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We address the calibration constraint of probability forecasting. We propose a generic method for recalibration, which allows us to enforce this constraint. It remains to be known the impact on forecast quality, measured by predictive distributions sharpness, or specific scores. We show that the impact on the Continuous Ranked Probability Score (CRPS) is weak under some hypotheses and that it is positive under more restrictive ones. We used this method on temperature ensemble forecasts and compared the quality of the recalibrated forecasts with that of the raw ensemble and of a more specific method, that is Ensemble Model Output Statistics (EMOS). Better results are shown with our recalibration rather than with EMOS in this case study.

Introduction

Due to the increasing need for risk management, forecasting is shifting from point forecasts to density forecasts. Density forecast is an estimate of the conditional probability distribution. Thus, it provides a complete estimate of uncertainty, in contrast to point forecast, which is not concerned whith uncertainty. Two alternative ways to evaluate density forecast exist.

• The first one was proposed by T. Gneiting: Probabilistic forecasting aims to maximize the sharpness of the predictive distributions, subject to calibration, on the basis of the available information set. Calibration means predictive distributions are consistent with observations, it is more formally defined in [START_REF] Gneiting | Probabilistic forecasting[END_REF]; sharpness refers to the concentration of the density forecast, and even in the survey paper of T. Gneiting, it is not formally defined. An important feature of this framework is that we face a multi-objective problem, which is difficult. • The second way is the use of a scoring rule, which assesses simultaneously calibration and sharpness. Concerning the well-known CRPS scoring rule, Hersbach [START_REF] Hersbach | Decomposition of the continuous ranked probability score for ensemble prediction systems[END_REF] showed that it can be decomposed into three parts: reliability (or calibration) part, resolution (or sharpness) part, and uncertainty, which measures the intrinsic difficulty of the forecast. Bröcker [START_REF] Bröcker | Reliability, sufficiency, and the decomposition of proper scores[END_REF] generalized this result to any proper score, that is any score which is minimal if the forecasted probability distribution is the true one (w.r.t the available information). Recently, Wilks [START_REF] Wilks | Enforcing calibration in ensemble postprocessing[END_REF] proposed to add an extra miscalibration penalty, in order to enforce calibration in ensemble postprocessing. Nevertheless, even if the score we use mixes calibration and sharpness, the framework is essentially different from the first one.

Besides these two alternative ways of evaluation, probabilistic forecast is mainly used in two different contexts: finance and economics, and weather forecast. In finance and economics, calibration is the unique objective, so a recent survey on "Predictive density evaluation" [START_REF] Corradi | Predictive density evaluation[END_REF] is in fact entirely devoted to the validation of the calibration, without any hint of sharpness. In weather forecast, both ways of evaluation are used. For a quick view on forecasting methods in atmospheric sciences, one can look at [START_REF] Wilks | Statistical methods in the atmospheric sciences[END_REF]. In the works of T. Gneiting [START_REF] Gneiting | Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation[END_REF] [7], and in the seminal work of Krzysztofowicz [START_REF] Krzysztofowicz | Bayesian processor of output: a new technique for probabilistic weather forecasting[END_REF], the goal is to improve sharpness, while preserving calibration. Nevertheless, one can state that there is no formal test of calibration in these works. In [START_REF] Fortin | Probabilistic forecasting from ensemble prediction systems: Improving upon the best-member method by using a different weight and dressing kernel for each member[END_REF], the only measure used is the CRPS, and [START_REF] Gogonel | Improving the calibration of the best member method using quantile regression to forecast extreme temperatures[END_REF] addresses exclusively the calibration issue.

Here, we are interested in the first method of evaluation: calibration constraint and sharpness objective. Indeed, risk management involves many stakeholders and thus, calibration is a key feature of trust between stakeholders since it impacts all of them. For example, EDF also faces a regulatory constraint: the French technical system operator imposes that the probability of employing exceptional means (e.g., load shedding) to meet the demand for electricity must be lower than 1% for each week (RTE, 2004), so EDF has to prove the calibration of its forecasts. Even inside EDF, many different business units may be involved in the management of a given risk, so calibration is compulsory to obtain confidence between risk management stakeholders.

The consequence is that we face a multi-criterion problem, the goal of our contribution is to allow us to enforce the calibration constraint, in a generic way. Furthermore, we show that, even if the evaluation framework is the proper score use, recalibrating leads in many cases to an improvement, and to a very limited loss in other cases.

The remainder of this chapter will be organized as follows. The next section explains the principle of the method. The third part provides some theoretical results while the fourth is devoted to a case study.

Principle of the method

The Probability Integral Transform (PIT, Rosenblatt, 1952) is usually a measure of the calibration of density forecasts. Indeed, if Y ∼ F and is continue, the random variable F(Y ) ∼ U[0, 1]. Thus, we can find in the literature many tests based on this transformation to evaluate the correct specification of a density forecast. In our case, it is used firstly to recalibrate the forecasts.

Let's look at the following case: let E be the set of all possible states of the world; for each forecasting time j the forecaster knows the current state of the world e( j), and uses it to forecast. For example, in the case of a statistical regression model, E is the set of the possible values of the regressors, in the case of the post-processing of an weather forecasting model, E is the ensemble. The conditional estimated distribution is G e , whereas the true one is F e . So the PIT series is:

PIT ≡ G e( j) (Y j ) j . • A.2.1: G e is invertible ∀ e ∈ E.
If E is discrete, we assume that the frequency of appearance of each state of the world e is p e . Then, under the assumption A.2.1, the c.d.f of the PIT is:

C(y) ≡ Pr( G(Y) ≤ y) ≡ ∑ e p e F e • G -1 e (y).
Note that all the results obtained under the hypothesis that E is discrete are still valid in continuous case, even if we only treat the discrete case in this article.

• A.2.2: F is invertible.

We propose to use C to recalibrate the forecasts. For each quantile τ ∈ [0, 1], we use the original model to forecast the quantile τ C , such that Pr( G(Y) ≤ τ c ) = τ. We remark that this implies τ c = C -1 (τ). This correction makes sense since under the assumptions A.2.1 and A.2.2:

Pr(C • G(Y) ≤ y) = Pr( G(Y) ≤ C -1 (y)) = C •C -1 (y) = y,
which means that the recalibrated forecasts are uniformly distributed on the interval [0,1].

Note that this method is close to the quantile-quantile correction as in [START_REF] Michelangeli | Probabilistic downscaling approaches : Application to wind cumulative distribution functions[END_REF] but here, we are concerned by PIT recalibration, which allows us to consider the conditional case.

Impact on global score

If we evaluate our method on the basis of calibration, it ensures this constraint is enforced. But it is important to know if our method is still useful even if one of the probability forecasting users prefers to use scores, for example the Continuous Ranked Probability Score (CRPS).

The CRPS:

CRPS(G, x) = +∞ -∞ (G(y) -1 {x ≤ y} ) 2 dy ,
with G a function and x the observation, is used to evaluate the whole distribution, since it is minimized by the true c.d.f of X.

However, since we have:

CRPS(G, x) = 2 1 0 L τ (x, G -1 (τ))dτ , (1) 
as shown in [START_REF] Ben Taieb | Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression[END_REF], with L τ the Pinball-Loss function :

L τ (x, y) = τ(x -y)1 {x ≥ y} + (y -x)(1 -τ)1 {x < y} ,
with y the forecast, x the observation and τ ∈ [0, 1] a quantile level, and that L τ is easier to work with, we use this scoring rule to obtain results on CRPS.

L τ is used to evaluate quantile forecasts. Indeed, it is a proper scoring for the quantile of level τ, since its expectation is minimized by the true quantile of the distribution of X.

To begin with, we will prove that under some hypotheses, our correction improves systematically the quality of the forecasts in an infinite sample. Then we will show that under less restrictive hypotheses, our correction deteriorates only slightly-in the worst case-the quality of the forecasts in a more realistic case, e.g finite sample.

∑ e p e η e (F -1 e (τ))

2 as max η e → 0, (2) 
with p e the frequency of appearance of the state e.

This result allows us to find conditions for improvement of the expectation of the Pinball-Loss score, with additional following conditions.

• A.3.1.5: η or f -1 is a constant, or max e (•)/min e (•) < 3 + 2 √ 2 for both η e and f -1 e , ∀ e ∈ E,

• A.3.1.6: the correlation between η and f -1 , σ f -1 or σ η is null. Here the correlation is used as a descriptive statistics notation, even if the series η and f -1 are deterministic. The null correlation means that the difference between the true probability distribution function and the model have the same magnitude in low and in high density regions.

Under the assumption A.3.1.5 or

A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E ∀ y ∈ R; |η e (y)| ≤ ν, we show that (proof in Appendix): 0 ≤ E Y [ L τ -L τ c ] and (3) 
0 ≤ E Y [CRPS G,C•G ] , (4) with 
E Y [CRPS G,C•G ] ≡ E Y [CRPS(G, Y) -CRPS(C • G, Y) ].
In other words, with those restrictions, our recalibration systematically improves the quality of the forecasts. Indeed, remember that the expectation of the Pinball-Loss score is minimized by the true quantile of the distribution of Y and negatively oriented. Thus, the lower the expectation of the Pinball-Loss score, the better.

Impact on score: bounds on degradation

In reality, we cannot obtain the corrected probability level τ c ∈ [0, 1], and we need to estimate it. If we want to upper bound the degradation, we can study the more realistic case of

E Y [L τ c -L τ ] ≡ E 1 n n ∑ j=1 L τ (y j , G -1 j ( τ c )) -L τ (y j , G -1 j (τ)) , (5) 
with τ, τ c ∈ [0, 1]. In our case study, τ c is obtained empirically, on the basis of the available PIT values. Thus, we have a consistant estimator of τ c and one can rewrite (5

) such as E Y [ L τ (Y, G -1 (Q τ )) ] -E Y [ L τ (Y, G -1 (τ)) ],
with Q τ a random variable converging in distribution to a Normal distribution with mean τ c and a variance decreasing at the rate 1 n .

In such a case, it is still possible to obtain bounds concerning the error induced by our correction. Under the assumptions A. 

• A.3.2.1: F e and G e are C 2 ∀ e ∈ E. • A.3.2.2: ∀ y ∈ R, ∀ e ∈ E, |F e (y) -G e (y)| ≤ ε, with ε ∈ [0, 1]. • A.3.2.3: the derivatives of G e are lower bounded ∀ e ∈ E , ∀ τ ∈ [0, 1] by 1/ξ , on the intervals [G -1 e (0 ∨ (τ -ε)), G -1 e (1 ∧ (τ + ε))] , with ξ ∈ ]0, +∞[. • A.3.2.4: ∀ e ∈ E, ∀ τ ∈ [0, 1], f e (G -1 e (τ c )) ≤ β , with β ∈ ]0,
E Y [L τ c -L τ ] ≤ 2 ε 2 ξ + C λ n and (6) 
| E Y [CRPS G,C•G ]| ≤ 2 2 ε 2 ξ + C λ n (7) with C = (1-τ)αξ 3 2 +C int +C abs , C int = ξ 2 β 2 1 + αξ 2 + α 2 ξ 4 4
,

C abs = M ξ 3 6 1 + 3ξ 3 α 2 + 3ξ 3 α 2 4 + ξ 3 α 3 8
and λ n , the variance of Q τ

This inequality shows that our recalibration deteriorates only slightly the quality of the forecasts in the worst case. Obviously, it also shows that our method improves only slightly the quality, but remember that our goal is to enforce the validity constraint, which is achieved.

Case study

We use our method on ensemble forecasts data set from the European Centre for Medium-Range Weather Forecasts (ECMWF). One can see in [START_REF] Gneiting | Calibration of medium-range weather forecasts[END_REF] that the statistical post-processing of the medium range ECMWF ensemble forecast has been addressed many times. The extended range (32 days instead of 10 days) has been addressed in some studies, but with the same methods and tools. We will show here that our recalibration method, despite its genericness, is competitive with a standard post-processing method. We dispose of temperature forecasts in a 3-dimensional array. The first one represents the date of forecasts delivery. The forecasts were made every Monday and Thursday from 11/02/13 to 02/02/17. Since 3 observations are missing, we have 413 dates of forecasts delivery. The second dimension is the number of the scenario in the ensemble member, and we have 51 scenarios. The third dimension is the forecast horizon. Since we have 32 days sampled with a forecast every 3 hours, it produces 256 horizons.

We study the calibration and compare the CRPS expectation using directly the ensemble forecast, the so-called Ensemble Model Output Statistics (EMOS) method and our recalibration method with a Cauchy Kernel dressing for the ensembles. We choose a Cauchy Kernel in order to address problems with the bounds of the ensembles. Indeed, a lot of observations were out of the bounds of the ensemble, which produces a lot of PIT with value 0 or 1. Thus, to avoid this problem, we need to use a Kernel with heavy tail.

During the last 12 years, the ECMWF has changed its models 27 times, which means a change every 162 days on average. Thus, it is important to use a train sample significally smaller than 162 days. However, it is also important to dispose of enough observations to obtain a consistant estimator of τ c . Our method obtains good results with 30 days used for the recalibration but the algorithm to minimize in order to find the parameters of the EMOS in the R package EnsembleMOS doesn't converge if we use less than 60 days (at least with our data set). Thus, we chose to use 60 days for the recalibration.

To recalibrate the forecasts for a particular forecasting day and a particular horizon (remember that we have 256 horizons), we use the forecasts made for the same horizon, over the 60 previous dates of forecast delivery for the two methods. However, with our method, we use a linear interpolation based on the PIT series formed by these 60 previous days to recalibrate the forecasts. The linear interpolation is also used to calculate the different quantile levels when we are not working with EMOS (in that case, for the recalibration or to calculate the quantile, we use the Normale distribution with the fitted parameters). Note that the hypotheses concerning only G e are verified ∀ e ∈ E. Besides, even if we cannot verifiy the other hypotheses, we show expected results

Let's start with the calibration property: As expected, we can see in table 1 that our method allows us the test of validity to be passed while the use of the raw ensemble fails. The EMOS also failed to pass the test. Clearly, our method is useful to ensure the calibration property. But how about the quality of the density forecast? In order to evaluate the impact of our correction on the forecast quality, we are interested in the CRPS expectation.

We can see in figure 1 that EMOS as well as our method are more efficient than the raw ensemble for little horizons. However, the EMOS deteriorates clearly the quality of the forecasts when the horizon grows, contrarily to our method which deteriorates only slightly the quality of the forecasts, when it is the case. Fig. 1 Comparison of EMOS and our method CRPS expectation with that of raw ensemble The empty line corresponds to our method and the dashed one to the EMOS Thus, this study highlights perfectly the usefulness of our method, which is very simple to use. Indeed, it shows that it allows us to ensure the validity constraint, with a limited negative impact on the quality.
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Here are gathered all the proofs concerning the results presented in the chapter. The first section is concerned by proofs of results in an infinite sample and the second by result in a finite sample.

Lemma 1. E Y [ L τ -L τ c ] = ∑ e p e G -1 e (τ) G -1 e (τ c )
(F e (y)τ)dy , with τ,τ c ∈ [0, 1] and p e the frequency of appearance of the state e. Under the assumption A.2.1, we prove Lemma 1.

Proof. We have:

E Y [ L τ -L τ c ] = ∑ e p e E Y [ L τ (Y, G -1 e (τ)) ] -E Y [ L τ (Y, G -1 e (τ c ) ] . (8) 
First, we only focus on a particular e. Thus, we are interested in :

E Y [ L τ (Y, G -1 e (τ)) ] -E Y [ L τ (Y, G -1 e (τ c ) ] ≡ E Y,e [ L τ,τ c ].
For ease of notation and comprehension, we suppress e in the notation since there is no confusion. Moreover, we suppose, for ease of notation again (and since we 11 obtain the same result if we inverse the inequality) that G -1 (τ) ≤ G -1 (τ c ). So, we have:

E Y [ L τ,τ c ] = +∞ -∞ [y -G -1 (τ)] τ + [G -1 (τ) -y] 1 {y≤G -1 (τ)} f Y (y) dy - +∞ -∞ [y -G -1 (τ c )] τ + [G -1 (τ c ) -y] 1 {y≤G -1 (τ c )} f Y (y) dy = [G -1 (τ c ) -G -1 (τ)] τ + [G -1 (τ) -G -1 (τ c )] F • G -1 (τ) -G -1 (τ c ) [ F • G -1 (τ c ) -F • G -1 (τ) ] + G -1 (τ c ) y=G -1 (τ) y v f Y (y) u dy .
Using integral by parts, we have:

E Y [ L τ,τ c ] = [G -1 (τ c ) -G -1 (τ)] τ + G -1 (τ) y=G -1 (τ c ) F(y) dy = G -1 (τ) y=G -1 (τ c ) [ F(y) -τ ] dy .
Replacing it in (8) finishes the demonstration

Impact on score: conditions for improvement

In this section, the reader can find the proofs of results mentioned in Sect.3.1 of the chapter. We first demonstrate how to approximate the difference of L τ expectation before showing that under some hypotheses, our correction improves systematically the quality of the forecasts.

Rewriting the difference of L τ expectation

Under the assumptions A.2.1, A. Proof. Remember: Let H be a functional, h a function, α a scalar and δ an arbitrary function.

We can write the expression of the functional evaluated at f + δα as follow:

H[h + δ α] = H[h] + dH[h + δ α] dα | α=0 α + 1 2 d 2 H[h + δ α] dα 2 | α=0 α 2 + • • • + Rem(α) ,
with Rem(α) the remainder. Denote: For ease of notation, denote ∆ PL e [F e + δ e α] ≡ ∆ PL F,δ,e . Choosing H = ∆ PL e , h = F e and η e = αδ e (even if we use αδ e in the developpemnt in order to use functional derivatives, directional derivatives and the implicit function theorem), we have:

∆ PL[h] = ∑ e p e h -1 e (τ)
∆ PL F,δ,e ∼ ∆ PL e [F e ] + d∆ PL F,δ,e dα | α=0 α + 1 2 d 2 ∆ PL F,δ,e dα 2 | α=0 α 2 + Rem e (α) = ∂ ∆ PL F,δ,e ∂ α | α=0 , τ c =τ + ∂ ∆ PL F,δ,e ∂ τ c | α=0 , τ c =τ dτ c dα α + ∂ 2 ∆ PL F,δ,e ∂ α 2 | α=0 , τ c =τ + 2 ∂ 2 ∆ PL F,δ,e ∂ α∂ τ c | α=0 , τ c =τ dτ c dα α 2 2 + ∂ 2 ∆ PL F,δ,e ∂ τ 2 c | α=0 , τ c =τ dτ c dα 2 + ∂ ∆ PL F,δ,e ∂ τ c | α=0 , τ c =τ d 2 τ c dα 2 α 2 2
+Rem e (α) .

To calculate dτ c dα , we will use the equation which link τ c and α:

∑ e p e F e • (F e + δ e α) -1 (τ c ) = τ.
Using the implicit function theorem, we find:

dτ c dα = ∑ e p e δ e • F -1 e (τ)
Now, we need to calculate partial derivatives: 

∂ ∆ PL F,δ,e ∂ α | α=0 , τ c =τ = ∂ (F e +δ e α) -1 (τ) (F e +δ e α) -1 (τ c ) (F e (y) -τ)dy ∂ α | α=0 , τ c =τ = 0 ;
d 3 ∆ PL F,δ,e dα 3 = ∂ ∆ PL F,δ,e ∂ τ c d 3 τ c dα 3 + 3 ∂ 2 ∆ PL F,δ,e ∂ τ c ∂ α d 2 τ c dα 2 + 3 ∂ 2 ∆ PL F,δ,e ∂ τ 2 c d 2 τ c dα 2 dτ c dα + ∂ 3 ∆ PL F,δ,e ∂ α 3 + 3 ∂ 3 ∆ PL F,δ,e ∂ τ c ∂ α 2 dτ c dα + 3 ∂ 3 ∆ PL F,δ,e ∂ τ 2 c ∂ α dτ c dα 2 + ∂ 3 ∆ PL F,δ,e ∂ τ 3 c dτ c dα 3 .
Let's calculate the partial derivatives of order 3:

∂ 3 ∆ PL F,δ,e ∂ α 3 | α=0 , τ c =τ = 0 ; ∂ 3 ∆ PL F,δ,e ∂ τ 3 c | α=0 , τ c =τ = 2 f e • F -1 e (τ) f e • F -1 e (τ)
;

∂ 3 ∆ PL F,δ,e ∂ τ 2 c ∂ α | α=0 , τ c =τ = -2 f e • F -1 e (τ) f e • F -1 e (τ) 3 (δ e • F -1 e (τ)) -2 δ e • F -1 e (τ) f e • F -1 e (τ) 2 ; ∂ 3 ∆ PL F,δ,e ∂ τ c ∂ α 2 | α=0 , τ c =τ = f e • F -1 e (τ) f e • F -1 e (τ) 3 δ e • F -1 e (τ) 2 -2 δ e • F -1 e (τ) f e • F -1 e (τ) 2 δ e • F -1 e (τ)
.

Moreover, we have:

d 2 τ c dα 2 = ∑ e p e 2δ e • F -1 e (τ) -f e • F -1 e (τ) f e • F -1 e (τ)
δ e • F -1 e (τ).
Since η e , its first, second and third derivatives are finite in F -1 e (τ), it is also the case for δ e and the partial derivatives are finite. Furthermore, f e , δ e and their derivatives are bounded (since η e and their derivatives are bounded), which implies that the second derivatives of ∆ PL e [F e + δ e α] are also bounded. Thus, under these conditions, M exists. Then, we can write (αδ e ) 2 = 0, αδ e → 0, which shows that Rem e (α) is negligible compared to

d 2 ∆ PL F,δ,e dα 2 .
Moreover, since ∀ e ∈ E the functions F e are C 3 and the functions f e and their derivatives are bounded by a constant which doesn't depend on e, ∀ e ∈ E, the development is valid for all directions and thus, since η e = G e -F e , we have: To finish the demonstration, remark that Lemma1 proves that:

E Y [ L τ -L τ c ] ∼ ∑ e p e η e (F -1 e (τ)) f e (F -1 e (τ) 
∆ PL[G] = E Y [ L τ -L τ c ].

Systematic improvement of the quality

Under the assumption A. 

Proof. Prove (3) is equivalent to show that ∆ PL[G]
is positive, and if we rewrite:

∆ PL[G] ∼ (2E[ f -1 η] -E[ f -1 ]E[η])E[η] ,
it is clear that the assumption A. However, we need more argumentation to understand the complete utility of the assumption A.3.1.5. Let's look at one of the two worst cases: only two states of the world, the correlation coefficient ρ = -1, η > 0 (the other case is when ρ = 1 and η < 0 ) and at each bound of the support of δ and f -1 , there is half of the probability mass. We also consider that the ratios between max and min of the supports are equal. If we define max e = M and min e = M r , one has the following equation:

1 2 = 2(r 2 + 1) (r + 1) 2 -1.
Solving this equation in r produces the expected result concerning the ratio between max and min values of η and f -1 . Now, let's prove (4). According to (1), we have:

E Y [CRPS G,C•G ] = 2 +∞ -∞ 1 0 L τ (y, G -1 (τ)) -L τ (y, G -1 •C -1 (τ))dτ f Y (y)dy.
We can rewrite :

E Y [CRPS G,C•G ] = 2 +∞ -∞ 1 0 L τ (y, G -1 (τ)) f Y (y) dτ dy -2 +∞ -∞ 1 0 L τ (y, G -1 •C -1 (τ)) f Y (y) d τdy ,
and using the Fubini-Tonelli theorem, one obtains:

E Y [CRPS G,C•G ] = 2 1 0 E Y [ L τ -L τ c ]dτ (9) 
≥ 0.

Impact on score: bounds on degradation

Under the assumptions A. 6) and (7).

Proof. adding and substracting E

Y [ L τ (Y, G -1 (τ c )) ] to E Y [L τ c -L τ ], we obtain: E Y [L τ c -L τ ] = E Y [ L τ (Y, G -1 (Q τ )) ] -E Y [ L τ (Y, G -1 (τ c )) ] +E Y [ L τ (Y, G -1 (τ c )) ] -E Y [ L τ (Y, G -1 (τ)) ] ,
and finally:

E Y [L τ c -L τ ] = E Y,e [ L τ (Y, G -1 e (Q τ )) ] -E Y,e [ L τ (Y, G -1 e (τ c )) ] -E Y [ L τ -L τ c ].
To begin with, we treat the third term on the right side. We have:

E Y,e [ L τ,τ c ] = G -1 e (τ) y=G -1 e (τ c )
[ F e (y)τ ] dy .

Using the change of variable y = G -1 e (z) and taking the absolute value, we find:

|E Y,e [ L τ,τ c ]| = τ z=τ c (F e • G -1 e (z) -τ) 1 g e (G -1 e (z))
dz .

Now, one needs to distinguish two cases.

If τ > τ c , one has:

| E Y,e [ L τ,τ c ] | = τ z=τ c (F e • G -1 e (z) -τ) 1 g e (G -1 e (z)) dz ≤ τ z=τ c (F e • G -1 e (z) -τ) ξ dz . Since | F e (z) -G e (z) | ≤ ε, ∀z ∈ R, ∀e ∈ E, one obtains | F e • G -1 e (z) -z | ≤ ε, ∀z ∈ [0, 1],
∀e ∈ E and then:

• if z = τ, one has F e • G -1 e (τ) -τ ≤ ε, • if z = τ c , F e • G -1 e (τ c ) -τ) = F e • G -1 e (τ c ) -τ c + τ c -τ .
Moreover, one has:

| τ c -τ | = ∑ e p e τ c -F e • G -1 e (τ c ) ≤ ∑ e p e F e • G -1 e (τ c ) -τ c ≤ ε ,
and finally:

F e • G -1 e (τ c -τ) ≤ F e • G -1 e (τ c ) -τ c + | τ c -τ | ≤ 2 ε .
One deduces, when τ > τ c :

| E Y,e [ L τ,τ c ] | ≤ 2 ( τ -τ c ) ε ξ .
When τ < τ c , one obtains:

| E Y,e [ L τ,τ c ] | ≤ τ c z=τ (F e • G -1 e (z) -τ) ξ dz ,
and using the same arguments as previously:

| E Y,e [ L τ,τ c ] | ≤ 2 ( τ c -τ ) ε ξ .
Hence, one concludes that:

| E Y,e [ L τ,τ c ] | ≤ 2 | τ -τ c | ε ξ .
To finish, replacing E Y,e [ L τ,τ c ] in (8), we have:

| E Y [ L τ -L τ c ] | ≤ 2 ε 2 ξ .
Now let's focus on the remainder on the right side. First, we only focus on a particular e. Thus, we are interested in :

E Y [ L τ (Y, G -1 e (Q τ )) ] -E Y [ L τ (Y, G -1 e (τ c )) ] ≡ E Y,e [L τ c -L τ c ].
For ease of notation and comprehension, we suppress e in the notation since there is no confusion. So, we have:

E Y [L τ c -L τ c ] = 1 2 -τ E Y G -1 (Q τ ) -G -1 (τ c ) + 1 2 E Y |Y -G -1 (Q τ )| -|Y -G -1 (τ c )| .
We find:

E Y [L τ c -L τ c ] ≤ 1 2 E Y |Y -G -1 (Q τ )| -|Y -G -1 (τ c )| -G -1 (Q τ ) + G -1 (τ c ) +(1 -τ) E Y G -1 (Q τ ) -G -1 (τ c ) .
Let's focus on the second term on the right side. Using a Taylor series approximation around τ c ∈ [0, 1] and the Taylor-Lagrange formula for the remainder, one has:

G -1 (Q τ ) = G -1 (τ c ) + 1 g(G -1 (τ c )) (Q τ -τ c ) + g (γ) g(γ) 3 (Q τ -τ c ) 2 2 , with γ = τ c + (Q τ -τ c ) θ , and 0 < θ < 1.
And so

(1 -τ) E Y G -1 (Q τ ) -G -1 (τ c ) ≤ (1 -τ) α ξ 3 2 λ n .
Now, one can study the first term on the right side. Some useful remarks before the next: one can easily see that the study of such a function can be restricted to a study on the interval I y :=] -∞, G -1 (τ c )], since we can find results on the interval [G -1 (τ c ), ∞[ using the same arguments.

Let's define G -1 (Q τ ) ≡ Z τ , G -1 τ c ≡ G -1 (τ c ) and f G -1 τc Y ≡ f Y (G -1 (τ c ))
, for ease of notation. Thus, we are interested in calculating:

1 2 G -1 τc y=-∞ f Y (y) ( E Z τ [ |G -1 τ c -Z τ | + |Z τ -y| ] -G -1 τ c + y) =E Zτ [ |Z τ -y|-Z τ ]+y dy . (10) 
However, the function studied in the integral is complicated to work with. So, one will prefer to use its integral version, that is,

E Z τ [ |Z τ -y| -Z τ ] + y = y u=-∞ d du (E Z τ [ |Z τ -u| -Z τ ] + u) du .
For the bounds of the integral, the upper one is obvious. To justify the lower one, it is important to note that lim E

Z τ [ |Z τ -y| -Z τ ] + y = 0, y → -∞.
Indeed, one has:

E Z τ [ |Z τ -y| -Z τ ] + y = y z=-∞ (y -z) h(z) dz + ∞ z=y (z -y) h(z) dz + ∞ z=-∞ (y -z) h(z) dz = y z=-∞ 2(y -z) h(z) dz = 2y H(y) - y z=-∞ 2z h(z) dz ,
with h and H the p.d.f and the c.d.f of the variable Z t . If the variable Z τ has a finite mean, lim , h(y) = 0, y → -∞, and thus it is clear that the choice of -∞ for the lower bound of the integral is the good one.

At this stage, it is not easy to see the usefulness of the transformation, but it will be after the following calculus:

d du (E Z τ [ |Z τ -u| -Z τ ] + u) = 1 + d du u z=-∞ (u -z) h(z) dz + d du ∞ z=u (z -u) h(z) dz .
Finally, we have:

d du (E Z τ [ |Z τ -u| -Z τ ] + u) = u z=-∞ h(z) dz - ∞ z=u h(z) dz + 1 = H(u) -( 1 -H(u) ) + 1 = 2 H(u).
Now, it is clear that this transformation could help us for the calculus of (10) since it is equivalent to study: for our calculus, and then we will study the impact of such a manipulation.

G -1 τc y=-∞ f Y (y)
Let's start with the first task. Using an integral by part on Half Int:

G -1 τc y=-∞ f G -1 τc Y u y u=-∞ H(u) du v dy .
One obtains:

Half Int = y f G -1 τc Y y u=-∞ H(u) du G -1 τc y=-∞ - G -1 τc y=-∞ y f G -1 τc Y H(y) dy = G -1 τc u=-∞ f G -1 τc Y [ G -1 τ c -u ] u H(u) v du = f G -1 τc Y u G -1 τ c - u 2 2 H(u) G -1 τc u=-∞ - G -1 τc u=-∞ f G -1 τc Y u G -1 τ c - u 2 2 h(u) du . Since u G -1 τ c -u 2 2 = (u-G -1 τc ) 2 2 - (G -1 τc ) 2 2
, we have:

Half Int = f G -1 τc Y G -1 τc u=-∞ (u -G -1 τ c ) 2 2
h(u) du . Now, using the change of variable G(u) = z, a Taylor series approximation around τ c and the Taylor-Lagrange formula, one has the following approximation for Half Int:

f G -1 τc Y 2 τ c z=0 1 g(G -1 τ c ) 2 (z -τ c ) 2 + g (γ) g(G -1 τ c ) g(γ) 3
(zτ c ) 3 + g (γ) 2 4g(γ) 6 (zτ c ) 4 φ (y)dy , with φ the p.d.f of the random variable Q τ . Using the Jensen inequality and since 0 ≤ z ≤ τ c , we find:

|Half Int| ≤ f G -1 τc Y 2 ξ 2 2 λ n + αξ 4 2 λ n + α 2 ξ 6 8 λ n ≤ 1 2
C int λ n .

Since λ n , which is the variance of the random variable Q τ , is decreasing with n, let's study: Since one supports the hypothesis that f Y is bounded, using the mean value theorem, one has: 

∆ f ≡ G -1
∆ f ≤ G -1
∆ f ≤ M   y G -1 τ c - y 2 2 y u=-∞ H(u) du G -1 τc y=-∞ - G -1 τc y=-∞ y G -1 τ c - y 2 2 H(y)dy   = M (G -1 τ c ) 2 2 G -1 τc u=-∞ H(u) du + G -1 τc u=-∞ (u -G -1 τ c ) 2 2 - (G -1 τ c ) 2 2 H(u) du = M G -1 τc u=-∞ H(u) v (u -G -1 τ c ) 2 2 u du = M   (u -G -1 τ c ) 3 6 H(u) G -1 τc u=-∞ - G -1 τc u=-∞ (u -G -1 τ c ) 3 6 h(u) du   .
Finally, we obtain with the same change of variable and Taylor approximation as previously:

∆ f ≤ M 6 τ c z=0 1 g(G -1 τ c ))
(τ cz) + g (γ) 2g(γ) 3 (τ cz) . Since C int and C s do not depend on e, this result remains meaningful when we are interested in the conditional expectation with respect to the random variable E and so E Y [L τ c -L τ ] ≤ 2 ε 2 ξ + C λ n . Moreover, using (9), we prove (7)

  +∞[ and f e the derivatives of F e . • A.3.2.5: f e are continuous over the interval [-∞, G -1 e (τ c )] ∀ e ∈ E and their derivatives are bounded, i.e ∀y ∈ R, ∀ e ∈ E, | f e (y)| ≤ M, with M ∈ ]0, +∞[ and f e the derivative of F e . • A.3.2.6: the derivatives of g e are bounded, i.e ∀y ∈ R, ∀ e ∈ E, |g e (y)| ≤ α, with α ∈ ]0, +∞[ and g e the derivative of G e .

  3.1.1, A.3.1.2, A.3.1.3 and A.3.1.4 and using functional derivatives and the implicit function theorem, we prove (2).

h - 1 e

 1 (τ c ) (F e (y)τ)dy = ∑ e p e ∆ PL e [h e ] .

3 ≤

 3 Rem e (α). Now, let's focus on the remainders. Following the Taylor-Lagrange inequality, if M such that d 3 ∆ PL F,δ,e dα M exists, we have | Rem e (α) | ≤ M|α 3 | 3! . Let' s find conditions for the existence of M. The third derivative is:

d 3 ∆ 3 =

 33 PL F,δ,e dα M 1 δ 3 e and hence |Rem e (α)| ≤ |M 1 ||αδ e | 3 3! which implies that lim Rem e (α)

2 as

 2 max η e → 0.

3 . 1 . 5

 315 or A.3.1.6, if ∃ ν ≥ 0 (sufficiently small) ∀ e ∈ E ∀ y ∈ R; |η e (y)| ≤ ν, we show (3) and (4):

  3.1.6 ensures the positivity of ∆ PL[G].

  du dy ≡ Half Int. A difficulty remains, though. Indeed, f Y in unknown, and in consequence, not easy to work with. That's why, at first, one will use f G -1 τc Y

  ) du dy .

Table 1

 1 Success rate to 5% K-S test

		Raw Ensemble	EMOS	Our Method
	Success rate in %	14	0.39	96

We have calculated the PIT series for each horizon (256), and use 5% K-S test for each of them. The success rate is the percentage of horizons passing the test.

  2.1, A.3.2.1, A.3.2.2, A.3.2.3, A.3.2.4, A.3.2.5 and A.3.2.6 we prove (

  Thus, one has EY,e [L τ c -L τ c ] ≤ (C int +C s )λ

														3
														2	φ (z) dz
	≤	M 6	ξ 3 2	λ n	+	3ξ 3 α 4	λ n	+	3ξ 3 α 2 8	λ n	+	ξ 3 α 3 16	λ n
	≤	1 2	C s λ n	.								
											n