
HAL Id: hal-01812138
https://hal.science/hal-01812138v1

Preprint submitted on 11 Jun 2018 (v1), last revised 9 Dec 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 4-choosable graph that is not (8 : 2)-choosable
Zdeněk Dvořák, Xiaolan Hu, Jean-Sébastien Sereni

To cite this version:
Zdeněk Dvořák, Xiaolan Hu, Jean-Sébastien Sereni. A 4-choosable graph that is not (8 : 2)-choosable.
2018. �hal-01812138v1�

https://hal.science/hal-01812138v1
https://hal.archives-ouvertes.fr


A 4-choosable graph that is not (8 : 2)-choosable∗

Zdeněk Dvořák† Xiaolan Hu‡ Jean-Sébastien Sereni§

Abstract

In 1980, Erdős, Rubin and Taylor asked whether for all positive inte-
gers a, b, and m, every (a : b)-choosable graph is also (am : bm)-choosable.
We provide a negative answer by exhibiting a 4-choosable graph that is
not (8 : 2)-choosable.

Coloring the vertices of a graph with sets of colors (that is, each vertex is
assigned a fixed-size subset of the colors such that adjacent vertices are assigned
disjoint sets) is a fundamental notion, which in particular captures fractional
colorings. The fractional chromatic number of a graph G can indeed be defined
to be the infimum (which actually is a minimum) of the ratios a/b such that,
if every vertex of G is replaced by a clique of order b and every edge of G is
replaced by a complete bipartite graph between the relevant cliques, then the
chromatic number of the obtained graph is at most a.

In their seminal work on list coloring, Erdős, Rubin and Taylor [2] raised
several intriguing questions about the list version of set coloring. Before stating
them, let us review the relevant definitions.

Set coloring. A function that assigns a set to each vertex of a graph is a
set coloring if the sets assigned to adjacent vertices are disjoint. For positive
integers a and b ≤ a, an (a : b)-coloring of a graph G is a set coloring with
range

({1,...,a}
b

)
, i.e., a set coloring that to each vertex of G assigns a b-element

subset of {1, . . . , a}. The concept of (a : b)-coloring is a generalization of the
conventional vertex coloring. In fact, an (a : 1)-coloring is exactly an ordinary
proper a-coloring.

A list assignment for a graph G is a function L that to each vertex v of G
assigns a set L(v) of colors. A set coloring ϕ of G is an L-set coloring if
ϕ(v) ⊆ L(v) for every v ∈ V (G). For a positive integer b, we say that ϕ is an
(L : b)-coloring of G if ϕ is an L-set coloring and |ϕ(v)| = b for every v ∈ V (G). If
such an (L : b)-coloring exists, then G is (L : b)-colorable. For an integer a ≥ b, we
say that G is (a : b)-choosable if G is (L : b)-colorable for every list assignment L
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such that |L(v)| = a for each v ∈ V (G). We abbreviate (L : 1)-coloring, (L : 1)-
colorable, and (a : 1)-choosable to L-coloring, L-colorable, and a-choosable,
respectively.

Questions and results. It is straightforward to see that if a graph is (a : b)-
colorable, it is also (am : bm)-colorable for every positive integerm: we can simply
replace every color in an (a : b)-coloring by m new colors. However, this argument
fails in the list coloring setting, leading Erdős, Rubin and Taylor [2] to ask whether
every (a : b)-choosable graph is also (am : bm)-choosable whenever m ≥ 1. A
positive answer to this question is sometimes referred to as “the (am : bm)-
conjecture”. Using the characterization of 2-choosable graphs found in loc. cit.,
Tuza and Voigt [4] provided a positive answer when a = 2 and b = 1. In the other
direction, Gutner and Tarsi [3] demonstrated that if k and m are positive integers
and k is odd, then every (2mk : mk)-choosable graph is also 2m-choosable.

Formulated differently, the question is to know whether every (a : b)-choosable
graph is also (c : d)-choosable whenever c/d = a/b and c ≥ a. This formulation
raises the same question when c/d > a/b, which was also asked by Erdős, Rubin
and Taylor [2]. About ten years ago, Gutner and Tarsi [3] answered this last
question negatively, by studying the kth choice number of a graph for large
values of k. More precisely, the kth choice number of a graph G is ch:k(G), the
least integer a for which G is (a : k)-choosable. Their result reads as follows.

Theorem 1 (Gutner & Tarsi, 2009). Let G be a graph. For every positive real ε,
there exists an integer k0 such that ch:k(G) ≤ k(χ(G) + ε) for every k ≥ k0.

As a direct corollary, one deduces that for all integers m ≥ 3 and ` > m, there
exists a graph that is (a : b)-choosable and not (` : 1)-choosable with a

b = m.
(To see this, one can for example apply Theorem 1 with ε = 1 to the disjoint
union of a clique of order m− 1 and a complete balanced bipartite graph with
choice number `+ 1.)

Another related result that should be mentioned here was obtained by Alon,
Tuza and Voigt [1]. They proved that for every graph G,

inf
{a
b

∣∣∣G is (a : b)-choosable
}

= inf
{a
b

∣∣∣G is (a : b)-colorable
}
.

In other words, the fractional choice number of a graph equals its fractional
chromatic number.

The purpose of our work is to provide a negative answer to Erdős, Rubin
and Taylor’s question when a = 4 and b = 1.

Theorem 2. There exists a graph G that is 4-choosable, but not (8 : 2)-choosable.

We build such a graph by incrementally combining pieces with certain
properties. Each piece is defined, and its relevant properties established, in the
forthcoming lemmas.

Gadgets and lemmas. A gadget is a pair (G,L0), where G is a graph and L0
is an assignment of lists of even size. A half-size list assignment for the gadget is
a list assignment L for G such that |L(v)| = |L0(v)|/2 for every v ∈ V (G). Let
us start the construction by a key observation on list colorings of 5-cycles.

2



Lemma 3. Consider the gadget (C,L0), where C = v1v2v3v4v5 is a 5-cycle,
L0(v1) = {1, 2, 5, 6}, L0(v2) = {1, 4, 5, 6}, L0(v3) = L0(v4) = {3, 4, 5, 6} and
L0(v5) = {2, 4, 5, 6}. Then C is L-colorable for every half-list assignment L such
that |L(v1) ∩ L(v3)| ≤ 1, but C is not (L0 : 2)-colorable.

Proof. The first statement is well known, but let us give the easy proof for
completeness: since |L(v1) ∩ L(v3)| ≤ 1, we have |L(v1) ∪ L(v3)| ≥ 3, and
thus L(v1) or L(v3) contains a color c6 not belonging to L(v2). By symmetry, we
can assume that c6 ∈ L(v1). We color v1 by c6 and then for i = 5, 4, 3, 2 in order,
we color vi by a color ci ∈ L(vi) \ {ci+1}. The resulting coloring is proper—we
have c2 6= c6, since c6 6∈ L(v2).

Suppose now that C has an (L0 : 2)-coloring, and for c ∈ {1, . . . , 6} let Vc
be the set of vertices of C on which the color c is used. Since two colors are
used on each vertex of C, we have

∑6
c=1 |Vc| = 10. On the other hand, Vc is an

independent set of a 5-cycle, and thus |Vc| ≤ 2 for every color c. Furthermore,
color 1 only appears in the lists of v1 and v2, which are adjacent in C. It follows
that |V1| ≤ 1. The situation is similar for color 2, which appears only in the lists
of v1 and v5, and also for color 3, which only appears in the lists of v3 and v4.
Consequently,

∑6
c=1 |Vc| ≤ 3 · 2 + 3 · 1 = 9, which is a contradiction.

Corollary 4. Consider the gadget (G1, L1), where G1 consists of a 5-cycle
C = v1v2v3v4v5 and a path v1xyv3, with L1(v1) = L1(v3) = {1, . . . , 6}, L1(v2) =
{1, 4, 5, 6}, L1(v4) = {3, 4, 5, 6}, L1(v5) = {2, 4, 5, 6}, L1(x) = {1, 2, 3, 4} and
L1(y) = {1, 2}. Then G1 is L-colorable for every half-list assignment L such
that L(v1) = L(v3), but G1 is not (L1 : 2)-colorable.

Proof. Let L be a half-list assignment for G1. First L-color y and x by colors
cy ∈ L(y) and cx ∈ L(x) \ {cy}, respectively. Since cx 6= cy and L(v1) = L(v3),
there exist sets L′(v1) ⊆ L(v1) \ {cx} and L′(v3) ⊆ L(v3) \ {cy} of size two such
that L′(v1) 6= L′(v3). Let L′(vi) = L(vi) for i ∈ {2, 4, 5}. Lemma 3 implies
that C is L′-colorable, which yields an L-coloring of G.

In an (L1 : 2)-coloring, the vertex y would have to be assigned {1, 2} and x
would have to be assigned {3, 4}, and thus the sets of available colors for v1 and
for v3 would have to be {1, 2, 5, 6} and {3, 4, 5, 6}, respectively. However, no
such (L1 : 2) coloring of C exists according to Lemma 3.

Next we construct auxiliary gadgets, which will be combined with the gadget
from Corollary 4 to deal with the case where L(v1) 6= L(v3). Let G be a graph,
let S be a subset of vertices of G and L a list assignment for G. An L-coloring
of S is a coloring of the subgraph of G induced by S. Moreover, if S′ is a
subset of vertices of G that contains S and ϕ′ is an L-coloring of S′, then ϕ′

extends ϕ if ϕ′|S = ϕ. Let (G,L0) be a gadget, let v1 and v3 be distinct vertices
of G, and let S be a set of vertices of G not containing v1 and v3. The gadget
is (v1, v3, S)-relaxed if every half-list assignment L satisfies at least one of the
following conditions.

(i) There exists an L-coloring ψ0 of {v1, v3} such that every L-coloring of S ∪
{v1, v3} extending ψ0 extends to an L-coloring of G.

(ii) L(v1) = L(v3) and there exists and L-coloring ψ0 of S such that every
L-coloring of S ∪ {v1, v3} extending ψ0 extends to an L-coloring of G.
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Figure 1: The gadget (G2, L2) of Lemma 5

Lemma 5. Consider the gadget (G2, L2) presented in Figure 1, where G2
consists of a 5-cycle C2 = v1u2v3u4u5, a vertex y1 adjacent to all vertices of C2,
a triangle y2y3y4, and an edge y1y2, with L2(v) = {1, . . . , 6} for every v ∈ V (C2),
L2(y1) = {1, . . . , 8}, L2(y2) = L2(y4) = {1, 2, 3, 4, 7, 8}, and L2(y3) = {1, 2, 3, 4}.
The gadget is (v1, v3, {y4})-relaxed, and ϕ(y4) ∩ {7, 8} 6= ∅ for every (L2 : 2)-
coloring ϕ of G2.

Proof. Let L be a half-list assignment for G2. If not all vertices of C2 have the
same list, then choose a color c ∈ L(y1) \ L(y2), and observe there exists an
L-coloring of G2[V (C2)∪{y1}] such that y1 has color c. Let ψ0 be the restriction
of this coloring to {v1, v3}. Clearly, every L-coloring of {v1, v3, y4} extending ψ0
extends to an L-coloring of G, and thus (i) holds.

If all the vertices of C2 have the same list (and hence in particular L(v1) =
L(v3)), then let c be a color in L(y1) \ L(v1). Observe that there exists an L-
coloring of G2[{y1, y2, y3, y4}] such that y1 has color c. Let ψ0 be the restriction
of this coloring to y4. Again, every L-coloring of {v1, v3, y4} extending ψ0 extends
to an L-coloring of G, and thus (ii) holds.

It remains to show that if ϕ is an (L2 : 2)-coloring of G2 then ϕ(y4)∩{7, 8} 6=
∅. Suppose, on the contrary, that ϕ(y4) ∩ {7, 8} = ∅. It follows that ϕ(y4) ∪
ϕ(y3) = {1, 2, 3, 4}, and hence ϕ(y2) = {7, 8}. As a result, ϕ(y1) ⊆ {1, . . . , 6}
and, by symmetry, we can assume that ϕ(y1) = {5, 6}. This implies that
ϕ(v) ⊆ {1, 2, 3, 4} for each v ∈ V (C2). In particular, ϕ|V (C2) is a (4 : 2)-coloring
of C2, which is a contradiction since the 5-cycle C2 has fractional chromatic
number 5/2.

Lemma 6. Consider the gadget (G3, L3), obtained from the gadget (G2, L2) of
Lemma 5 as follows (see Figure 2 for an illustration of G3). The graph G3
consists of G2 and for i ∈ {1, 2}, the vertices zi,1, . . . , zi,7; the edges y4zi,1
and y4zi,2; the edge zi,jzi,k for every j and every k such that 1 ≤ j < k ≤ 4
and (j, k) 6= (1, 2); the edges of the triangle zi,5zi,6zi,7 and the edge zi,4zi,5.
Let L3(v) = L2(v) for v ∈ V (G2), and for i ∈ {1, 2} let L3(zi,1) = {1, 2, 3, 6 + i},
L3(zi,2) = {4, 5, 6, 6 + i}, L3(zi,3) = {1, . . . , 6}, L3(zi,4) = {1, . . . , 8}, L3(zi,5) =
L3(zi,7) = {1, 2, 3, 4, 7, 8} and L3(zi,6) = {1, 2, 3, 4}. The gadget (G3, L3) is
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Figure 2: The graph G3 from Lemma 6

(v1, v3, {z1,7, z2,7})-relaxed, and ϕ(z1,7) = {7, 8} or ϕ(z2,7) = {7, 8} for every
(L3 : 2)-coloring ϕ of G3.

Proof. Let L be a half-list assignment for G3. The gadget (G2, L3|V (G2)) is
(v1, v3, {y4})-relaxed by lemma 5. Suppose first that (i) holds for the restriction
of L to G2 (with S = {y4}), and let ψ0 be the corresponding L-coloring of {v1, v3}.
For i ∈ {1, 2}, if L(zi,1) ∩ L(zi,2) 6= ∅, then let ci be a color in L(zi,1) ∩ L(zi,2).
Otherwise, |L(zi,1) ∪ L(zi,2)| = 4 > |L(zi,3)|, and thus we can choose a color
ci ∈ (L(zi,1)∪L(zi,2))\L(zi,3). Let c be a color in L(y4)\{c1, c2}. By (i) for G2,
we know that ψ0 extends to an L-coloring ψ of G2 such that ψ(y4) = c. If
L(zi,1) ∩ L(zi,2) 6= ∅, then color both zi,1 and zi,2 by ci, otherwise color one of
them by ci and the other one by an arbitrary color from its list that is different
from c. There are at least two colors in L(zi,4) distinct from the colors of zi,1
and zi,2, choose such a color c′i so that L(zi,5) \ {c′i} 6= L(zi,6). Color zi,4 by c′i
and extend the coloring to zi,3, which is possible by the choice of ci. Observe
that any L-coloring of zi,7 extends to an L-coloring of the triangle zi,5zi,6zi,7
where the color of zi,5 is not c′i. We conclude that (G3, L3) with the half-list
assignment L satisfies (i).

Suppose next that (ii) holds for the restriction of L to G2 (with S = {y4}),
and let ψ′0 be the corresponding L-coloring of y4. For i ∈ {1, 2}, greedily extend
ψ′0 to an L-coloring of zi,1, . . . , zi,7 in order, and let ψ0 be the restriction of
the resulting coloring to {z1,7, z2,7}. Observe that (G3, L3) with the half-list
assignment L satisfies (ii).

Finally, let ϕ be an (L3 : 2)-coloring of G3. Lemma 5 implies that ϕ(y4) ∩
{7, 8} 6= ∅. By symmetry, we can assume that 7 ∈ ϕ(y4). It follows that
ϕ(z1,1) ⊂ {1, 2, 3} and ϕ(z1,2) ⊂ {4, 5, 6}, and thus ϕ(z1,1) ∪ ϕ(z1,2) ∪ ϕ(z1,3) =
{1, . . . , 6}. Consequently, ϕ(z1,4) = {7, 8}, and ϕ(z1,5) is a subset of {1, 2, 3, 4}.
This yields that ϕ(z1,5)∪ϕ(z1,6) = {1, 2, 3, 4}, and therefore ϕ(z1,7) = {7, 8}.

Lemma 7. Consider the gadget (G4, L4) obtained from the gadget (G3, L3) of
Lemma 6 as follows (see Figure 3 for an illustration of G4). The graph G4
consists of G3; the three triangles w1w2w3 and wi,1wi,2wi,3 for i ∈ {1, 2}; and
the edges z1,7w1, z2,7w1, w3w1,1 and w3w2,1. Let L4(v) = L3(v) for v ∈ V (G3),
and for i ∈ {1, 2}, let L4(w1) = L4(w3) = L4(wi,1) = L4(wi,3) = {1, 2, 3, 4, 7, 8}
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Figure 3: The graph G4 from Lemma 7.

and L4(w2) = L4(wi,2) = {1, 2, 3, 4}. The gadget is (v1, v3, {w1,3, w2,3})-relaxed,
and ϕ(w1,3) = ϕ(w2,3) = {7, 8} for every (L4 : 2)-coloring ϕ of G4.

Proof. Let L be a half-list assignment for G4. The gadget (G3, L4|V (G3)) is
(v1, v3, {z1,7, z2,7})-relaxed by Lemma 5. Suppose first that (i) holds for the
restriction of L to G3 (with S = {z1,7, z2,7}), and let ψ0 be the corresponding
L-coloring of {v1, v3}. Choose a color c1 ∈ L(z1,7) so that L(w1) \ {c1} 6= L(w2).
If c1 ∈ L(w1), then choose c2 ∈ L(z2,7) \ (L(w1) \ {c1}), otherwise choose
c2 ∈ L(z2,7) so that L(w1) \ {c2} 6= L(w2). Choose a color c3 ∈ L(w3) so that
L(wi,1) \ {c3} 6= L(wi,2) for i ∈ {1, 2}. By (i) for G3, there exists an L-coloring
of G3 extending ψ0 and assigning ci to zi,7 for each i ∈ {1, 2}. Color w3 by c3
and observe the L-coloring can be extended to w1 and w2 thanks to the choice
of c1 and c2. Moreover, the choice of c3 ensures that for each i ∈ {1, 2}, we
can color wi,3 with any color in L(wi,3) and further extend the coloring to wi,1
and wi,2. We conclude that (G4, L4) with the half-list assignment L satisfies (i).

Suppose next that (ii) holds for the restriction of L to G4 (with S =
{z1,7, z2,7}), and let ψ′0 be the corresponding L-coloring of {z1,7, z2,7}. Greedily
extend ψ′0 to an L-coloring of w1, w2, w3, and wi,1, wi,2, wi,3 for i ∈ {1, 2}
in order, and let ψ0 be the restriction of the resulting coloring to {w1,3, w2,3}.
Observe that (G4, L4) with the half-list assignment L satisfies (ii).

Finally, let ϕ be an (L4 : 2)-coloring of G4. By Lemma 6 and by symmetry,
we can assume that ϕ(z1,7) = {7, 8}. Consequently, ϕ(w1) ⊂ {1, 2, 3, 4}, and
thus ϕ(w1)∪ϕ(w2) = {1, 2, 3, 4}, which yields that ϕ(w3) = {7, 8}. We conclude
analogously that ϕ(w1,3) = {7, 8} = ϕ(w2,3).

We can now combine (G1, L1) with (G4, L4) to obtain a gadget (G5, L5) that
is L-colorable from each half-list assignment L, but not (L5 : 2)-colorable.

Lemma 8. Consider the gadget (G5, L5) obtained from the gadgets (G1, L1) of
Corollary 4 and (G4, L4) of Lemma 7 as follows (see Figure 4 for an illustration
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Figure 4: The graph G5 from Lemma 8.

of G5). The graph G5 is obtained from the union of the graphs G1 and G4
(intersecting in {v1, v3}) by adding the edges w1,3v2, w1,3v4, w2,3x and w2,3y.
Let L5(v) = L4(v) for v ∈ V (G4), L5(v) = L1(v) for v ∈ V (G1) \ {v2, v4, x, y},
and L5(v) = L1(v) ∪ {7, 8} for v ∈ {v2, v4, x, y}. Then G5 is L-colorable for
every half-list assignment L, but not (L5 : 2)-colorable.

Proof. Let L be a half-list assignment for G5. The gadget (G4, L5|V (G4)) is
(v1, v3, {w1,3, w2,3})-relaxed by Lemma 7. Suppose first that (i) holds for the
restriction of L to G4 (with S = {w1,3, w2,3}), and let ψ0 be the corresponding
L-coloring of {v1, v3}. Greedily extend ψ0 to an L-coloring ψ of G1. Choose c1 ∈
L(w1,3) \ {ψ(v2), ψ(v4)} and c2 ∈ L(w2,3) \ {ψ(x), ψ(y)}. By (i) for G4, there
exists an L-coloring of G4 that extends ψ0 and assigns to wi,3 the color ci for
each i ∈ {1, 2}. This yields, together with ψ, an L-coloring of G5.

Suppose next that (ii) holds for the restriction of L to G4 (with S =
{w1,3, w2,3}), and let ψ0 be the corresponding L-coloring of {w1,3, w2,3}. Note
that L(v1) = L(v3) in this case. Corollary 4 implies that G1 has an L-
coloring ψ such that ψ(v2) ∈ L(v2) \ {ψ0(w1,3)}, ψ(v4) ∈ L(v4) \ {ψ0(w1,3)},
ψ(x) ∈ L(x) \ {ψ0(w2,3)}, and ψ(y) ∈ L(y) \ {ψ0(w2,3)}. By (ii), the restriction
of ψ ∪ ψ0 to {v1, v3, w1,3, w2,3} extends to an L-coloring of G4, which together
with ψ gives an L-coloring of G5.

7



It remains to show that G5 is not (L5 : 2)-colorable. If ϕ were an (L5 : 2)-
coloring of G5, then by Lemma 7 we would have ϕ(w1,3) = ϕ(w2,3) = {7, 8},
and thus the restriction of ϕ to G1 would be an (L1 : 2)-coloring, thereby
contradicting Corollary 4.

The final graph. We are now in a position to prove Theorem 2 by simply
using a standard construction to ensure uniform lengths of lists.

Proof of Theorem 2. Let G be a graph and L′ an assignment of lists of size 8
obtained as follows. Let K be a clique with vertices r1, . . . , r4, and let L′(r1) =
· · · = L′(r4) = {9, . . . , 16}. For every (L′ : 2)-coloring ψ of K, let Gψ be a copy
of the graph G5 from the gadget (G5, L5) of Lemma 8, and for each vertex v ∈
V (Gψ) such that |L5(v)| = 2k with k ∈ {2, 3}, we add the edges vr1, . . . , vr4−k

and let L′(v) = L5(v) ∪
⋃4−k
i=1 ψ(ri). If G had an (L′ : 2)-coloring ϕ, then

letting ψ be the restriction of ϕ to K, the restriction of ϕ to Gψ would be an
(L5 : 2)-coloring of G5, thereby contradicting Lemma 8.

Consider now a list assignment L for G such that |L(v)| = 4 for every v ∈
V (G). Let ϕ be any L-coloring of K. For each (L′ : 2)-coloring ψ of K, let Lψ
be the list assignment for Gψ obtained by, for each v ∈ V (Gψ), removing the
colors of neighbors in K according to ϕ, and possibly removing further colors to
ensure that |Lψ(v)| = |L5(v)|/2. By Lemma 8, the graph Gψ has an Lψ-coloring.
The union of these colorings and ϕ yields an L-coloring of G.

Concluding remarks. It follows from Theorem 2 that for each integer a ≥ 4,
there exists a graph Ga that is a-choosable but not (2a : 2)-choosable—if we have
such a graph Ga, taking the disjoint union of

(2(a+1)
2
)

copies of Ga and adding a
vertex adjacent to all other vertices yields Ga+1, by an argument analogous to
the list uniformization procedure used for the proof of Theorem 2. It is natural
to ask whether there exists a graph that is 3-choosable but not (6 : 2)-choosable.
We believe this to be the case; in particular, Corollary 4 only requires lists of size
at most 6. However, it does not seem easy to construct a gadget that satisfies
the properties stated in Lemma 5 without using a vertex with a list of size 8.
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