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A Generic Method for Density Forecasts
Recalibration

Jérôme Collet and Michael Richard

Abstract We address the calibration constraint of probability forecasting. We pro-
pose a generic method for recalibration, which allows us to enforce this constraint.
It remains to be known the impact on forecast quality, measured by predictive dis-
tributions sharpness, or specific scores. We show that the impact on the Continuous
Ranked Probability Score (CRPS) is weak under some hypotheses and that it is pos-
itive under more restrictive ones. We used this method on temperature ensemble
forecasts and compared the quality of the recalibrated forecasts with that of the raw
ensemble and of a more specific method, that is Ensemble Model Output Statistics
(EMOS). Better results are shown with our recalibration rather than with EMOS in
this case study.

Key words: Density forecasting; Rosenblatt transform; PIT series; calibration; bias
correction

1 Introduction

Due to the increasing need for risk management, forecasting is shifting from point
forecasts to density forecasts. Density forecast is an estimate of the conditional prob-
ability distribution. Thus, it provides a complete estimate of uncertainty, in contrast
to point forecast, which is not concerned whith uncertainty.
Two alternative ways to evaluate density forecast exist.
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• The first one was proposed by T. Gneiting: Probabilistic forecasting aims to max-
imize the sharpness of the predictive distributions, subject to calibration, on the
basis of the available information set. Calibration means predictive distributions
are consistent with observations, it is more formally defined in [5]; sharpness
refers to the concentration of the density forecast, and even in the survey paper
of T. Gneiting, it is not formally defined. An important feature of this framework
is that we face a multi-objective problem, which is difficult.

• The second way is the use of a scoring rule, which assesses simultaneously cali-
bration and sharpness. Concerning the well-known CRPS scoring rule, Hersbach
[9] showed that it can be decomposed into three parts: reliability (or calibration)
part, resolution (or sharpness) part, and uncertainty, which measures the intrinsic
difficulty of the forecast. Bröcker [1] generalized this result to any proper score,
that is any score which is minimal if the forecasted probability distribution is the
true one (w.r.t the available information). Recently, Wilks [14] proposed to add an
extra miscalibration penalty, in order to enforce calibration in ensemble postpro-
cessing. Nevertheless, even if the score we use mixes calibration and sharpness,
the framework is essentially different from the first one.

Besides these two alternative ways of evaluation, probabilistic forecast is mainly
used in two different contexts: finance and economics, and weather forecast. In
finance and economics, calibration is the unique objective, so a recent survey on
”Predictive density evaluation” [2] is in fact entirely devoted to the validation of the
calibration, without any hint of sharpness. In weather forecast, both ways of eval-
uation are used. For a quick view on forecasting methods in atmospheric sciences,
one can look at [13]. In the works of T. Gneiting [6] [7], and in the seminal work
of Krzysztofowicz [10], the goal is to improve sharpness, while preserving calibra-
tion. Nevertheless, one can state that there is no formal test of calibration in these
works. In [3], the only measure used is the CRPS, and [8] addresses exclusively the
calibration issue.

Here, we are interested in the first method of evaluation: calibration constraint
and sharpness objective. Indeed, risk management involves many stakeholders and
thus, calibration is a key feature of trust between stakeholders since it impacts all
of them. For example, EDF also faces a regulatory constraint: the French technical
system operator imposes that the probability of employing exceptional means (e.g.,
load shedding) to meet the demand for electricity must be lower than 1% for each
week (RTE, 2004), so EDF has to prove the calibration of its forecasts. Even inside
EDF, many different business units may be involved in the management of a given
risk, so calibration is compulsory to obtain confidence between risk management
stakeholders.

The consequence is that we face a multi-criterion problem, the goal of our con-
tribution is to allow us to enforce the calibration constraint, in a generic way. Fur-
thermore, we show that, even if the evaluation framework is the proper score use,
recalibrating leads in many cases to an improvement, and to a very limited loss in
other cases.
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The remainder of this chapter will be organized as follows. The next section ex-
plains the principle of the method. The third part provides some theoretical results
while the fourth is devoted to a case study.

2 Principle of the method

The Probability Integral Transform (PIT, Rosenblatt, 1952) is usually a measure of
the calibration of density forecasts. Indeed, if Y ∼ F and is continue, the random
variable F(Y )∼U [0,1]. Thus, we can find in the literature many tests based on this
transformation to evaluate the correct specification of a density forecast. In our case,
it is used firstly to recalibrate the forecasts.

Let’s look at the following case: let E be the set of all possible states of the world;
for each forecasting time j the forecaster knows the current state of the world e( j),
and uses it to forecast. For example, in the case of a statistical regression model, E
is the set of the possible values of the regressors, in the case of the post-processing
of an weather forecasting model, E is the ensemble. The conditional estimated
distribution is Ge, whereas the true one is Fe. So the PIT series is:

PIT≡
(
Ge( j)(Yj)

)
j .

• A.2.1: Ge is invertible ∀ e ∈ E.

If E is discrete, we assume that the frequency of appearance of each state of the
world e is pe. Then, under the assumption A.2.1, the c.d.f of the PIT is:

C(y)≡ Pr(G(Y)≤ y)≡∑
e

pe Fe ◦G−1
e (y).

Note that all the results obtained under the hypothesis that E is discrete are still valid
in continuous case, even if we only treat the discrete case in this article.

• A.2.2: F is invertible.

We propose to use C to recalibrate the forecasts. For each quantile τ ∈ [0,1], we
use the original model to forecast the quantile τC, such that Pr(G(Y)≤ τc) = τ . We
remark that this implies τc =C−1(τ).
This correction makes sense since under the assumptions A.2.1 and A.2.2:

Pr(C ◦ G(Y)≤ y) = Pr(G(Y)≤C−1(y))

= C ◦C−1(y)

= y,

which means that the recalibrated forecasts are uniformly distributed on the interval
[0,1].
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Note that this method is close to the quantile-quantile correction as in [11] but
here, we are concerned by PIT recalibration, which allows us to consider the condi-
tional case.

3 Impact on global score

If we evaluate our method on the basis of calibration, it ensures this constraint is
enforced. But it is important to know if our method is still useful even if one of
the probability forecasting users prefers to use scores, for example the Continuous
Ranked Probability Score (CRPS).

The CRPS:

CRPS(G,x) =
∫ +∞

−∞

(G(y)−1{x≤y})
2 dy ,

with G a function and x the observation, is used to evaluate the whole distribution,
since it is minimized by the true c.d.f of X .

However, since we have:

CRPS(G,x) = 2
∫ 1

0
Lτ(x,G−1(τ))dτ , (1)

as shown in [12], with Lτ the Pinball-Loss function :

Lτ(x,y) = τ(x− y)1{x≥y}+(y− x)(1− τ)1{x<y} ,

with y the forecast, x the observation and τ ∈ [0,1] a quantile level, and that Lτ is
easier to work with, we use this scoring rule to obtain results on CRPS.

Lτ is used to evaluate quantile forecasts. Indeed, it is a proper scoring for the
quantile of level τ , since its expectation is minimized by the true quantile of the
distribution of X .

To begin with, we will prove that under some hypotheses, our correction im-
proves systematically the quality of the forecasts in an infinite sample. Then we
will show that under less restrictive hypotheses, our correction deteriorates only
slightly—in the worst case—the quality of the forecasts in a more realistic case, e.g
finite sample.
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3.1 Impact on score: conditions for improvement

To assess conditions for improvements, we need to consider:

EY [Lτ −Lτc ]≡ EY,e[Lτ(Y,G−1
e (τ)) ]−EY,e[Lτ(Y,G−1

e (τc)) ].

Here, under the assumption A.2.1, G−1
e (τ) corresponds to the estimated conditional

quantile of level τ ∈ [0,1] and G−1
e (τc) to the corrected conditional quantile. Denote:

ηe ≡Ge−Fe. Considering small errors of specification and regularity conditions on
the estimated c.d.f Ge, the true one Fe and their derivatives ge and fe:

• A.3.1.1: Ge are C3 ∀ e ∈ E.

• A.3.1.2: Fe are C3 and invertible ∀ e ∈ E.

• A.3.1.3: ηe, fe and their derivatives are bounded ∀ e ∈ E by a constant which
doesn’t depend on e.

• A.3.1.4: ∀ τ ∈ [0,1] , ∀ e ∈ E, ηe, its first, second and third derivatives are finite
in F−1

e (τ),

and using functional derivatives, directional derivatives and the implicit function
theorem (proof in Appendix) we can rewrite (adding the assumption A.2.1):

EY [Lτ −Lτc ] ∼
(

∑
e

peηe(F−1
e (τ))

fe(F−1
e (τ))

)(
∑
e

peηe(F−1
e (τ))

)

−
(

∑
e

pe

2 fe(F−1
e (τ))

)(
∑
e

peηe(F−1
e (τ))

)2

as max ηe→ 0, (2)

with pe the frequency of appearance of the state e.

This result allows us to find conditions for improvement of the expectation of the
Pinball-Loss score, with additional following conditions.

• A.3.1.5: η or f−1 is a constant, or maxe(•)/mine(•) < 3 + 2
√

2 for both ηe
and f−1

e , ∀ e ∈ E,

• A.3.1.6: the correlation between η and f−1, σ f−1 or ση is null. Here the cor-
relation is used as a descriptive statistics notation, even if the series η and f−1

are deterministic. The null correlation means that the difference between the true
probability distribution function and the model have the same magnitude in low
and in high density regions.
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Under the assumption A.3.1.5 or A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E
∀ y ∈ R; |ηe(y)| ≤ ν , we show that (proof in Appendix):

0 ≤ EY [Lτ −Lτc ] and (3)

0 ≤ EY [CRPSG,C◦G ] , (4)

with EY [CRPSG,C◦G ] ≡ EY [CRPS(G,Y)−CRPS(C ◦G,Y) ]. In other words, with
those restrictions, our recalibration systematically improves the quality of the fore-
casts. Indeed, remember that the expectation of the Pinball-Loss score is minimized
by the true quantile of the distribution of Y and negatively oriented. Thus, the lower
the expectation of the Pinball-Loss score, the better.

3.2 Impact on score: bounds on degradation

In reality, we cannot obtain the corrected probability level τc ∈ [0,1], and we need
to estimate it. If we want to upper bound the degradation, we can study the more
realistic case of

EY [L τ̂c −Lτ ]≡ E

[
1
n

n

∑
j=1

Lτ(y j,G−1
j (τ̂c ))−Lτ(y j,G−1

j (τ))

]
, (5)

with τ , τ̂c ∈ [0,1]. In our case study, τ̂c is obtained empirically, on the basis of the
available PIT values. Thus, we have a consistant estimator of τc and one can rewrite
(5) such as EY [Lτ(Y,G−1(Qτ)) ]− EY [Lτ(Y,G−1(τ)) ], with Qτ a random variable
converging in distribution to a Normal distribution with mean τc and a variance de-
creasing at the rate 1

n .

In such a case, it is still possible to obtain bounds concerning the error induced
by our correction.

• A.3.2.1: Fe and Ge are C2 ∀ e ∈ E.

• A.3.2.2: ∀ y ∈ R, ∀ e ∈ E, |Fe(y)−Ge(y)| ≤ ε , with ε ∈ [0,1].

• A.3.2.3: the derivatives of Ge are lower bounded ∀ e ∈ E , ∀ τ ∈ [0,1] by 1/ξ , on
the intervals [G−1

e (0∨ (τ− ε)),G−1
e (1∧ (τ + ε))] , with ξ ∈ ]0,+∞[.

• A.3.2.4: ∀ e ∈ E, ∀ τ ∈ [0,1], fe(G−1
e (τc)) ≤ β , with β ∈ ]0,+∞[ and fe the

derivatives of Fe.

• A.3.2.5: fe are continuous over the interval [−∞,G−1
e (τc)] ∀ e ∈ E and their

derivatives are bounded, i.e ∀y ∈ R, ∀ e ∈ E, | f ′e(y)| ≤M, with M ∈ ]0,+∞[ and
fe the derivative of Fe.
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• A.3.2.6: the derivatives of ge are bounded, i.e ∀y ∈ R, ∀ e ∈ E, |g′e(y)| ≤ α , with
α ∈ ]0,+∞[ and ge the derivative of Ge.

Under the assumptions A.2.1, A.3.2.1, A.3.2.2, A.3.2.3, A.3.2.4, A.3.2.5 and A.3.2.6,
we prove (proof in Appendix):

∣∣EY [L τ̂c −Lτ ]
∣∣ ≤ 2ε

2
ξ +

C λ

n
and (6)

|EY [CRPSG,C◦G ]| ≤ 2
(

2ε
2

ξ +
C λ

n

)
(7)

with C = (1−τ)αξ 3

2 +Cint +Cabs, Cint =
ξ 2β

2

[
1+αξ 2 + α2ξ 4

4

]
,

Cabs =
M ξ 3

6

[
1+ 3ξ 3α

2 + 3ξ 3α2

4 + ξ 3α3

8

]
and λ

n , the variance of Qτ

This inequality shows that our recalibration deteriorates only slightly the quality
of the forecasts in the worst case. Obviously, it also shows that our method im-
proves only slightly the quality, but remember that our goal is to enforce the validity
constraint, which is achieved.

4 Case study

We use our method on ensemble forecasts data set from the European Centre for
Medium-Range Weather Forecasts (ECMWF). One can see in [4] that the statis-
tical post-processing of the medium range ECMWF ensemble forecast has been
addressed many times. The extended range (32 days instead of 10 days) has been
addressed in some studies, but with the same methods and tools. We will show here
that our recalibration method, despite its genericness, is competitive with a standard
post-processing method. We dispose of temperature forecasts in a 3-dimensional ar-
ray. The first one represents the date of forecasts delivery. The forecasts were made
every Monday and Thursday from 11/02/13 to 02/02/17. Since 3 observations are
missing, we have 413 dates of forecasts delivery. The second dimension is the num-
ber of the scenario in the ensemble member, and we have 51 scenarios. The third
dimension is the forecast horizon. Since we have 32 days sampled with a forecast
every 3 hours, it produces 256 horizons.

We study the calibration and compare the CRPS expectation using directly the
ensemble forecast, the so-called Ensemble Model Output Statistics (EMOS) method
and our recalibration method with a Cauchy Kernel dressing for the ensembles.
We choose a Cauchy Kernel in order to address problems with the bounds of the
ensembles. Indeed, a lot of observations were out of the bounds of the ensemble,
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which produces a lot of PIT with value 0 or 1. Thus, to avoid this problem, we need
to use a Kernel with heavy tail.

During the last 12 years, the ECMWF has changed its models 27 times, which
means a change every 162 days on average. Thus, it is important to use a train
sample significally smaller than 162 days. However, it is also important to dispose
of enough observations to obtain a consistant estimator of τc. Our method obtains
good results with 30 days used for the recalibration but the algorithm to minimize in
order to find the parameters of the EMOS in the R package EnsembleMOS doesn’t
converge if we use less than 60 days (at least with our data set). Thus, we chose to
use 60 days for the recalibration.

To recalibrate the forecasts for a particular forecasting day and a particular hori-
zon (remember that we have 256 horizons), we use the forecasts made for the same
horizon, over the 60 previous dates of forecast delivery for the two methods. How-
ever, with our method, we use a linear interpolation based on the PIT series formed
by these 60 previous days to recalibrate the forecasts. The linear interpolation is also
used to calculate the different quantile levels when we are not working with EMOS
(in that case, for the recalibration or to calculate the quantile, we use the Normale
distribution with the fitted parameters). Note that the hypotheses concerning only
Ge are verified ∀ e ∈ E. Besides, even if we cannot verifiy the other hypotheses, we
show expected results

Let’s start with the calibration property:

Table 1 Success rate to 5% K-S test

Raw Ensemble EMOS Our Method

Success rate in % 14 0.39 96

We have calculated the PIT series for each horizon (256), and use 5% K-S test for each of them.
The success rate is the percentage of horizons passing the test.

As expected, we can see in table 1 that our method allows us the test of validity to
be passed while the use of the raw ensemble fails. The EMOS also failed to pass the
test. Clearly, our method is useful to ensure the calibration property. But how about
the quality of the density forecast? In order to evaluate the impact of our correction
on the forecast quality, we are interested in the CRPS expectation.

We can see in figure 1 that EMOS as well as our method are more efficient than
the raw ensemble for little horizons. However, the EMOS deteriorates clearly the
quality of the forecasts when the horizon grows, contrarily to our method which de-
teriorates only slightly the quality of the forecasts, when it is the case.
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Fig. 1 Comparison of EMOS and our method CRPS expectation with that of raw ensemble The
empty line corresponds to our method and the dashed one to the EMOS

Thus, this study highlights perfectly the usefulness of our method, which is very
simple to use. Indeed, it shows that it allows us to ensure the validity constraint,
with a limited negative impact on the quality.
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Chapter 1
A Generic Method for Density Forecasts
Recalibration

5 Appendix

Here are gathered all the proofs concerning the results presented in the chapter. The
first section is concerned by proofs of results in an infinite sample and the second
by result in a finite sample.

Lemma 1.

EY [Lτ −Lτc ] = ∑
e

pe

∫ G−1
e (τ)

G−1
e (τc)

(Fe(y)− τ)dy ,

with τ ,τc ∈ [0,1] and pe the frequency of appearance of the state e. Under the as-
sumption A.2.1, we prove Lemma 1.

Proof. We have:

EY [Lτ −Lτc ] = ∑
e

pe
(
EY [Lτ(Y,G−1

e (τ)) ]−EY [Lτ(Y,G−1
e (τc) ]

)
. (8)

First, we only focus on a particular e. Thus, we are interested in :

EY [Lτ(Y,G−1
e (τ)) ]−EY [Lτ(Y,G−1

e (τc) ]≡ EY,e[Lτ,τc ].

For ease of notation and comprehension, we suppress e in the notation since there
is no confusion. Moreover, we suppose, for ease of notation again (and since we

11
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obtain the same result if we inverse the inequality) that G−1(τ)≤ G−1(τc). So, we
have:

EY [Lτ,τc ] =
∫ +∞

−∞

(
[y−G−1(τ)]τ +[G−1(τ)− y]1{y≤G−1(τ)}

)
fY (y)dy

−
∫ +∞

−∞

(
[y−G−1(τc)]τ +[G−1(τc)− y]1{y≤G−1(τc)}

)
fY (y)dy

= [G−1(τc)−G−1(τ)]τ +[G−1(τ)−G−1(τc)]F ◦ G−1(τ)

−G−1(τc) [F ◦ G−1(τc)−F ◦ G−1(τ) ]+
∫ G−1(τc)

y=G−1(τ)
y︸︷︷︸
v

fY (y)︸ ︷︷ ︸
u′

dy .

Using integral by parts, we have:

EY [Lτ,τc ] = [G−1(τc)−G−1(τ)]τ +
∫ G−1(τ)

y=G−1(τc)
F(y)dy

=
∫ G−1(τ)

y=G−1(τc)
[F(y)− τ ]dy .

Replacing it in (8) finishes the demonstration ut

5.1 Impact on score: conditions for improvement

In this section, the reader can find the proofs of results mentioned in Sect.3.1 of the
chapter. We first demonstrate how to approximate the difference of Lτ expectation
before showing that under some hypotheses, our correction improves systematically
the quality of the forecasts.

5.1.1 Rewriting the difference of Lτ expectation

Under the assumptions A.2.1, A.3.1.1, A.3.1.2, A.3.1.3 and A.3.1.4 and using func-
tional derivatives and the implicit function theorem, we prove (2).

Proof. Remember: Let H be a functional, h a function, α a scalar and δ an arbitrary
function.
We can write the expression of the functional evaluated at f +δα as follow:

H[h+δα] = H[h]+
dH[h+δα]

dα
|α=0 α +

1
2

d2H[h+δα]

dα2 |α=0 α
2 + · · ·+Rem(α) ,
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with Rem(α) the remainder. Denote:

∆PL[h] = ∑
e

pe

∫ h−1
e (τ)

h−1
e (τc)

(Fe(y)− τ)dy

= ∑
e

pe∆PLe[he] .

For ease of notation, denote ∆PLe[Fe + δeα] ≡ ∆PLF,δ,e. Choosing H = ∆PLe,
h = Fe and ηe = αδe (even if we use αδe in the developpemnt in order to use
functional derivatives, directional derivatives and the implicit function theorem),
we have:

∆PLF,δ,e ∼ ∆PLe[Fe]+
d∆PLF,δ,e

dα
|α=0 α +

1
2

d2∆PLF,δ,e

dα2 |α=0 α
2 +Reme(α)

=

[
∂∆PLF,δ,e

∂α
|α=0 ,τc=τ +

∂∆PLF,δ,e

∂τc
|α=0 ,τc=τ

dτc

dα

]
α

+

[
∂ 2∆PLF,δ,e

∂α2 |α=0 ,τc=τ +2
∂ 2∆PLF,δ,e

∂α∂τc
|α=0 ,τc=τ

dτc

dα

]
α2

2

+

[
∂ 2∆PLF,δ,e

∂τ2
c

|α=0 ,τc=τ

(
dτc

dα

)2

+
∂∆PLF,δ,e

∂τc
|α=0 ,τc=τ

d2τc

dα2

]
α2

2

+Reme(α) .

To calculate dτc
dα

, we will use the equation which link τc and α:

∑
e

peFe ◦ (Fe +δeα)−1(τc) = τ.

Using the implicit function theorem, we find:

dτc

dα
= ∑

e
peδe ◦F−1

e (τ)

Now, we need to calculate partial derivatives:

∂∆PLF,δ,e

∂α
|α=0 ,τc=τ =

∂

(∫ (Fe+δeα)−1(τ)

(Fe+δeα)−1(τc)
(Fe(y)− τ)dy

)
∂α

|α=0 ,τc=τ = 0;
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∂∆PLF,δ,e

∂τc
|α=0 ,τc=τ = 0 ;

∂ 2∆PLF,δ,e

∂τ2
c

|α=0 ,τc=τ =−
1

fe ◦F−1
e (τ)

;

∂ 2∆PLF,δ,e

∂α2 |α=0 ,τc=τ = 0 ;
∂ 2∆PLF,δ,e

∂α∂τc
|α=0 ,τc=τ =

δe ◦F−1
e (τ)

fe ◦F−1
e (τ)

.

Thus, we have:

∆PLe[Fe +δeα] ∼
[(

δe ◦F−1
e (τ)

fe ◦F−1
e (τ)

)
∑
e

peδe ◦F−1
e (τ)

]
α

2

−
[
(∑e peδe ◦F−1

e (τ))2

2 fe ◦F−1
e (τ)

]
α

2 +Reme(α) ,

and hence:

∆PL[F +δα] ∼
(

∑
e

peδe(F−1
e (τ))

fe(F−1
e (τ))

)(
∑
e

peδe(F−1
e (τ))

)
×α

2

−
(

∑
e

pe

2 fe(F−1
e (τ))

)(
∑
e

peδe(F−1
e (τ))

)2

×α
2

+∑
e

peReme(α).

Now, let’s focus on the remainders. Following the Taylor-Lagrange inequality, if

M such that
∣∣∣∣ d3∆PLF,δ,e

dα3

∣∣∣∣≤M exists, we have |Reme(α) | ≤ M|α3|
3! . Let’ s find condi-

tions for the existence of M. The third derivative is:

d3∆PLF,δ,e

dα3 =
∂∆PLF,δ,e

∂τc

d3τc

dα3 +3
∂ 2∆PLF,δ,e

∂τc∂α

d2τc

dα2 +3
∂ 2∆PLF,δ,e

∂τ2
c

d2τc

dα2
dτc

dα

+
∂ 3∆PLF,δ,e

∂α3 +3
∂ 3∆PLF,δ,e

∂τc∂α2
dτc

dα
+3

∂ 3∆PLF,δ,e

∂τ2
c ∂α

(
dτc

dα

)2

+
∂ 3∆PLF,δ,e

∂τ3
c

(
dτc

dα

)3

.
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Let’s calculate the partial derivatives of order 3:

∂ 3∆PLF,δ,e

∂α3 |α=0 ,τc=τ = 0 ;
∂ 3∆PLF,δ,e

∂τ3
c

|α=0 ,τc=τ = 2
f
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)

;

∂ 3∆PLF,δ,e

∂τ2
c ∂α

|α=0 ,τc=τ = −2
f
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)3

(δe ◦F−1
e (τ))−2

δ
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)2

;

∂ 3∆PLF,δ,e

∂τc∂α2 |α=0 ,τc=τ =
f
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)3

(
δe ◦F−1

e (τ)
)2

−2
δ
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)2

(
δe ◦F−1

e (τ)
)
.

Moreover, we have:

d2τc

dα2 = ∑
e

pe

(
2δ
′
e ◦F−1

e (τ)− f
′
e ◦F−1

e (τ)

fe ◦F−1
e (τ)

)
δe ◦F−1

e (τ).

Since ηe, its first, second and third derivatives are finite in F−1
e (τ), it is also

the case for δe and the partial derivatives are finite. Furthermore, fe, δe and their
derivatives are bounded (since ηe and their derivatives are bounded), which im-
plies that the second derivatives of ∆PLe[Fe + δeα] are also bounded. Thus, un-

der these conditions, M exists. Then, we can write
d3∆PLF,δ,e

dα3 = M1δ
3
e and hence

|Reme(α)| ≤ |M1||αδe|3
3! which implies that lim Reme(α)

(αδe)2 = 0, αδe→ 0, which shows

that Reme(α) is negligible compared to
d2∆PLF,δ,e

dα2 .

Moreover, since ∀ e ∈ E the functions Fe are C3 and the functions fe and their
derivatives are bounded by a constant which doesn’t depend on e, ∀ e ∈ E, the de-
velopment is valid for all directions and thus, since ηe = Ge−Fe, we have:

EY [Lτ −Lτc ] ∼
(

∑
e

peηe(F−1
e (τ))

fe(F−1
e (τ))

)(
∑
e

peηe(F−1
e (τ))

)

−
(

∑
e

pe

2 fe(F−1
e (τ))

)(
∑
e

peηe(F−1
e (τ))

)2

as max ηe→ 0.
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To finish the demonstration, remark that Lemma1 proves that:

∆PL[G] = EY [Lτ −Lτc ].

ut

5.1.2 Systematic improvement of the quality

Under the assumption A.3.1.5 or A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E
∀ y ∈ R; |ηe(y)| ≤ ν , we show (3) and (4):

Proof. Prove (3) is equivalent to show that ∆PL[G] is positive, and if we rewrite:

∆PL[G]∼ (2E[ f−1
η ]−E[ f−1]E[η ])E[η ] ,

it is clear that the assumption A.3.1.6 ensures the positivity of ∆PL[G].

However, we need more argumentation to understand the complete utility of the
assumption A.3.1.5. Let’s look at one of the two worst cases: only two states of the
world, the correlation coefficient ρ =−1, η > 0 (the other case is when ρ = 1 and
η < 0 ) and at each bound of the support of δ and f−1, there is half of the probability
mass. We also consider that the ratios between max and min of the supports are
equal. If we define maxe = M and mine =

M
r , one has the following equation:

1
2
=

2(r2 +1)
(r+1)2 −1.

Solving this equation in r produces the expected result concerning the ratio between
max and min values of η and f−1.

Now, let’s prove (4). According to (1), we have:

EY [CRPSG,C◦G ] = 2
∫ +∞

−∞

(∫ 1

0
Lτ(y,G−1(τ))−Lτ(y,G−1 ◦C−1(τ))dτ

)
fY (y)dy.

We can rewrite :

EY [CRPSG,C◦G ] = 2
∫ +∞

−∞

∫ 1

0
Lτ(y,G−1(τ)) fY (y)dτ dy

−2
∫ +∞

−∞

∫ 1

0
Lτ(y,G−1 ◦C−1(τ)) fY (y)dτdy ,
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and using the Fubini-Tonelli theorem, one obtains:

EY [CRPSG,C◦G ] = 2
∫ 1

0
EY [Lτ −Lτc ]dτ (9)

≥ 0.

ut

5.2 Impact on score: bounds on degradation

Under the assumptions A.2.1, A.3.2.1, A.3.2.2, A.3.2.3, A.3.2.4, A.3.2.5 and A.3.2.6
we prove (6) and (7).

Proof. adding and substracting EY [Lτ(Y,G−1(τc)) ] to EY [L τ̂c −Lτ ], we obtain:

EY [L τ̂c −Lτ ] = EY [Lτ(Y,G−1(Qτ)) ]−EY [Lτ(Y,G−1(τc)) ]

+EY [Lτ(Y,G−1(τc)) ]−EY [Lτ(Y,G−1(τ)) ] ,

and finally:

EY [L τ̂c −Lτ ] = EY,e[Lτ(Y,G−1
e (Qτ)) ]−EY,e[Lτ(Y,G−1

e (τc)) ]−EY [Lτ −Lτc ].

To begin with, we treat the third term on the right side. We have:

EY,e[Lτ,τc ] =
∫ G−1

e (τ)

y=G−1
e (τc)

[Fe(y)− τ ]dy .

Using the change of variable y = G−1
e (z) and taking the absolute value, we find:

|EY,e[Lτ,τc ]|=
∣∣∣∣∫ τ

z=τc

(Fe ◦G−1
e (z)− τ)

1
ge(G−1

e (z))
dz
∣∣∣∣ .
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Now, one needs to distinguish two cases.

If τ > τc, one has:

|EY,e[Lτ,τc ] | =
∫

τ

z=τc

∣∣∣∣(Fe ◦G−1
e (z)− τ)

1
ge(G−1

e (z))

∣∣∣∣ dz

≤
∫

τ

z=τc

∣∣(Fe ◦G−1
e (z)− τ)

∣∣ ξ dz .

Since |Fe(z)−Ge(z) | ≤ ε, ∀z ∈ R, ∀e ∈ E, one obtains |Fe ◦G−1
e (z)− z | ≤ ε,

∀z ∈ [0,1], ∀e ∈ E and then:

• if z = τ , one has
∣∣Fe ◦G−1

e (τ)− τ
∣∣≤ ε ,

• if z = τc,
∣∣Fe ◦G−1

e (τc)− τ)
∣∣= ∣∣Fe ◦G−1

e (τc)− τc + τc− τ
∣∣.

Moreover, one has:

|τc− τ | =
∣∣∣∣∑

e
pe
(

τc−Fe ◦G−1
e (τc)

)∣∣∣∣
≤∑

e
pe
∣∣Fe ◦G−1

e (τc)− τc
∣∣

≤ ε ,

and finally: ∣∣Fe ◦G−1
e (τc− τ)

∣∣ ≤ ∣∣Fe ◦G−1
e (τc)− τc

∣∣+ |τc− τ |

≤ 2ε .

One deduces, when τ > τc:

|EY,e[Lτ,τc ] | ≤ 2(τ− τc )ε ξ .

When τ < τc, one obtains:

|EY,e[Lτ,τc ] | ≤
∫

τc

z=τ

∣∣(Fe ◦G−1
e (z)− τ)

∣∣ ξ dz ,
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and using the same arguments as previously:

|EY,e[Lτ,τc ] | ≤ 2(τc− τ )ε ξ .

Hence, one concludes that:

|EY,e[Lτ,τc ] | ≤ 2 |τ− τc | ε ξ .

To finish, replacing EY,e[Lτ,τc ] in (8), we have:

|EY [Lτ −Lτc ] | ≤ 2ε
2

ξ .

Now let’s focus on the remainder on the right side. First, we only focus on a
particular e. Thus, we are interested in :

EY [Lτ(Y,G−1
e (Qτ)) ]−EY [Lτ(Y,G−1

e (τc)) ]≡ EY,e[L τ̂c −Lτc ].

For ease of notation and comprehension, we suppress e in the notation since there
is no confusion. So, we have:

EY [L τ̂c −Lτc ] =

(
1
2
− τ

)
EY
[
G−1(Qτ)−G−1(τc)

]
+

1
2

EY
[
|Y −G−1(Qτ)|− |Y −G−1(τc)|

]
.

We find:∣∣EY [L τ̂c −Lτc ]
∣∣ ≤ ∣∣∣∣12 EY

[
|Y −G−1(Qτ)|− |Y −G−1(τc)|−G−1(Qτ)+G−1(τc)

]∣∣∣∣
+(1− τ)

∣∣EY
[
G−1(Qτ)−G−1(τc)

]∣∣ .
Let’s focus on the second term on the right side. Using a Taylor series approx-

imation around τc ∈ [0,1] and the Taylor-Lagrange formula for the remainder, one
has:

G−1(Qτ) = G−1(τc)+
1

g(G−1(τc))
(Qτ − τc)+

g
′
(γ)

g(γ)3
(Qτ − τc)

2

2
,

with γ = τc +(Qτ − τc)θ , and 0 < θ < 1.
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And so

(1− τ)
∣∣EY

[
G−1(Qτ)−G−1(τc)

]∣∣≤ (1− τ)α ξ 3

2
λ

n
.

Now, one can study the first term on the right side. Some useful remarks before
the next: one can easily see that the study of such a function can be restricted to a
study on the interval Iy :=]−∞,G−1(τc)], since we can find results on the interval
[G−1(τc),∞[ using the same arguments.

Let’s define G−1(Qτ) ≡ Zτ , G−1
τc ≡ G−1(τc) and f

G−1
τc

Y ≡ fY (G−1(τc)), for ease
of notation.

Thus, we are interested in calculating:

1
2

∫ G−1
τc

y=−∞

fY (y) (EZτ
[ |G−1

τc −Zτ | + |Zτ − y| ]−G−1
τc + y)︸ ︷︷ ︸

=EZτ
[ |Zτ−y|−Zτ ]+y

dy .

(10)

However, the function studied in the integral is complicated to work with. So, one
will prefer to use its integral version, that is,

EZτ
[ |Zτ − y|−Zτ ]+ y =

∫ y

u=−∞

d
du

(EZτ
[ |Zτ −u|−Zτ ]+u)du .

For the bounds of the integral, the upper one is obvious. To justify the lower one,
it is important to note that lim EZτ

[ |Zτ − y|−Zτ ]+ y = 0, y→−∞.

Indeed, one has:

EZτ
[ |Zτ − y|−Zτ ]+ y =

∫ y

z=−∞

(y− z)h(z)dz+
∫

∞

z=y
(z− y)h(z)dz

+
∫

∞

z=−∞

(y− z)h(z)dz

=
∫ y

z=−∞

2(y− z)h(z)dz

= 2yH(y)−
∫ y

z=−∞

2zh(z)dz ,
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with h and H the p.d.f and the c.d.f of the variable Zt . If the variable Zτ has a finite
mean, lim ,h(y) = 0, y→−∞, and thus it is clear that the choice of−∞ for the lower
bound of the integral is the good one.

At this stage, it is not easy to see the usefulness of the transformation, but it will
be after the following calculus:

d
du

(EZτ
[ |Zτ −u|−Zτ ]+u) = 1+

d
du

(∫ u

z=−∞

(u− z)h(z)dz
)

+
d

du

(∫
∞

z=u
(z−u)h(z)dz

)
.

Finally, we have:

d
du

(EZτ
[ |Zτ −u|−Zτ ]+u) =

∫ u

z=−∞

h(z)dz−
∫

∞

z=u
h(z)dz+1

= H(u)− (1−H(u))+1

= 2H(u).

Now, it is clear that this transformation could help us for the calculus of (10) since
it is equivalent to study:

∫ G−1
τc

y=−∞

fY (y)
(∫ y

u=−∞

H(u)du
)

dy≡ Half Int.

A difficulty remains, though. Indeed, fY in unknown, and in consequence, not easy

to work with. That’s why, at first, one will use f
G−1

τc
Y for our calculus, and then we

will study the impact of such a manipulation.

Let’s start with the first task. Using an integral by part on Half Int:

∫ G−1
τc

y=−∞

f
G−1

τc
Y︸ ︷︷ ︸
u′

(∫ y

u=−∞

H(u)du
)

︸ ︷︷ ︸
v

dy .
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One obtains:

Half Int =
[

y f
G−1

τc
Y

(∫ y

u=−∞

H(u)du
)]G−1

τc

y=−∞

−
∫ G−1

τc

y=−∞

y f
G−1

τc
Y H(y)dy

=
∫ G−1

τc

u=−∞

f
G−1

τc
Y [G−1

τc −u ]︸ ︷︷ ︸
u′

H(u)︸︷︷︸
v

du

=

[
f

G−1
τc

Y

(
uG−1

τc −
u2

2

)
H(u)

]G−1
τc

u=−∞

−
∫ G−1

τc

u=−∞

f
G−1

τc
Y

(
uG−1

τc −
u2

2

)
h(u)du .

Since
(

uG−1
τc −

u2

2

)
=

(
(u−G−1

τc )2

2 − (G−1
τc )2

2

)
, we have:

Half Int = f
G−1

τc
Y

(∫ G−1
τc

u=−∞

(u−G−1
τc )2

2
h(u)du

)
.

Now, using the change of variable G(u) = z, a Taylor series approximation
around τc and the Taylor-Lagrange formula, one has the following approximation
for Half Int:

f
G−1

τc
Y
2

∫
τc

z=0

[
1

g(G−1
τc )2

(z− τc)
2 +

g
′
(γ)

g(G−1
τc )g(γ)3

(z− τc)
3 +

g
′
(γ)2

4g(γ)6 (z− τc)
4

]
φ(y)dy ,

with φ the p.d.f of the random variable Qτ . Using the Jensen inequality and since
0≤ z≤ τc, we find:

|Half Int| ≤
f

G−1
τc

Y
2

[
ξ 2

2
λ

n
+

αξ 4

2
λ

n
+

α2ξ 6

8
λ

n

]

≤ 1
2

Cint λ

n
.
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Since λ

n , which is the variance of the random variable Qτ , is decreasing with n,
let’s study:

∆∫ f ≡

∣∣∣∣∣
∫ G−1

τc

u=−∞

( fY (y)− f
G−1

τc
Y )

(∫ y

u=−∞

H(u)du
)

dy

∣∣∣∣∣ .
Since one supports the hypothesis that f

′
Y is bounded, using the mean value the-

orem, one has:

∆∫ f ≤
∫ G−1

τc

y=−∞

| fY (y)− f
G−1

τc
Y |

(∫ y

u=−∞

H(u)du
)

dy

≤
∫ G−1

τc

y=−∞

M (G−1
τc − y)︸ ︷︷ ︸

u′

(∫ y

u=−∞

H(u)du
)

︸ ︷︷ ︸
v

dy ,

and thus,

∆∫ f ≤ M

[(yG−1
τc −

y2

2

) ∫ y

u=−∞

H(u)du
]G−1

τc

y=−∞

−
∫ G−1

τc

y=−∞

(
yG−1

τc −
y2

2

)
H(y)dy



= M

(
(G−1

τc )2

2

∫ G−1
τc

u=−∞

H(u)du+
∫ G−1

τc

u=−∞

(
(u−G−1

τc )2

2
−

(G−1
τc )2

2

)
H(u)du

)

= M
∫ G−1

τc

u=−∞

H(u)︸︷︷︸
v

(u−G−1
τc )2

2︸ ︷︷ ︸
u′

du

= M

[ (u−G−1
τc )3

6
H(u)

]G−1
τc

u=−∞

−
∫ G−1

τc

u=−∞

(u−G−1
τc )3

6
h(u)du

 .
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Finally, we obtain with the same change of variable and Taylor approximation as
previously:

∆∫ f ≤
M
6

∫
τc

z=0

[
1

g(G−1
τc ))

(τc− z)+
g
′
(γ)

2g(γ)3 (τc− z)2

]3

φ(z)dz

≤ M
6

[
ξ 3

2
λ

n
+

3ξ 3α

4
λ

n
+

3ξ 3α2

8
λ

n
+

ξ 3α3

16
λ

n

]

≤ 1
2

Cs λ

n
.

Thus, one has
∣∣EY,e[L τ̂c −Lτc ]

∣∣≤ (Cint+Cs)λ
n . Since Cint and Cs do not depend on

e, this result remains meaningful when we are interested in the conditional expecta-

tion with respect to the random variable E and so
∣∣EY [L τ̂c −Lτ ]

∣∣≤ 2ε2 ξ + C λ

n .

Moreover, using (9), we prove (7) ut


