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ABSTRACT

Harmonic/percussive source separation (HPSS) consists in separat-
ing the pitched instruments from the percussive parts in a music
mixture. In this paper, we propose to apply the recently introduced
Masker-Denoiser with twin networks (MaD TwinNet) system to this
task. MaD TwinNet is a deep learning architecture that has reached
state-of-the-art results in monaural singing voice separation. Herein,
we propose to apply it to HPSS by using it to estimate the mag-
nitude spectrogram of the percussive source. Then, we retrieve
the complex-valued short-time Fourier transform of the sources by
means of a phase recovery algorithm, which minimizes the recon-
struction error and enforces the phase of the harmonic part to follow
a sinusoidal phase model. Experiments conducted on realistic music
mixtures show that this novel separation system outperforms the
previous state-of-the art kernel additive model approach.

Index Terms— harmonic/percussive source separation, deep
neural networks, MaD TwinNet, phase recovery, sinusoidal model

1. INTRODUCTION

Audio source separation [1] consists in extracting the underlying
sources that add up to form the observed audio mixture. Har-
monic/percussive source separation (HPSS) [2] is a particular case
of the audio source separation task which aims at segregating the
percussive sounds (such as drum hits) from the pitched instrument
components (such as guitar and piano notes). HPSS is a useful
preprocessing tool for many applications spanning from music
information retrieval to digital audio effects. For instance, the per-
cussive components of a music mixture can be used to estimate the
beat of a music recording [3]. On the other hand, the performance of
audio effects, such as time-stretching, can be significantly improved
by manipulating the harmonic components only [4].

HPSS techniques commonly act on a time-frequency (TF) rep-
resentation of the data, such as the short-time Fourier transform
(STFT). An example of STFT magnitude is illustrated in Fig. 1, in
which the structure of music instruments is more prominent: the
percussive sounds are usually localized in time and spread across
frequencies (vertical lines), while harmonic components are sparse
in frequency and are activated over time (horizontal lines).

Traditional methods for HPSS consists in filtering the data in
the TF domain in order to exploit this particular structure of per-
cussive and harmonic sound events. Median filtering [5] operates in
both directions (along frequencies and time) of mixture magnitude
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Fig. 1. Percussive (left) and harmonic (right) signals spectrograms.

spectral representations to segregate vertical and horizontal compo-
nents. It was later improved by using several different filters and
inheriting the additivity constrain for the sources, resulting into the
kernel additive model (KAM) [6, 7]. These particular shapes in the
TF domain are also used in an optimization framework as regulariza-
tions to estimate the sources [2, 8]. Similarly in [9], the phase infor-
mation of the mixture signal is used to exploit the structure of har-
monic and percussive instruments for refining the TF filtering pro-
cess. Alternatively, models based on non-negative matrix factoriza-
tion (NMF) [10] have been applied to this task. Specific NMF meth-
ods for the task of HPSS include the use of constraints such as spar-
sity of percussive sources along the direction of time [11], structured
factorization models that take into account the quasi-stationarity of
harmonic sources [12] and extensions of NMF that account for the
non-stationarity of percussive components [13, 14].

However, state-of-the-art results for source separation are ob-
tained with deep learning methods [15, 16], which learn the model
from the given data. They have shown particularly successful for the
task of singing voice separation [17, 18, 19]. Recently, a DNN-based
HPSS method has been introduced [20] and is based on learning a
set of convolution kernels that perform the separation. That method
has shown significant improvement over traditional approaches.

In this paper, we propose a novel DNN-based method for HPSS.
The method is based on the Masker-Denoiser architecture [18]
regularized using the twin networks (MaD TwinNet) as proposed
in [19]. This DNN topology was initially designed for monaural
singing voice separation, achieving state-of-the-art results. Given
a set of observed mixture magnitude spectra, MaD TwinNet can
generate source dependent TF masks that are applied to the mixture
magnitude spectra, yielding the magnitude spectrogram of the target
source. In the context of this work, we use MaD TwinNet for the task
of HPSS, by training it in a supervised scenario to yield estimates of
the percussive magnitude spectrogram.

Since phase information plays an important role not only in the
source identification process [9] but also for the source reconstruc-



Fig. 2. Illustration of the Mad TwinNet system (adapted from [19]).
With green color is the Masker, with light brown the Denoiser, and
with magenta the TwinNet regularization.

tion [21], we propose to apply a recently-introduced phase recov-
ery algorithm that exploits a sinusoidal model [21] and combine it
with the magnitude estimates obtained with MaD TwinNet. Given
that percussive sounds are not well represented with mixtures of
sinusoids, we adapt this algorithm to the specific task of HPSS,
where the sinusoidal model is only promoted for the harmonic part.
We test the proposed technique on professionally produced music
recordings, that are used in the signal separation evaluation cam-
paign (SiSEC) [22]. The approach based on MaD TwinNet com-
bined with the phase recovery algorithm proposed in [21] yields re-
sults that surpass the KAM algorithm [22] by a large margin.

The rest of this paper is structured as follows. Section 2 presents
the MaD TwinNet system which predicts the percussive magnitude
spectrum. Section 3 introduces the phase recovery algorithm. The
experimental setup is detailed in Section 4. The results are reported
in Section 5, and Section 6 draws some concluding remarks.

2. MAD TWINNET
We present here MaD TwinNet, which is used as a core system in
our separation framework. Indeed, this deep learning model has
shown to be the most up-to-date for singing voice separation [19],
and therefore we propose to use it for an HPSS task. This archi-
tecture is a compound system which consists of two components,
namely the Masker and the Denoiser, to which is added a regulariza-
tion based on twin networks (TwinNet) [23], and it is illustrated in
Fig. 2. We briefly explain it hereafter, and more details on it can be
found in [18, 19].

2.1. The Masker and the Denoiser
The input to the Masker is the magnitude spectrogram of the mix-
ture, Vx, and the output of its last layer is a TF mask that is applied
to Vx. This masking process produces the output of the Masker,
which is a first estimate of the percussive magnitude spectrogram,
denoted V̂′1. The latter is used as an input to the Denoiser, whose
last layer outputs a TF filter that acts as a denoising filter upon V̂′1.
The output of the denoising process in the Denoiser is the final es-
timate of the magnitude spectrogram, V̂1. Both the Masker and the
Denoiser are based on the denoising auto-encoders framework [24].
More specifically, the Masker consists of a bi-directional recurrent
neural network (RNN) encoder (RNNenc), that accepts as an input
the magnitude spectrogram of the mixture Vx and iterates over the
rows of Vx. The output of the RNNenc is used in a residual connec-
tion with the input Vx, producing Henc. Henc is used as an input to

a forward RNN decoder (RNNdec), which outputs the hidden states
H1

dec. The latter is then given as an input to a sparsifying transform,
i.e. a feed-forward neural network (FNNM) followed by a rectified
linear unit (ReLU), in order to produce a TF mask M. This mask,
along with the mixture’s magnitude spectrogram Vx, are multiplied
by a skip-filtering connection to produce the first estimate of the tar-
geted magnitude spectrogram:

V̂′1 = M�Vx, (1)

where � is the Hadamard product.
V̂′1 is expected to contain interferences from other music

sources [17, 18]. Therefore, MaD utilizes another module, the
Denoiser, on top of the Masker, which consists of two feed-forward
layers denoted FNNenc and FNNdec. FNNenc and FNNdec implement
an encoding and a decoding stage respectively, and each one is
followed by a ReLU non-linearity. The output of the FNNdec and
V̂′1 are multiplied by a skip-filtering connection, producing the final
magnitude spectrogram by the MaD architecture, V̂1.

2.2. Twin network regularization
Music signals are governed by long term temporal patterns, like
melody and rhythm. RNNs may appear as an appropriate tool for
accounting for such temporal patterns. However, the learning signal
from RNNs can be dominated by local time structures that impede
the learning of the longer term temporal patterns of a musical sig-
nal [25, 26]. There are various approaches that aim at overcoming
this issue [27, 28, 29]. The most recent one is the twin networks
(TwinNet) regularization, which uses the hidden states of a back-
ward RNN to regularize the hidden states of a forward RNN [23],
while both of the RNNs are trained to minimize the same cost. This
regularization results in enforcing the forward RNN to take into ac-
count the future evolution of the signal (provided by the hidden states
of the backward RNN) and thus, make the learning signal for the for-
ward RNN not to be governed by local structures [23]. More details
can be found in the paper in which TwinNet is introduced [23].

For the current work, TwinNet is used to regularize the hidden
states of the RNNdec in the Masker. TwinNet is implemented with a
backward RNN and a sparsifying transform, replicating (hence the
term “twin”) the RNNdec, the FNNM, and the ReLU of the Masker.
TwinNet is optimized jointly with the MaD, having the same target
and cost function as the Masker does. The input to the TwinNet is
the Henc. The regularization of the RNNdec using TwinNet is utilized
by minimizing the following cost:

Ltwin =
∑
t

||ψ(hdect)− htwint ||, (2)

where ψ is a trainable affine transform, htwint is the hidden state of
the backward RNN of the TwinNet and ||.|| is the Frobenius norm.

3. PHASE RECOVERY
Once we have an estimate of the percussive magnitude spectrum V̂1,
we retrieve the harmonic magnitude as V̂2 = Vx − V̂1. Then, it is
necessary to estimate the phase of those sources in order to retrieve
estimates of their complex-valued STFT. A baseline approach [19]
consists in using the mixture’s phase:

∀j ∈ {1, 2}, Ŝj = V̂j � e�i∠X, (3)

where ∠. denotes the complex argument and .� denotes the element-
wise matrix power. Retrieving the complex-valued STFTs by using
the mixture’s phase is justified in TF bins where only one source
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is active. Indeed, in such a scenario, the mixture is equal to the
active source. However, this is not the case in TF bins where sources
overlap, which is common in music signals. This motivates the use
of improved phase recovery techniques for addressing this issue.

Here, we propose to adapt the phase retrieval algorithm intro-
duced in [21] to the specific case of HPSS. This approach aims at
minimizing the mixing error:

C(Ŝ) = ||X− Ŝ1 − Ŝ2||2, (4)

subject to |Ŝj | = V̂j ∀j. An iterative scheme is obtained by using
the auxiliary function method which provides updates on Ŝj . In a
nutshell, it consists in computing the mixing error at one given iter-
ation, distributing this error onto the estimated sources with a gain:

Gj =
V̂�2
j

V̂�2
1 + V̂�2

2

, (5)

and then normalizing the obtained variables so that their magnitude
is equal to the target magnitude values V̂j .

The key idea of the algorithm is to initialize the phase of the har-
monic track estimates Ŝ2 with the values provided by the sinusoidal
model, which is widely used for representing audio signals [30].
This approach consists in modeling the harmonic part as a sum of
sinusoids, from which we can explicitly compute the STFT phase.
This leads to the following the phase unwrapping (PU) equation for
the phase of the harmonic part denoted Φ2:

φ2,ft ≈ φ2,ft−1 + 2πlνft, (6)

where l is the hop size of the STFT and νft is the normalized fre-
quency in channel f and time frame t. As in [21], these frequencies
are estimated by means of a quadratic interpolated FFT [31] on the
log-spectra of the harmonic magnitude estimate V̂2. This estimation
is performed in each time frame in order to account for frequency
variations. Note that the model (6) is valid only under the assump-
tion that at most one sinusoidal component is active per frequency
channel, which we will assume to be the case here. For more details
about this model, we refer the interested reader to [21].

Therefore, we use this model to initialize the phase of the har-
monic component in our procedure. The phase of the percussive
track is initialized with the mixture’s phase. This results in a fast
procedure (mixture’s phase information is expected to be close to a
local minimum with respect to the true source) and the output esti-
mates benefit from the temporal continuity property of the sinusoidal
phase model. This procedure, denoted as PU-HPSS, is summarized
in Algorithm 1, where lower-case letters (e.g., v̂j,ft) correspond to
entries of matrices denoted in bold capital letters (e.g., V̂j).

4. EXPERIMENTAL SETUP

As audio material, we used the Demixing Secret Dataset (DSD100),
a semi-professionally mixed set of music songs used for the source
separation evaluation campaign (SiSEC) [22]. The dataset is split
into two sets (training and testing) consisting of 50 music recordings
each, sampled at 44100 Hz. For each recording, four music sources
are available: these are the bass, drums, vocals, and other tracks.
Using that information from each recording, we synthesize a mixture
of J = 2 sources: the percussive source is equal to the drums track,
and the harmonic source is obtained by summing the other tracks.
Those recordings are down-mixed to monaural signals by averaging
the two channels available.

Algorithm 1: PU-HPSS

Data: Mixture X, magnitudes V̂j , gains Gj according
to (5), and frequencies ν

Result: Estimated sources Ŝj
/* Initialize first frame with the

mixture’s phase */

1 ∀j, ŝj,f0 ← vj,f0e
i∠xf0 ;

2 for t := 1 to T − 1 do
/* Sinusoidal model only for the

harmonic part */
3 φ1,ft ← ∠xft;
4 φ2,ft ← ∠ŝ2,ft−1 + 2πlνft;
5 ∀j, ŝj,ft ← v̂j,fte

iφj,ft ;
/* Iterative loop */

6 for it := 1 to max iter do
7 yj,ft ← ŝj,ft + gj,ft(xft −

∑
j ŝj,ft);

8 ŝj,ft ← v̂j,ft
yj,ft

|yj,ft|
;

9 end
10 end

For training MaD TwinNet, we use the ground truth STFT mag-
nitude of the percussive source as target and we optimize the param-
eters of our method to minimize the generalized Kullback-Leibler
divergence between the predicted and the ground truth STFT magni-
tude spectra. The divergence is computed at both the outputs of the
Masker and the Denoiser, and then linearly combined as proposed
in the original paper of MaD TwinNet [19]. We use the same Mad
TwinNet architecture as in [19] and we set the sequence length equal
to 60 time frames, and the context information for the encoding stage
in the Masker equal to 10 time frames. For computing the mixture
and target source magnitudes, two settings are considered. In the
first setting, the STFT is computed with a 46 ms long Hamming
window, with a padding factor of 2 and a hop size of 9 ms. In the
second setting, the STFT is computed with a 92 ms long Hamming
window, with no zero-padding and a hop size of 23 ms. The first set-
ting was used in the original MaD TwinNet paper [19] and is meant
to yield good quality magnitude estimates. The second setting cor-
responds to a scenario where the phase recovery algorithm performs
better [21]. However, this could result in sacrificing the quality of
magnitude estimation, thus reducing the overall performance.

We test MaD TwinNet combined with the mixture phase for
estimating the complex STFTs, and we also test the proposed PU-
HPSS, which uses 50 iterations. As a comparison baseline, we con-
sider the unsupervised KAM method [7] which is consider as one
the most state-of-the-art methods for HPSS. Even though the DNN-
based framework in [20] would have been an appropriate comparison
reference, we were unfortunately not able to re-implement it.

Source separation performance is measured with the signal-
to-distortion, signal-to-interference, and signal-to-artifact ratios
(SDR, SIR, and SAR) [32] expressed in dB and calculated with
the mir eval Python toolbox [33]. Following the setup used in
the SiSEC challenge [22], the measures are computed on sliding
windows of 30 seconds with 15 second overlap.

In the spirit of reproducible research, the code of this experi-
mental study and MaD TwinNet are available online1,2.

1https://github.com/magronp/phase-hpss
2https://github.com/dr-costas/mad-twinnet
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Table 1. Median source separation performance over the DSD100 test dataset. Higher is better.
Percussive Harmonic Average

SDR SIR SAR SDR SIR SAR SDR SIR SAR

Setting 1
KAM 1.42 0.44 3.76 6.60 6.71 17.66 4.01 3.57 10.71
MaD TwinNet + mixture phase 3.35 4.65 6.10 8.62 14.22 10.75 5.99 9.44 8.43
MaD TwinNet + PU-HPSS 3.35 4.66 6.08 8.58 14.45 10.59 5.97 9.55 8.34

Setting 2
KAM 0.98 5.03 −1.17 6.35 6.58 18.51 3.66 5.80 8.67
MaD TwinNet + mixture phase 3.60 4.73 6.07 8.70 12.84 11.78 6.15 8.79 8.92
MaD TwinNet + PU-HPSS 3.59 4.76 6.00 8.69 13.11 11.57 6.14 8.94 8.78

5. RESULTS
The separation results on the DSD100 test set are presented in Ta-
ble. 1. For a subjective evaluation, there is an online demo with
the audio results of the paper3. Firstly, we observe that Mad Twin-
Net approach outperforms KAM in the percussive part in terms of
SDR, SIR and SAR, and also outperforms KAM in the harmonic es-
timates in terms of distortion and interference reduction. However,
KAM yields harmonic estimates which contain less artifacts than
Mad TwinNet in both settings. Overall, the DNN-based approach
yields better separation results on average in terms of SDR and SIR,
while KAM reduces artifacts in the first setting compared to MaD
TwinNet.

Secondly, we note that the PU-HPSS algorithm reduces the in-
terference compared to using the mixture’s phase, even though this is
at the cost of a very moderate drop in SAR and SDR. This highlights
the potential of such a sinusoidal model-based phase retrieval algo-
rithm for reducing interference in the estimated signals [34]. How-
ever, this improvement in SIR is relatively limited (approximately
0.1 dB on average). This confirms that the full potential of phase
recovery algorithms is only revealed when the magnitudes estimated
beforehand (here, with MaD TwinNet) are of relatively good qual-
ity [21].

A comparison between the two settings shed some light on how
to exploit the separation system at its best potential. Setting 2 leads
to overall better results in SDR and SIR for MaD TwinNet. This
setting also leads to a better SIR for the percussive part, but lower
for its harmonic counterpart. On average, this second setting leads
to better SDR and SAR results for the DNN-based technique, while
the first setting allows for more interference rejection, and a higher
SAR for the KAM method.

Finally, given those results, one should choose a method that is
adapted to the target application. If the main goal of the separation
is to reduce the overall artifacts and distortion, one should use MaD
TwinNet with the baseline mixture’s phase in setting 2 (in addition,
it is faster than setting 1). If one wants to specifically reduce the
artifacts in the harmonic track, then the KAM method is a suitable
choice. Finally, if the goal is to reduce interference, it is preferable
to use MaD TwinNet with PU-HPSS in the first setting.

6. CONCLUSION
In this work, we proposed a system for harmonic/percussive source
separation based on the MaD TwinNet architecture and further im-
proved with a phase recovery iterative algorithm. This system has
demonstrated significant improvement over the baseline KAM. In-
deed, MaD TwinNet is useful for reducing the overall distortion
compared to KAM, and using a phase recovery algorithm which ex-
ploits a sinusoidal model reduces interference in the estimates. Fu-
ture work will focus on analyzing the filters learned by Mad Twin-

3http://arg.cs.tut.fi/demo/hpss-madtwinnet

Net, as this architecture could be more optimally tuned for this spe-
cific task. Another interesting future research direction is the joint
estimation of magnitude and phase in a unified framework, rather
than in a two-stage approach. For instance, a Bayesian framework
inspired from [15, 35] has a great potential for tackling this issue.
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