of sponges
by diatoms (Maldonado et al., 1999). However, the exact
timing of the decline in these spicules from shallower waters
relative to diatom-driven changes in silicic acid is not well-
constrained. If oceanic silicic acid declined earlier than the
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FIGURE 2 | Cenozoic records of silicifying organisms and environmental drivers. (A) An approximate range of silicic acid fluxes relative to modern fluxes,

encompassing global flux estimates modeled using the Cenozoic lithium isotope record of Misra and Froelich (2012) and Southern Ocean fluxes modeled using marine

clay mineralogy. Note that a number of key assumptions are made to model these fluxes: the fluxes were modeled assuming a change in the ratio of suspended clays

to silicic acid through time in order to account for a potential increase in incongruent silicate weathering, and a two-fold increase in silicic acid content of rivers over the

last 50 My. (B) Diatom diversity curves calculated using the unweighted lists subsampling method of Cermeño et al. (2015) (lime green line) and the consensus

diversity curve of Lazarus et al. (2014) (dark green line line). (C) Calculated silicification of radiolarians through the Cenozoic, from Lazarus et al. (2009).

Cretaceous-Paleogene boundary (Conley et al., 2017), then the
exclusion of sponges from shallower waters either occurred due
to competition at an earlier stage, or was driven by an alternative
factor.

Changes in the size of radiolarians in the fossil record also
provide evidence of macroevolution likely driven by competition.
The silicification and shell-thickness of radiolarians in the low
latitudes decline throughout the Cenozoic, whilst the higher
latitude specimens remain invariant (Lazarus et al., 2009).
This latitudinal pattern of change suggests that radiolarians
increasingly struggled to obtain sufficient silicic acid in the lower
latitude, oligotrophic waters, which were increasingly depleted
of silicic acid due to a combination of diatom drawdown and
shifts in oceanic circulation. However, despite the coincidence
in timing, the decline in low-latitude radiolarian size does not
necessarily point to competition as a driver of macroevolution.
Mathematical models of competition between radiolarians and
diatoms have been used to investigate this problem further. These
experiments show that the reduction in radiolarian shell size is
not sufficient to explain diatom diversification changes, which
were more likely driven by an increase in resources and were
linked inherently to their geographical distribution (Cermeño
et al., 2015; Figure 2). However, these models are limited by
the availability of reliable data on silicic acid inputs and fossil
abundance records.

A combination of competitive interactions for silicic acid
with other silicifiers and the effect of predator-prey arms

races may govern macroevolutionary trends in silicoflagellate
morphology (van Tol et al., 2012). Across the Cenozoic,
silicoflagellate skeletons show two diverging trends: spineless
species become smaller, whereas spiny species display decreased
levels of silicification but increased numbers and length of
spines. It has been interpreted that grazing pressure necessitated
a siliceous skeleton for protection, as other phytoplankton
(e.g., coccolithophores) also possessed biomineralized defenses.
However, competition from diatoms reduced silicic acid
availability and therefore increased the cost of producing such a
skeleton. In response silicoflagellates may have evolved either to
maintain the degree of silicification but became smaller overall,
or to utilize spines as a method of retaining a large size and
defensive structure but at a lower silicon requirement. These
evolutionary trade-offs saw the extinction of large, spineless
silicoflagellates as ecosystems changed through geological time to
feature both high grazing pressure and low silicon availability.

One additional route for examining competition as a driver of
silicifier macroevolution is the timing and extent of biochemical
changes in silicon uptake pathways. The evolution of biochemical
pathways for silicification have been investigated by resolving
the different gene families that express, for example, silicon
transporters in different silicifiers (Marron et al., 2016b). The
affinity for silicic acid and the uptake efficiency of the different
transporter families could then be assessed to determine the
potential for competitive interaction between different silicifying
groups, between and within major taxonomic groupings. Isotope
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geochemistry could also be used as an additional tool for
investigating this problem. Silicon transport into and within the
cell is likely the basis for the fractionation of stable Si isotopes.
All silicifiers investigated to date fractionate Si isotopes relative
to the seawater in which they grow, but sponges have a more
variable and potentially greater isotopic fractionation than either
diatoms or radiolarians (de la Rocha et al., 1997; Hendry and
Robinson, 2012; Hendry et al., 2014; Abelmann et al., 2015). Such
isotopic fractionationmay be related to the biochemical pathways
involved in Si metabolism, and may reflect the organism’s affinity
for silicic acid and efficiency of uptake and utilization. As such,
Si isotopes may be a useful tool for examining the evolution of
silicification.

EVOLUTIONARY COMPETITION IN
MODERN ECOSYSTEMS

There are numerous examples of silicified structures being used
by organisms to gain a competitive advantage in contemporary
ecosystems. The siliceous lorica of choanoflagellates show a range
of morphologies (Leadbeater et al., 2009), differing in size and
density of siliceous components. This has been connected to
niche partitioning, from large open structures that are required
to maintain a planktonic lifestyle through the water column, to
densely packed lorica of biofilm-inhabiting species (Leadbeater,
2015). The diatom Phaeodactylum tricornutum also displays
evidence for optimizing its degree of silicification for deeper and
colder waters (Zhao et al., 2014). Some wetland plants, notably
rice, employ silica as a supplement to cellulose or lignin for
structural strengthening, which allows taller growth and aids in
competition for light (Cooke and Leishman, 2011).

The optical properties of silica can also be employed to
aid in the absorption of light by photosynthetic organisms.
Diatom frustules have been proposed to modulate solar
wavelengths and direction for optimum absorption of light for
photosynthesis (Yamanaka et al., 2008; Romann et al., 2015),
while amorphous silica (in combination with microsporine-
like amino acids) can help protect against harmful ultraviolet
radiation (Ingalls et al., 2010). These adaptations can establish
competitive interactions with other photosynthetic organisms
that use different biominerals (e.g., calcium carbonate in
coccolithophores Taylor et al., 2017, calcium oxalate in plants
He et al., 2014), or organic components (e.g., flavonoids, Schaller
et al., 2013) for similar photoprotective purposes.

Analysis of the distribution of silicifiers in the contemporary
ocean at large spatial scale can bring additional insights about
the evolution of competition between different groups. During
the course of the Tara Oceans expedition (Karsenti et al.,
2011; Bork et al., 2015), a worldwide characterization of pelagic
plankton ecosystems was performed using DNA metabarcoding
and microscopy correlated with key environmental parameters
in a way that would, beyond acquisition of data, create a well-
structured dataset to address broad ecological and evolutionary
questions. Using a non-destructive in situ imaging system to
visualize organisms directly in the water column (Underwater
Vision Profiler, UVP), Biard et al. (2016) focused on the

abundance of giant Rhizaria in a variety of pelagic ecosystems
in the upper 500 meters of the water column. Rhizaria is
a supergroup of unicellular eukaryotes composed of three
subphyla: Radiolaria, Cercozoa, and Foraminifera, some of
which are silicified (Moreira et al., 2007; Figure 1). Radiolaria
are divided into two major lineages: the siliceous skeleton
producing Polycystinea (including the two orders Nassellaria and
Spumellaria) and non-silicified Spasmaria (including Acantharia
and Taxopodida; Krabberød et al., 2011). Phaeodaria, an
asymbiotic rhizarian taxon with widespread biosilicification and
extensively silicified lineages, was initially classified in Radiolaria
and is now placed among the Cercozoa as revealed by molecular
phylogeny (Polet et al., 2004). Phaeodaria was themost important
contributor to rhizarian biomass at all latitudes in the 100–500m
depth layer, displaying an even distribution worldwide. On the
contrary, photosymbiotic non-silicified Collodaria dominated
the top 100m of the water column at low latitudes, showing that
these orders of Rhizaria display different ecological preferences
and vertical stratification.

Additionally, the use of the 18S ribosomal DNA molecular
marker to chart microbial diversity by metabarcoding (Taberlet
et al., 2012) enabled a high-resolution taxonomic description of
planktonic communities across several depths and various size
fractions with reasonable accuracy (de Vargas et al., 2015), and
was found to be a good proxy for cell number, at least within
the diatoms (Malviya et al., 2016). Analysis of the Tara Oceans
metabarcoding data revealed that diatom diversity was high in
the open ocean, contrary to what was generally considered, and
also confirmed diatom prevalence in regions of high productivity
and at high latitudes. Ocean circulation choke points such as
Cape Agulhas and the Drake Passage were found to be important
in constraining diatom distribution and diversity (Malviya et al.,
2016).

Beyond individual studies of major silicifying groups,
comparative analysis can be performed using the Tara Oceans
data set (de Vargas et al., 2015). Functional annotation of the
silicifying organisms (based on Marron et al., 2016b), followed
by mapping of their distribution across the global ocean,
reveals major patterns (Figure 3). The silicifier community
is largely size-delineated: the smallest size fraction (0.8–5
micron) contains a large diversity of silicifying organisms in
nearly constant proportions. Dictyochophyceae, Polycystinea,
and Chrysophyceae are the major taxonomic groups present
in this size fraction, together with Bacillariophyta (diatoms) at
some locations. Although less abundant, the constant presence
of Centrohelida and Choanoflagellates suggests that ecological
niche enables the coexistence of several taxonomic groups.

A larger size fraction of micro-plankton (20–180 microns)
displays a very different trend. Diversity within the silicifier
community drops, and is composed essentially of only
Bacillariophyta and Polycystinea, so much so that both
taxonomic groups represent over 99% percent of the micro-
planktonic silicifier community across the vast majority of the
global ocean. Diatoms and polycystines occur in highly variable
proportions, where diatoms dominate the cold high-latitude
regions. Co-existence between both groups is rare, whereby
the presence of one of the organisms appears to exclude the
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FIGURE 3 | Distribution of silicifiers in the sunlit ocean based on metabarcoding abundance data from the Tara Oceans expedition. (Top) Silicifiers in surface waters of

the 20–180 micron size fraction—divide radius by 20 for log transformed relative abundance. (Middle) Silicifiers in surface waters of the 0.8–5 micron size

fraction—divide radius by 30 for log transformed relative abundance. The size of the bubble corresponds to the importance of silicifiers with respect to the whole

planktonic community. (Bottom) Composition of the silicifiers’ community in surface waters at each sampling station and in situ silicic acid concentrations (in µM)

obtained either from discrete Tara Oceans samples or from the World Ocean Atlas (woa13). Ocean provinces are indicated.
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other, which may also reflect special adaptations to nutritional
environments as opposed as eutrophic, oligotrophic, or HNLC
areas.

Diatom expansion 65Ma ago has been attributed to their
superior competitive ability for silicic acid uptake relative to
radiolarians, the latter experiencing a reduction in weight of
their tests (Harper and Knoll, 1975). It is therefore expected
that at high silicic acid concentrations, Radiolaria, with their
inferior silicic acid uptake ability should have a better chance to
thrive alongside diatoms. Yet, in the modern ocean, regions with
high silicic acid concentrations (Southern Ocean, Tara stations
TARA_084 to TARA_089) are still strongly dominated by large
populations of diatoms (Platt et al., 2009) in which they can
represent over three quarters of the whole planktonic community
(Figure 3), according to the metabarcoding survey. This hints
to the possibility that biotic or abiotic factors other than silicic
uptake are responsible for diatom dominance.

The relative abundance of the silica biomineralizing groups
with respect to other micro-plankton in the Tara Oceans data
(Figure 4) is largely dependent on nutrient availability (silicic
acid, nitrate, phosphate), in particular in the Southern Ocean, the
Indian Ocean and around the Marquesas Islands in the Pacific
Ocean. However, silicic acid concentrations do not appear to be
concomitant in specific stations in the Mediterranean Sea or in
the North Atlantic Ocean where nutrient concentrations are low
and yet silicifiers are highly abundant, perhaps reflecting a time
lag between silicic acid availability and diatom uptake and bloom.
Moreover, focused studies in the Mediterranean ecosystems do
not report diatom dominance, with the exception of the spring
bloom in the North West Mediterranean and Adriatic Sea. Most
of the Mediterranean Sea is oligotrophic with diatoms restricted
to more or less discrete deep layers at the boundary with the
Levantine Intermediate Water (the saltiest water mass that forms
in the eastern Mediterranean Sea), suggesting a strong bottom-
up control by nutrients, including silicic acid (Leblanc et al., 2003;
Crombet et al., 2011). Additionally, theNorth Atlantic planktonic
community changes in the course of the productive season, and

silicic acid can also limit diatom uptake and growth (Leblanc
et al., 2005).

Because some diatoms thrive in modestly nutrient-rich
regions, other factors must therefore explain their success
(Green et al., 2008). The continual reshaping of communities by
mortality, allelopathy, symbiosis, and other processes show that
community interactions exert strong selective pressure onmarine
microbes (Strom, 2008). This reflects the “Eltonian shortfall,”
introduced by Hortal et al. (2015) in a review on current major
flaws in biodiversity research and refers to our lack of knowledge
about “biotic interactions.” It is likely that studying these top
down pressures on biomineralizing organisms will complement
our understanding of their evolution.

A prominent role of biomineralization in modern ecosystems
is in defensive and feeding interactions between predators
(feeding structures such as teeth) and prey (defensive structures
such as spines, shells and tests). In embryophytes, silicification
has a wide-ranging defensive role (He et al., 2014; Ensikat
et al., 2016; Hartley et al., 2016), from abrasive phytoliths to
complex structures such as trichomes, and even by inducing
anti-herbivore and anti-pathogen metabolic responses (Ye et al.,
2013). These defenses lead to multiple competitive interactions,
with differential effects on different types of insect feeding
(Massey et al., 2006), between insect and mammalian herbivores,
or between large and small mammalian herbivores (Hartley
et al., 2016). There are also complex competitive interactions
between plants regarding their silicified defenses, which depend
on various biotic (plant species, herbivore population cycles)
and abiotic factors (soil conditions, climate; Garbuzov et al.,
2011; Hartley et al., 2016). This can lead to herbivore-
plant specialization and alter plant community and ecosystem
structure.

Metazoan herbivores such as copepods (crustaceans)
presumably exercise strong pressure on diatoms, silicoflagellates,
and polycystines by feeding on them (Lebour, 1922; Marshall
and Orr, 1955; Campbell et al., 2009; van Tol et al., 2012). Several
feeding experiments have investigated the coevolution between

FIGURE 4 | Heatmap of the relative abundance between silicifiers and non-silicifiers and major environmental parameters across Tara Oceans stations. The relative

abundance of silicifiers outcompetes that of non-silicifiers in specific locations but not always concomitant with high nutrient availability. Colored rectangles on top of

the heatmap correspond to ocean provinces.
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copepods and diatoms. Some adaptations are mechanical:
copepods modify their feeding tools by increased silicification
of the mouthparts (Itoh, 1970; Miller et al., 1980, 1990; Michels
et al., 2012) in response to which diatoms adjust their protective
frustules, leading to an arms race that fuels evolutionary
processes (Hamm and Smetacek, 2007). Some diatoms that
dominate blooms experience less grazing mortality than do
co-occurring species (Assmy et al., 2007; Strom et al., 2007):
it was shown that in the presence of preconditioned media
that contained herbivores, diatoms develop grazing-resistant
morphologies such as increased cell wall silicification (Pondaven
et al., 2007; Ratti et al., 2013; Zhang et al., 2017). Silicification of
diatom genera also depends on their ecological niche, wherein
diatoms that thrive at depth under low light and in the nutrient
gradient display low growth rates, and thus must be silicified
to protect against grazing (Quéguiner, 2013). The silica cell
wall therefore provides not only a “constitutive mechanical
protection” for the cell but also a plastic trait that responds
to grazing pressure promoting the diversification of ecological
niches for a single taxonomic group. Differential biosilicification
within a specific group may also have major effects on global
nutrient recycling such as the decoupling of silicon and
carbon cycles through complex biotic interactions influencing
sedimentation pathways in the iron-limited Southern Ocean
(e.g., Assmy et al., 2013; Quéguiner, 2013).

Experimental evidence suggests that biotic interactions not
only shape the arms race between species, but also affect
species range (Bateman et al., 2012; Araujo and Rozenfeld,
2014), inducing non-random co-distribution of species at large
spatial scales of hundreds of kilometers for macro-organisms
(Gotelli et al., 2010), both at regional and continental scales.
Therefore, understanding the degree to which occurrences of
species are constrained by the distributions of other species at
broad scales of resolution and extent likely links back toward
ecological and evolutionary mechanisms shaping the success of
functional groups. This can be investigated through the use of
co-occurrence networks (Gravel et al., 2011). Empirical studies
have historically focused on competition (Gause, 1934; Hardin,
1960), revealing that in its extreme form competition leads
to co-exclusion of the interacting species (MacArthur, 1972).
As part of the recent Tara Oceans expedition, determinants
of community structure in global ocean plankton communities
were assessed using microbial association networks to create the
Tara Oceans Interactome (Lima-Mendez et al., 2015). Pairwise
links between species were computed based on how frequently
they were found to co-occur in similar samples (positive
correlations) or, on the contrary, if the presence of one organism
negatively correlated with the presence of another (negative
correlations). At a global scale (Figure 5), major taxonomic
groups have shown higher positive correlations than negative
ones, except diatoms and polycystines (Morueta-Holme et al.,
2016). Instead diatoms and polycystines showed an unusually
high proportion of negative correlations, which was statistically
significant within silicifiers as a whole. This defines diatoms
and polycystines as segregators. Conversely, plankton functional
traits approaches show that silicifiers display a segregative pattern
compared to other major interacting organisms in the plankton,

in particular toward meso- and proto-zooplankton as well as
parasites (Figure 5). It is therefore the interplay between abiotic
and biotic factors that shape the distribution of biomineralizing
organisms in the modern ocean, in which competition for silicic
acid coupled with differential grazing pressures seem to be
important drivers of the spatio-temporal structure of silicifier
communities across the ocean. The data in Figures 4, 5 indicate
that temperature is a particularly important abiotic factor.

CELLULAR AND MOLECULAR ASPECTS
OF EVOLUTIONARY COMPETITION

Evidence for evolutionary competition can also be found in
the molecular biology of biomineralization. The gain, loss
and convergence of the molecular mechanisms responsible
for nutrient uptake and biomineral patterning illustrates
how silicifying and non-silicifying organisms compete for
common resources and produce similar solutions to solve these
evolutionary problems.

Competition between diatom species has driven their
diversification into various ecological niches (Sims et al., 2006;
Nakov et al., 2014). This is mirrored in the diversification
of diatom morphologies, from the macrostructural level of
frustule shapes, spines and chains right down to the different
micro- and nanopatterns of the frustule (Gordon et al.,
2009; Finkel and Kotrc, 2010). Isolation of macromolecules
found in diatom frustules, and in vitro studies of their silica
polymerization activity, has led to the development of a model
whereby micropatterns are produced by interactions between
several components. Silica polymerizes on a structural scaffold
composed of glycoproteins and other organic macromolecules,
the ammonium fluoride insoluble matrix (Brunner et al., 2009;
Tesson and Hildebrand, 2013; Kotzsch et al., 2016). The
morphology and mesoscale patterning of the forming diatom
silica is also controlled by interactions with the cytoskeleton as
the silicon deposition vesicle (SDV) expands, and by components
of the membrane surrounding the SDV (the silicalemma;
Tesson and Hildebrand, 2010a,b; Tesson et al., 2017). The
polymerization rate in these in vitro experiments, and therefore
the nanoscale patterning (including formation of plates and
pores), has been shown to be influenced by proteins including
silaffins (Kröger et al., 2002), silacidins (Wenzl et al., 2008), and
long-chain polyamines (LCPAs; Kröger et al., 2000; Sumper and
Kröger, 2004). Some unique frustule structures are marked out
by them containing specific biosilica-related proteins, such as
cingulins that form the girdle bands linking the two valves of
the frustule (Scheffel et al., 2011). The number, size and shape
of girdle bands vary between diatom species, and this may be
connected to variations in cingulin repertoires. Furthermore, it
is not only the content and protein sequence of these molecules
that has been demonstrated through in vitro experiments to
control their silica polymerization and patterning activity, but
also their ratios and post-translational processing like cleavage,
glycosylation, phosphorylation, or the addition of quaternary
ammonium groups (Kröger et al., 2002; Poulsen and Kröger,
2004; Lopez et al., 2005; Sumper et al., 2007; Wenzl et al., 2008).
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FIGURE 5 | Silicifiers in the Tara Oceans global ocean co-occurrence network. (A) Proportion of positive and negative correlations for the major taxonomic groups.

Silicifiers are highlighted in red. (B) Plankton functional types (PFTs) subnetwork. PFTs encapsulate individual barcodes based on their trophic strategy and role in

global biogeochemical cycles. Edges width reflects the number of correlations between the corresponding metanodes. Over-represented links (multiple-test corrected

P < 0.05) are colored in green if they represent co-presences and in red if they represent exclusions; gray means non-overrepresented combinations. When both

co-presences and exclusions were significant, the edge is shown as co-presence. Silicifiers emcompass Bacillariophyta and Polycystina. Figure adapted from

Lima-Mendez et al. (2015) and reproduced with permission from AAAS.

Diatom morphology can control features such as sinking
rates (Smayda, 1970; Raven and Waite, 2004; Nakov et al.,
2014), predation (Hamm et al., 2003; Pondaven et al., 2007),
light perception (Fuhrmann et al., 2004; Yamanaka et al., 2008;
Romann et al., 2015), viral resistance (Losic et al., 2006), and
nutrient uptake (Finkel and Kotrc, 2010). Given that it has been

demonstrated that the content of the polymerization-influencing
components differs between species (Kröger et al., 2000; Sumper
and Lehmann, 2006; Bowler et al., 2008), it is conceivable that
evolutionary modifications of the silica patterning mechanisms
can help individuals to out-compete other diatoms in certain
ecological niches. This would eventually lead to the emergence
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of new species with characteristic morphologies of the siliceous
frustule. In this way, the study of diatom silica formation
and patterning mechanisms, combined with a phylogenetic
framework, can reveal the evolutionary interactions between
competition and frustule silicification.

In addition to diatoms, many other siliceous groups feature
species-specific morphologies and micropatterning, with only
limited variation depending on environmental conditions.
Examples include loricate choanoflagellates (Leadbeater et al.,
2009), thaumatomonads (Scoble and Cavalier-Smith, 2014),
chrysophytes (van Tol et al., 2012), and ascidians (Monniot
et al., 1992). Repeatedly we can observe the evolution of similar
morphologies in distantly related taxa, such as micropores
in the siliceous components of choanoflagellates (Leadbeater,
2015), chrysophytes (Sandgren et al., 1996), diatoms (Finkel and
Kotrc, 2010), and haptophytes (Yoshida et al., 2006); spines and
spicules in radiolarians (Kunitomo et al., 2006), dictyochophytes
(Preisig, 1994), centrohelids (Zlatogursky, 2016), and sponges
(Weaver et al., 2007); or tablets and scales in haptophytes
(Yoshida et al., 2006), rhizarians (Nomura and Ishida, 2016),
synurophytes (Sandgren et al., 1996), amoebozoans (Lahr et al.,
2013), and brachiopods (Williams et al., 2001). Though the genes
governing the production of these silica patterns are not fully
understood, many parallels with the molecular biology of diatom
silicification are emerging, such as a role for glycoproteins in
choanoflagellates (Gong et al., 2010) and synurophytes (Ludwig
et al., 1996), cytoskeleton-mediated shaping of the growing
silica structure in multiple taxa (Leadbeater, 2015; Nomura
and Ishida, 2016) and the presence of post-translationally
modified LCPAs in haptophyte (Durak et al., 2016) and sponge
(Matsunaga et al., 2007) silica. These polymerizationmechanisms
have apparently evolved independently from those in diatoms,
suggesting repeated recruitment of similar molecules for silica
formation and patterning, and therefore a similar role for
silicification-related evolutionary competition and speciation as
diatoms.

A critical step in silica biomineralization (Martin-Jézéquel
et al., 2000), and therefore a major aspect of evolutionary
competition between silicifiers, is the uptake and concentration
of silicic acid from the external environment. The nature of this
competition has changed over geological time in conjunction
with changes in the biogeochemical cycling of silicon (Racki
and Cordey, 2000; Maliva et al., 2005; Finkel and Kotrc, 2010;
Knoll and Kotrc, 2015; Conley et al., 2017). In turn, this
is reflected in the evolutionary molecular biology of silicon
transport mechanisms.

The first proteins capable of transporting silicon across
a plasma membrane to be identified were the SIT (Silicon
Transporter) family (Hildebrand et al., 1997). The SIT protein
(see Figure 6A) has a characteristic 10-transmembrane domain
structure, with two conserved GXQ motifs arranged in a roughly
symmetrical pattern at the cytoplasmic sides of transmembrane
helices 2 and 3, and the extracellular sides of transmembrane
helices 7 and 8 (Thamatrakoln et al., 2006). These motifs are
proposed to be involved in forming an aqueous vestibule to
allow an alternating access mechanism for silicon transport (in
conjunction with Na+) across the membrane (Knight et al.,

FIGURE 6 | The structure and evolution of SITs and SIT-Ls. (A) Structure of

the SIT (Silicon Transporter) protein, demonstrating the characteristic 10

transmembrane domains (TMD) and four GXQ motifs, located at the

cytoplasmic side of TMD 2 and 3, and at the extracellular side of TMD 7 and 8.

(B) Structure of the SIT-L (Silicon Transporter Like) protein, with 5 TMDs and

two GXQ motifs. The SIT structure resembles a “double” SIT-L, with the

C-terminal half having been inverted relative to the N-terminal half and fused

together. This suggests that SITs evolved by duplication, inversion and fusion

of SIT-L subunits. (C) Unrooted radial tree based on a maximum likelihood

phylogenetic analysis of SITs and SIT-Ls. The eukaryotic genes form two main

subgroups distinct from the bacterial SIT-Ls, and largely follow the species

phylogeny except for the paraphyletic stramenopile, rhizarian, and

dinoflagellate sequences in Group 2. The diatom and loricate choanoflagellate

SIT sub-groups are also shown. Arrows indicate inferred

duplication-inversion-fusion events that gave rise to 10 TMD SITs. Brown,

Bacteria; Dark Green, Haptophyte; Gray, Rhizarian (Light Gray, Foraminiferan);

Bright Red, Choanoflagellate; Magenta, Metazoan; Orange, Dinoflagellate;

Dark Blue, Diatoms; Light Blue, Other Stramenopiles; Black, multi-taxon. SIT-L

sequences are in boxes. Statistical support values for selected nodes are

indicated by asterisks (100% support), closed circles (90–99% support) or

open circles (>70% support). Figures adapted from Marron et al. (2016b).

2016). This four-GXQ domain characteristic of the SIT gene
family is highly distinctive, being found only in the 10-
transmembrane domain SITs and in the closely related, 5-
transmembrane domain SIT-Ls (Silicon Transporter-Like; Durak
et al., 2016). SIT-Ls resemble “halved-SITs” (see Figure 6B), and
are believed to be the ancestral genes that underwent duplication
to give rise to SITs (Durak et al., 2016; Marron et al., 2016b).
This situation is analogous to the gene duplication and fusion
events that are believed to have produced pseudo-symmetrical
transporter proteins (Keller et al., 2014), exemplified best in the
SWEET and semi-SWEET glucose transporters of eukaryotes and
bacteria (Feng and Frommer, 2015; Tao et al., 2015).
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Members of the Silicon Transporter gene family have been
identified across a broad taxonomic range, in all eukaryotic
supergroups save for archaeplastids, excavates and amoebozoans
(with the caveat that no sequence data are currently available
from silicifying excavates or amoebozoans) and are also
found in some bacterial species. SITs are present in many
highly-silicified species, most obviously siliceous stramenopiles
(diatoms, chrysophyte/synurophytes, and dictyochophytes) but
also siliceous choanoflagellates and haptophytes. In contrast
SIT-L genes are often found in primarily calcareous groups
(foraminifera, metazoans, calcareous haptophytes), although
SIT-Ls were identified in silicifying groups such as phaeodarians
and dinoflagellates. What is notable is that though some species
containmultiple SITs or SIT-Ls, taxa expressing both SIT and SIT-
L genes are rare: of the species examined only the haptophyte
Scyphosphaera apsteinii possessed both, with the apparently
non-silicifying dictyochophyte genus Florenciella having some
evidence for both SIT and SIT-L genes (Marron et al., 2016b).
This points to there being some sort of functional difference
between SIT and SIT-L transporters, possibly with SITs being
superior in some way, or with SIT-L genes being connected to
calcification (Durak et al., 2016). It is notable that the geological
record of heavily silicifying SIT-L-containing species show a
decline in silicification and diversity (Lazarus et al., 2009; van
Tol et al., 2012) coincident with the rise of the diatoms from
the Mesozoic, again hinting at a “functional superiority” of SITs
in competition for silicic acid uptake, though the nature of this
advantage remains unresolved. Furthermore, siliceous sponges,
which apparently lack either SITs or SIT-Ls (Marron et al.,
2016b), show a similar decline in their degree of silicification and
ecological dominance over this time (Maldonado et al., 1999).
Again, this is suggestive of SIT-based mechanisms providing
some type of competitive advantage over other uptake systems
as silicic acid levels fell over geological time and competition for
silicon increased.

When the SIT/SIT-L phylogeny is compared to species
phylogenies, an interesting picture emerges (see Figure 6C).
Three main eukaryotic clades are resolved: a monophyletic SIT-
only clade containing diatom, choanoflagellate, and haptophyte
genes; a monophyletic SIT-L only clade containing foraminferan,
metazoan, and haptophyte genes; and a polyphyletic clade
featuring both SIT and SIT-L genes from radiolarians,
dinoflagellates and various non-diatom stramenopiles (Marron
et al., 2016b). In this analysis, the stramenopile SITs branch in two
distinct groups with high statistical support, with diatoms being
separate from chrysophytes/synurophytes, and dictyochophytes.
This distinction also emerges when the phylogeny is analyzed
with an alignment of SIT-L, SIT N-terminal and SIT C-terminal
sequences (i.e., artificially splitting the SITs into two, roughly
equal 5-transmembrane sequences each containing two GXQ
motifs). In this case the diatomN- and C-termini branch with the
relevant N-and C-termini of the choanoflagellate and haptophyte
SITs. The 5-transmembrane sequences of other stramenopile SITs
however branch paraphyletically, again together with radiolarian
and dinoflagellate SIT-Ls. These phylogenies provide a strong
molecular signal for the stramenopile SITs having evolved via
multiple, independent duplications. In this scenario, the diatom

SITs arose from a single gene duplication and fusion event that
also gave rise to the haptophyte and loricate choanoflagellate
SITs, and must have occurred early in eukaryotic evolution,
before these groups diverged deep in the Precambrian (Parfrey
et al., 2011). The phylogenetic signal supports the scenario
that the other stramenopile SITs arose from at least two other
duplication-fusion events within the ochrophyte stramenopile
clade itself, but after diatoms diverged, potentially as recently as
the Mesozoic (Brown and Sorhannus, 2010; Derelle et al., 2016).
It is hypothesized that this is a remarkable case of convergent
molecular evolution, and that the independent invention of
SITs from SIT-Ls was in response to competition for silicic acid
from the rise of the diatoms after the Jurassic period (Marron
et al., 2016b). As diatoms came to dominate the global silicon
cycle, other heavily silicifying groups required more complex or
more efficient uptake mechanisms and transporters to compete.
What also emerges from these molecular analyses is that the last
common ancestor of all ochrophytes must have possessed an
SIT-L gene, and that diatoms have lost these SIT-Ls, again hinting
at a superiority of SITs over SIT-L-based uptake systems in the
competition for silicon.

Diatom domination of marine phytoplankton can be
attributed to several ecological advantages (Armbrust et al.,
2004), but of particular relevance to silicification is that they
possess multiple modes of silicic acid uptake (Martin-Jézéquel
et al., 2000; Thamatrakoln and Hildebrand, 2008). At lower silicic
acid levels (≤30µM), the majority of uptake is by SIT-mediated
active transport, while at higher concentrations silicic acid enters
the cell by diffusion (Thamatrakoln and Hildebrand, 2008;
Shrestha and Hildebrand, 2015). The concentration gradient
is created by binding of silicic acid to intracellular binding
components in the cytoplasm, the character of which remains
unknown (Thamatrakoln and Hildebrand, 2008; Spinde et al.,
2011). This means that at higher silicic acid levels, diatoms
can internally control uptake depending on the rate of silica
polymerization in the SDV. The cytoplasmic binding compounds
also allow diatoms to maintain a soluble intracellular silicon
pool, with spare capacity permitting “surge uptake” of silicic
acid following short-term silicon starvation (Thamatrakoln
and Hildebrand, 2008). This is highly advantageous, allowing
diatoms to take advantage of transient silicon sources in patchy
environments like ocean gyres. The different modes of diatom
silicic acid uptake are in contrast to other silicifiers such as
sponges, which appear to only employ active transport and
display maximum uptake efficiency at much higher silicic acid
concentrations (Maldonado et al., 2011).

At ecologically-relevant silicon concentrations experienced
by diatoms in modern oceans, active SIT-mediated uptake
dominates. Diatom species generally possess multiple SIT genes
(Hildebrand et al., 1998). These paralogs display differences
in expression levels, the timing of their expression in the cell
cycle, protein abundances and their sub-cellular localization
(Thamatrakoln and Hildebrand, 2007; Sapriel et al., 2009;
Shrestha et al., 2012; Shrestha and Hildebrand, 2015). These
differences are believed to allow neofunctionalization of each SIT,
evolving roles as silicon sensors, silicon transporters, targeting of
different SIT proteins to specific cellular locations (Shrestha and
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Hildebrand, 2015), specialization for the uptake of certain silicon
species (Sapriel et al., 2009) or for differential characteristics
of substrate affinity versus transport capacity. This allows for
maximal uptake at various silicic acid concentrations in the
external environment (Thamatrakoln et al., 2006; Thamatrakoln
and Hildebrand, 2007, 2008). This suite of SITs is hypothesized to
allow adaptation to varying conditions and allows the diatom cell
to sense silicon availability, ensuring that it can meet the silicon
requirements of frustule synthesis and so complete cell division.

This highlights the central role that silicon and silicification
play in diatom biology (Martin-Jézéquel et al., 2000). Indeed,
silicic acid limitation influences wider diatom cellular biology
and results in transcriptional changes of genes related to multiple
metabolic pathways (Mock et al., 2008; Shrestha et al., 2012), just
as is seen for other essential nutrients like iron or nitrate. It is
therefore unsurprising that diatoms have evolved such complex
systems to accumulate and compete for silicic acid. This even
extends to chemosensory responses of the motile raphid pennate
diatom Seminavis robusta toward sources of silicic acid, and
remarkably away from sources of germanium (Bondoc et al.,
2016), since germanium exposure disrupts biosilicification and
is therefore toxic to siliceous organisms (Marron et al., 2016a).

Phylogenetic evidence (see Figure 6C) demonstrates that SIT
diversification occurred within the diatom lineage itself (Marron
et al., 2016b). More detailed phylogenetic analyses of diatom SITs
can be divided into five main clades (A–E), though the deep
branching order between these clades is poorly resolved due to
low statistical support (Durkin et al., 2016). The paraphyletic
Clade B was found to be the most basal, and Clade B-type
SITs are found throughout the various diatom groups. The
other clades, however, have limited taxonomic distributions,
for example Clade A only being present in pennate diatoms,
and Clade E being unique to the Thalassiosirales. Therefore,
diatom SITs underwent multiple independent duplications
and diversifications within different lineages, with the more
recently evolving diatom lineages (e.g., raphid pennates) having
more complex SIT repertoires. This complexity is reflected in
transcriptional analyses of diatoms under nutrient starvation,
and in natural diatom assemblages. The expression levels and
ratios of the various SIT clades differ according to silicic acid
levels, with the more derived SIT types being more prominent
over the basal Clade B SITs in low silicic acid environments
compared to waters with higher silicic acid levels. This is
hypothesized to allow diatom species to co-occur by employing
different approaches to utilize limited silicic acid, and to out-
compete other silicifying groups (Durkin et al., 2016). It also
suggests a certain “directionality” of diatom SIT evolution,
with new SIT clades evolving in new lineages to adapt to the
drawdown of ocean silicic acid concentrations that occurred as
the diatoms themselves diversified and came to dominate the
oceans (Sims et al., 2006; Finkel and Kotrc, 2010).

Silicon Transporter diversification has also occurred in
other taxa (see Figure 6C), with some stramenopiles expressing
multiple SITs, and evidence for independent duplications of
SIT-Ls in both foraminifera (Ammonia sp.) and Phaeodarian
radiolarians (Marron et al., 2016b). The most prevalent case of
this is in the siliceous loricate choanoflagellates, which display

evidence for a SIT gene duplication event early in their evolution
(Leadbeater, 2015). All loricate choanoflagellates examined were
found to possess two SIT gene types, termed SITα and SITβ

(Marron et al., 2016b). Transcriptional analysis of these SIT types
under varying silicic acid concentrations demonstrated that the
SITα genes were highly expressed, and their expression levels
responded to silicic acid availability, while the SITβ genes were
always expressed at a low level, irrespective of the environmental
silicic acid concentration. This closely resembles the situation in
diatoms (see above), where some SIT genes are highly expressed
and silicon-responsive, while other types have low expression
unresponsive to silicon, suggesting that SITα and SITβ have
evolved different roles, possibly as specialized transporters or
silicon sensors (Thamatrakoln and Hildebrand, 2007; Shrestha
and Hildebrand, 2015). The similar diversification and sub-
functionalization of SITs in parallel in both choanoflagellates
and diatoms is proposed to be an example of convergent
evolution in response to increased competition for silicic acid.
This mirrors the hypothesis for the convergent evolution of 10-
transmembrane domain SITs in the stramenopiles (see above).
It is likely that future research will identify other cases of
transporter diversification due to increased competition for silicic
acid, potentially in the multiple rhizarian SIT-Ls, horsetail silicon
transporters or the proposed silicon-related Lsi2-like gene family
found in the siliceous sponges (Grégoire et al., 2012; Marron
et al., 2016b; Vivancos et al., 2016).

The phylogenetic distribution of silicon-related active
transporters reveals evidence for multiple and widespread losses
of SIT, SIT-L, and Lsi2-like genes throughout the eukaryotes
(Marron et al., 2016b). There is strong evidence for the loss
of SIT-Ls across most bilaterian lineages, of losses of SITs and
SIT-Ls across the coccolithophorid haptophytes and for losses of
SITs and SIT-Ls multiple times throughout the stramenopiles.
Indeed, barring rampant eukaryote-to-eukaryote horizontal
gene transfer events (Ku et al., 2015), it is likely that SITs
and/or SIT-Ls were present in the last common ancestor of all
eukaryotes, and that multiple independent gene loss events only
occurred after the main eukaryotic lineages and supergroups
had diverged. Similarly, the distribution of Lsi2-like genes across
the eukaryotes strongly supports that they were present in the
eukaryotic last common ancestor (Marron et al., 2016b), but that
they were independently lost in multiple lineages, for example
deuterostome eumetazoans, fungi or apicomplexans.

It has been hypothesized that these active silicon transporters
were originally required as part of a detoxificationmechanism for
life in the high-silicon Precambrian ocean (Marron et al., 2016b).
Geological evidence for abiotic silica precipitation in sediments
from the Neoproterozoic demonstrates that at the time that the
eukaryote supergroups were originating and diversifying (Parfrey
et al., 2011) oceanic silicic acid concentrations were high enough
to allow autopolymerization into silica (Iler, 1979; Maliva et al.,
1989, 2005; Siever, 1992; Grenne and Slack, 2003). Uncontrolled
formation of silica free in the cytoplasm, potentially mediated by
localized pH environments or accelerated by polyamines, would
cause massive disruption to cellular metabolism. Unprotected
by a membrane the freely polymerizing silica could occlude
and adsorb proteins, nucleic acids, and other macromolecules
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within its structure or on its surface (e.g., Betancor and Luckarift,
2008; Vandeventer et al., 2013). Therefore organisms must have
required a system for silicon homeostasis, to bind or sequester
silicic acid within the cytoplasm and then remove it from the
cell. This is reflected in the bidirectional transportation capacity
of SITs, where they could be employed to transport silicon
out of the cell against a concentration gradient (Thamatrakoln
and Hildebrand, 2008; Knight et al., 2016). In ancient oceans
there would have been a strong selective pressure to maintain a
molecular machinery for silicon detoxification, as has also been
suggested for the employment of mucins as anti-calcification
mechanisms in early animals (Marin et al., 1996; Wood et al.,
2017).

Major geochemical and biological upheavals around the
Precambrian/Cambrian boundary changed the competitive
interactions and evolutionary pressures acting on these
detoxification and homeostasis mechanisms. Most notable
was the appearance and diversification of biomineralized
hard parts (Knoll, 2003; Knoll and Kotrc, 2015), believed
to have originated by modification and co-opting of the
detoxification mechanisms (Wood et al., 2017). The innovation
of biomineralized structures for feeding, movement and
protection established an evolutionary arms race (Knoll, 2003;
Cohen, 2005). This gave rise to biomineralization becoming
more significant, with organisms producing larger and more
prominent calcified or silicified structures. The biosilicified
structures would have acted as silicon sinks, with the burial of
biogenic silica skeletons sequestering silicon in the sediments.
The outcome of this was that by the early Phanerozoic oceanic
silicic acid concentrations were substantially reduced from
Neoproterozoic levels (Maliva et al., 1989; Racki and Cordey,
2000), below the threshold for autopolymerization and removing
the threat of harmful silica precipitation free in the cytoplasm.
This would have removed the selective pressure to possess
silicon detoxification mechanisms, and organisms could gain
a competitive advantage by not diverting resources to such
an unnecessary metabolic pathway, hence resulting in gene
losses. The exception were those organisms which had re-
deployed the silicon homeostasis machinery to produce siliceous
structures. In these cases, silicon became a scarce resource,
requiring the evolution of more sophisticated transport systems
in the acquiring of silicic acid uptake to meet the metabolic
requirements of biosilicification. This reflects the evolutionary
biology of other elements, where they are initially toxic, before
becoming metabolically useful and finally ending up as limiting
nutrients and the subject of evolutionary competition (Rickaby,
2015).

In some cases, the solution to the problem of this scarcity
was to secondarily lose biosilicification and the associated
molecular mechanisms. An excellent example of this occurs
within the haptophytes. Some species, such as Prymnesium
neolepis (Yoshida et al., 2006) and S. apsteinii (Drescher et al.,
2012) produce wholly- or partially siliceous scales, while some
calcareous species such as Calcidiscus leptoporus possess SIT-
Ls and have a metabolic requirement for silicon to complete
normal production of their calcified scales (Durak et al., 2016).
Other species however, have lost SIT-Ls (and SITs), and show no

effect of germanium toxicity disrupting biomineralization. One
such species is Emiliania huxleyi, a calcifying haptophyte known
to produce blooms of major ecological importance, and which
is believed to have evolved relatively recently in the Cenozoic
(Liu et al., 2010; Taylor et al., 2017). What is notable is that E.
huxleyi blooms often occur following diatom blooms, raising the
possibility that while diatoms enjoy a competitive advantage in
silicon-replete waters, non-silicifying species like E. huxleyi have
evolved to out-compete and succeed siliceous phytoplankton
in silicon-deplete waters where they can continue to grow and
produce biomineralized structures (Durak et al., 2016). In this
way, the abandonment of any metabolic requirement for silicon
opens new ecological niches and provides opportunities to gain
new competitive advantages.

Molecular phylogenetics has revealed many other cases
where non-silicifying species have evolved from heavily silicified
ancestors. This is evident in land plants, with basal groups
tending to be highly siliceous (e.g., liverworts) while some
derived taxa (e.g., conifers) have low silicon contents and
lack phytoliths (Hodson et al., 2005). Although there is some
debate as to the evolutionary relationships between the main
sponge groups (Sperling et al., 2010), the widespread distribution
of non-siliceous species in otherwise siliceous sponge clades,
and the similarity of the organic components of siliceous and
collagenous skeletons, means that silicification was lost and/or
re-evolved multiple times in the sponges (Ehrlich et al., 2007a,b;
Maldonado, 2009; Kozhemyako et al., 2010). Similar evidence
for independent losses and reinventions of biosilicification can
be found in the centrohelids, a taxonomically enigmatic group
of protists (Zlatogursky, 2016). Based on current phylogenetic
data, centrohelids have evolved silicified structures ranging from
scales to spines, but in some species these have beenmodified into
organic-only scales and spines, or even been reduced so that the
cell is covered only by a mucous sheath. Parallel evolution is also
observed in the Arcellid testate amoebae, with convergent gains
and losses of biosiliceous or organic tests (Lahr et al., 2013, 2015),
or even the ability to form a test by agglutination of exogenous
siliceous particles such as quartz grains, a strategy also developed
by some coastal tintinnids.

A possible analog of the scenarios that saw these losses of
biosilicification is the situation where silicification is facultative
in some organisms (as opposed to the obligate silicification found
in groups such as diatoms). This can occur under conditions of
extreme silicon limitation, as in the tectiform choanoflagellates or
synurophytes which produce naked, but otherwise healthy, cells
if starved of silicon (Sandgren et al., 1996; Leadbeater, 2015). It
may also be connected to stages in the life cycle, for example
in juvenile brachiopods (Williams et al., 2001), or resembling in
the haploid/diploid distinction between calcified and uncalcified
stages of the E. huxleyi life cycle (Taylor et al., 2017) as has
recently been suggested to occur in loricate choanoflagellates
(Thomsen and Østergaard, 2017). The capacity for facultative
silicification could be a combination of the two, as in the diatom
P. tricornutum, unique amongst the diatoms in its ability to
survive without a siliceous frustule. A combination of life cycle
stage (Kessenich et al., 2014) and silicon availability (Yamada
et al., 2014) has been put forward for explaining the evolution
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of the naked bolidophytes and siliceous parmales. As these
are the sister lineages to diatoms the molecular mechanisms
regulating their biosilicification are crucial to understanding how
the complex silicon-related metabolism of diatoms evolved.

We therefore observe how evolutionary competition and the
associated trade-offs are central to the presence of silicification:
biomineralized silica structures are only maintained when they
confer a competitive advantage. Silicification would be lost
when the total metabolic cost of biosilicification exceeds the
benefit, for example due to the energetic cost of silicic acid
acquisition or silica polymerization, restrictions on mobility
due to the presence of a skeleton or the additional weight per
unit volume of silica versus organic structures. Alternatively,
it could be metabolically cheaper (either in cost of formation
or of lifestyle trade-offs) to build a functionally equivalent
structure from another biomineral (such as calcium phosphate
or calcium carbonate shells), from organic components (e.g.,
chitin, cellulose, or collagen) or even to utilize the silica structures
of other organisms (Lahr et al., 2015). Under this hypothesis
these structures would provide similar competitive advantages,
such as protection, while allowing survival in new (often
silicon-depleted) niches. This could potentially lead to the loss
of the molecular mechanisms for silicon transport and silica
polymerization, producing a developmental legacy that restricts
the potential for future evolutionary innovations, and reinforces
the competitive interactions between silicifiers and non-silicifiers.

FUTURE DIRECTIONS

Recent years have witnessed several new discoveries that
have expanded and improved our understanding of silica
biomineralization. Fossil sampling and isotopic analyses of
new sediment records have modified our view of the geological
history of silicon biogeochemistry (Fontorbe et al., 2016). The
massive increase in large-scale sequencing data has greatly aided
research into the molecular biology of silica biomineralization,
both through whole-genome sequencing within groups like
diatoms and plants, and via transcriptome sequencing of new
and previously poorly researched siliceous taxa (Keeling et al.,
2014; Beisser et al., 2017; Caron et al., 2017; Tirichine et al.,
2017).Many new genes associated with biosilicification have been
identified (Kotzsch et al., 2016), including the recognition that
active silicon transporter gene families are much more ancient
and widely distributed amongst the eukaryotes than previously
thought (Marron et al., 2016b). This has been complemented
by the discovery of new silicifying species (Ichinomiya et al.,
2011), most notably silicon accumulation in some strains of
the hugely ecologically important cyanobacteria Synechococcus
(Baines et al., 2012). Combined with metagenomic surveys and
geochemical monitoring (Mutsuo et al., 2015; Sunagawa et al.,
2015) it will be possible to gain a much deeper knowledge of
the role of different marine groups in silicon biogeochemistry
and how competitive interactions govern their ecology,
distribution and response to changing climatic conditions
(Mock et al., 2016).

These advances have contributed to hypotheses for a greater
role of silicon in biology, for example in protein folding
(Eglin et al., 2006). We are also beginning to recognize a
link between phosphate transporters and silicic acid uptake in
groups as disparate as cyanobacteria and mammals (Brzezinski
et al., 2017; Ratcliffe et al., 2017) that may be underpinned
by a more general system for metalloid metabolism (Bienert
et al., 2007). This could contribute to satisfying metabolic
requirements for silicon in taxa like phaeophyte brown
algae, which are known to biosilicify (Mizuta and Yasui,
2012; Tarakhovskaya et al., 2012) but with no currently
identified silicon transporter genes (Marron et al., 2016b). These
observations blur the boundary between silicifying and non-
silicifying species, illustrated by the requirement for silicon
in processes such as haptophyte calcium carbonate formation
(Durak et al., 2016), amorphous calcium carbonate formation in
plant cystoliths (Gal et al., 2012) and in the early developmental
stages of the vertebrate calcium phosphate skeleton (Carlisle,
1981); or given the uptake of silicic acid (Fuhrman et al.,
1978) and presence of silicon transporters in apparently non-
mineralizing species (e.g., Florenciella; Marron et al., 2016b).
This has implications for understanding the evolution and
competitive interactions between silicifiers and non-silicifiers in
the living world.
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