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Abstract Advances in �uorescence microscopy enable monitoring larger brain areas in-vivo with13

�ner time resolution. The resulting data rates require reproducible analysis pipelines that are14

reliable, fully automated, and scalable to datasets generated over the course of months. Here we15

present CAIMAN, an open-source library for calcium imaging data analysis. CAIMAN provides16

automatic and scalable methods to address problems common to pre-processing, including motion17

correction, neural activity identi�cation, and registration across di�erent sessions of data collection.18

It does this while requiring minimal user intervention, with good performance on computers19

ranging from laptops to high-performance computing clusters. CAIMAN is suitable for two-photon20

and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the21

performance of CAIMAN we collected a corpus of ground truth annotations from multiple labelers22

on nine mouse two-photon datasets. We demonstrate that CAIMAN achieves near-human23

performance in detecting locations of active neurons.24

25

Introduction26

Understanding the function of neural circuits is contingent on the ability to accurately record and27

modulate the activity of large neural populations. Optical methods based on the �uorescence28

activity of genetically encoded calcium binding indicators (Chen et al., 2013) have become a standard29

tool for this task, due to their ability to monitor in vivo targeted neural populations from many30

di�erent brain areas over extended periods of time (weeks or months). Advances in microscopy31

techniques facilitate imaging larger brain areas with �ner time resolution, producing an ever-32

increasing amount of data. A typical resonant scanning two-photon microscope produces data at a33

rate greater than 50GB/Hour1, a number that can be signi�cantly higher (up to more than 1TB/Hour)34

with other custom recording technologies (Sofroniew et al. (2016); Ahrens et al. (2013); Flusberg35

et al. (2008); Cai et al. (2016); Prevedel et al. (2014); Grosenick et al. (2017); Bouchard et al. (2015)).36

This increasing availability and volume of calcium imaging data calls for automated analysis37

methods and reproducible pipelines to extract the relevant information from the recorded movies,38

i.e., the locations of neurons in the imaged Field of View (FOV) and their activity in terms of raw39

1Calculation performed on a 512ù512 FOV imaged at 30Hz producing an unsigned 16-bit integer for each measurement.

1 of 40

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/339564doi: bioRxiv preprint first posted online Jun. 5, 2018; 

agiovannucci@flatironinstitute.org
epnevmatikakis@flatironinstitute.org
epnevmatikakis@flatironinstitute.org
http://dx.doi.org/10.1101/339564
http://creativecommons.org/licenses/by/4.0/


Manuscript�submitted�

�uorescence and/or neural activity (spikes). The typical steps arising in the processing pipelines are40

the following (Fig. 1a): i) Motion correction, where the FOV at each data frame (image or volume)41

is registered against a template to correct for motion artifacts due to the �nite scanning rate and42

existing brain motion, ii) source extraction where the di�erent active and possibly overlapping43

sources are extracted and their signals are demixed from each other and from the background44

neuropil signals (Fig. 1b), and iii) activity deconvolution, where the neural activity of each identi�ed45

source is deconvolved from the dynamics of the calcium indicator.46

Related work47

Source extraction48

Some source extractionmethods attempt the detection of neurons in static images using supervised49

or unsupervised learningmethods. Examples of unsupervisedmethods on summary images include50

graph-cut approaches applied to the correlation image (Kaifosh et al., 2014; Spaen et al., 2017),51

and dictionary learning (Pachitariu et al., 2013). Supervised learning methods based on deep52

neural networks have also been applied to the problem of neuron detection (Apthorpe et al., 2016;53

Klibisz et al., 2017). While these methods can be e�cient in detecting the locations of neurons, they54

cannot infer the underlying activity nor do they readily o�er ways to deal with the spatial overlap of55

di�erent components.56

To extract temporal traces together with the spatial footprints of the components one can use57

methods that directly represent the full spatio-temporal data in a matrix factorization setup e.g.,58

independent component analysis (ICA) (Mukamel et al., 2009), constrained nonnegative matrix59

factorization (CNMF) (Pnevmatikakis et al., 2016) (and its adaptation to one-photon data (Zhou60

et al., 2018)), clustering based approaches (Pachitariu et al., 2017), dictionary learning (Petersen61

et al., 2017), or active contour models (Reynolds et al., 2017). Such spatio-temporal methods are62

unsupervised, and focus on detecting active neurons by considering the spatio-temporal activity of63

a component as a contiguous set of pixels within the FOV that are correlated in time. While such64

methods tend to o�er a direct decomposition of the data in a set of sources with activity traces65

in an unsupervised way, in principle they require processing of the full dataset, and thus can be66

rendered intractable very quickly. Possible approaches to deal with the data size include distributed67

processing in High Performance Computing (HPC) clusters (Freeman et al., 2014), spatio-temporal68

decimation (Friedrich et al., 2017a), and dimensionality reduction (Pachitariu et al., 2017). Recently,69

Giovannucci et al. (2017) prototyped an online algorithm (ONACID), by adapting matrix factorization70

setups (Pnevmatikakis et al., 2016;Mairal et al., 2010), to operate on calcium imaging streaming71

data and thus natively deal with large data rates.72

Deconvolution73

For the problem of predicting spikes from �uorescence traces, both supervised and unsupervised74

methods have been explored. Supervised methods rely on the use of ground truth data to train75

or �t biophysical or neural network models (Theis et al., 2016; Speiser et al., 2017). Unsupervised76

methods can be either deterministic, such as sparse non-negative deconvolution (Vogelstein77

et al., 2010; Pnevmatikakis et al., 2016) that give a single estimate of the deconvolved neural78

activity, or probabilistic, that aim to also characterize the uncertainty around these estimates79

(e.g., (Pnevmatikakis et al., 2013; Deneux et al., 2016)). A recent community benchmarking e�ort80

(Berens et al., 2017) characterizes the similarities and di�erences of various available methods.81

CAIMAN82

Here we present CAIMAN, an open source suite for the analysis pipeline of both two-photon and one-83

photon calcium imaging data. CAIMAN includes frameworks for both o�ine analysis (CAIMAN BATCH)84

where all the data is processed at once at the end of experiment, and online analysis on streaming85

data (CAIMAN ONLINE). Moreover, CAIMAN requires very moderate computing infrastructure (e.g., a86
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personal laptop or workstation), thus providing automated, e�cient, and reproducible large-scale87

analysis on commodity hardware.88

Contributions89

Our contributions can be roughly grouped in three di�erent directions:90

Methods: CAIMAN BATCH improves on the scalability of the source extraction problem by employing91

a MapReduce framework for parallel processing and memory mapping which allows the92

analysis of datasets larger than would �t in RAM on most computer systems. It also improves93

on the qualitative performance by introducing automated routines for component evaluation94

and classi�cation, better handling of neuropil contamination, and better initialization methods.95

While these bene�ts are here presented in the context of the widely used CNMF algorithm96

of Pnevmatikakis et al. (2016), they are in principle applicable to any matrix factorization97

approach.98

CAIMAN ONLINE improves and extends the ONACID prototype algorithm (Giovannucci et al.,99

2017) by introducing, among other advances, new initialization methods and a convolutional100

neural network (CNN) based approach for detecting new neurons on streaming data. Our101

analysis on in vivo two-photon and light-sheet imaging datasets shows that CAIMAN ONLINE102

approaches human-level performance and enables novel types of closed-loop experiments.103

Apart from these signi�cant algorithmic improvements CAIMAN includes several useful anal-104

ysis tools such as, a MapReduce and memory-mapping compatible implementation of the105

CNMF-E algorithm for one-photon microendoscopic data (Zhou et al., 2018), a novel e�cient106

algorithm for registration of components across multiple days, and routines for segmentation107

of structural (static) channel information which can be used for component seeding.108

Software: CAIMAN comes as a complete open source software suite implemented in Python, and109

is already widely used by, and has received contributions from, the community. It contains110

e�cient implementations of the standard analysis pipeline steps (motion correction - source111

extraction - deconvolution - registration across di�erent sessions), as well as numerous other112

features. Apart from Python, several of the tools presented here are also available in MATLAB®.113

Data: We benchmark the performance of CAIMAN against a previously unreleased corpus of manu-114

ally annotated data. The corpus consists of 9 mouse in vivo two-photon datasets manually115

annotated by 3-4 independent labelers that were instructed to select active neurons in a116

principled and consistent way, and who subsequently combined their annotations to create117

a “consensus” ground truth that is also used to quantify the limits of human performance.118

The manual annotations are also released to the community providing a valuable tool for119

benchmarking and training purposes.120

Paper organization121

The paper is organized as follows: We �rst give a brief presentation of the analysis methods and122

features provided by CAIMAN. In the Results section we benchmark CAIMAN ONLINE and CAIMAN123

BATCH against a corpus of manually annotated data. We apply CAIMAN ONLINE to a zebra�sh whole124

brain lightsheet imaging recording, and demonstrate how such large datasets can be processed125

e�ciently in real time. We also present applications of CAIMAN BATCH to one-photon data, as well as126

examples of component registration across multiple days. We conclude by discussing the utility of127

our tools, the relationship between CAIMAN BATCH and CAIMAN ONLINE and outline future directions.128

Detailed descriptions of the introduced methods are presented in Methods and Materials.129

Methods130

Before presenting the new analysis features introduced with this work, we overview the analysis131

pipeline that CAIMAN uses and builds upon.132
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Overview of analysis pipeline133

The standard analysis pipeline for calcium imaging data used in CAIMAN is depicted in Fig. 1a.134

The data in movie format is �rst processed to remove motion artifacts. Subsequently the active135

components (neurons and background) are extracted as individual pairs of a spatial footprint that136

describes the shape of each component projected to the imaged FOV, and a temporal trace that137

captures its �uorescence activity (Fig. 1b-d). Finally, the neural activity of each �uorescence trace138

is deconvolved from the dynamics of the calcium indicator. These operations can be challenging139

because of limited axial resolution of 2-photon microscopy (or the much larger integration volume140

in one-photon imaging). This results in spatially overlapping �uorescence from di�erent sources141

and neuropil activity. Before presenting the new features of CAIMAN in more detail, we brie�y review142

how it incorporates existing tools in the pipeline.143

Motion Correction144

CAIMAN uses the NORMCORRE algorithm (Pnevmatikakis and Giovannucci, 2017) that corrects non-145

rigid motion artifacts by estimating motion vectors with subpixel resolution over a set of overlapping146

patches within the FOV. These estimates are used to infer a smooth motion �eld within the FOV147

for each frame. For two-photon imaging data this approach is directly applicable, whereas for148

one-photon micro-endoscopic data the motion is estimated on high pass spatially �ltered data,149

a necessary operation to remove the smooth background signal and create enhanced spatial150

landmarks. The inferred motion �elds are then applied to the original data frames.151

Source Extraction152

Source extraction is performed using the constrained non-negative matrix factorization (CNMF)153

framework of Pnevmatikakis et al. (2016) which can extract components with spatial overlapping154

projections (Fig. 1b). After motion correction the spatio-temporal activity of each source can be155

expressed as a rank one matrix given by the outer product of two components: a component in156

space that describes the spatial footprint (location and shape) of each source, and a component157

in time that describes the activity trace of the source (Fig. 1c). The data can be described by the158

sum of all the resulting rank one matrices together with an appropriate term for the background159

and neuropil signal and a noise term (Fig. 1d). For two-photon data the neuropil signal can be160

modeled as a low rank matrix (Pnevmatikakis et al., 2016). For microendoscopic data the larger161

integration volume leads to more complex background contamination (Zhou et al., 2018). Therefore,162

a more descriptive model is required (see Methods and Materials (Mathematical model of the CNMF163

framework) for a mathematical description). CAIMAN BATCH embeds these approaches into a general164

algorithmic framework that enables scalable automated processing with improved results in terms165

of quality and processing speed.166

Deconvolution167

Neural activity deconvolution is performed using sparse non-negative deconvolution (Vogelstein168

et al., 2010; Pnevmatikakis et al., 2016) and implemented with both the near-online OASIS algo-169

rithm (Friedrich et al., 2017b) and an e�cient convex optimization framework (Pnevmatikakis et al.,170

2016). The algorithm is competitive to the state of the art according to recent benchmarking studies171

(Berens et al., 2017). Prior to deconvolution, the traces are detrended to remove non-stationary172

e�ects, e.g., photo-bleaching.173

Online Processing174

The three processing steps described above can be implemented in an online fashion on streaming175

data using the ONACID algorithm (Giovannucci et al., 2017). The method builds upon the online176

dictionary learning framework presented inMairal et al. (2010) for source extraction, by adding the177

capability of �nding new components as they appear and also incorporating the steps of motion178

correction and deconvolution (Fig. 1e). CAIMAN ONLINE extends and improves the ONACID prototype179
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Figure 1. Processing pipeline of CAIMAN for calcium imaging data. (a) The typical pre-processing steps include (i)
correction for motion artifacts, (ii) extraction of the spatial footprints and �uorescence traces of the imaged
components, and (iii) deconvolution of the neural activity from the �uorescence traces. (b) Time average of
2000 frames from a two-photon microscopy dataset (left) and magni�ed illustration of three overlapping
neurons (right), as detected by the CNMF algorithm. (c) Denoised temporal components of the three neurons in
(b) as extracted by CNMF and matched by color (in relative �uorescence change, �F_F ). (d) Intuitive depiction
of CNMF. The algorithm represents the movie as the sum of rank-one spatio-temporal components capturing
either neurons and processes, plus additional non-sparse low-rank terms for the background �uorescence and
neuropil activity. (e) Flow-chart of the CAIMAN BATCH processing pipeline. From left to right: Motion correction
and generation of a memory e�cient data format. Initial estimate of somatic locations in parallel over FOV
patches using CNMF. Re�nement and merging of extracted components via seeded CNMF. Removal of low
quality components. Final domain dependent processing stages. (f) Flow-chart of the CAIMAN ONLINE algorithm.
After a brief mini-batch initialization phase, each frame is processed in a streaming fashion as it becomes
available. From left to right: Correction for motion artifacts. Estimate of activity from existing neurons,
identi�cation and incorporation of new neurons. Periodically, the spatial footprints of inferred neurons are
updated (dashed lines).
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algorithm by introducing a number of algorithmic features and a CNN based component detection180

approach, leading to a major performance improvement.181

We now present the new methods introduced by CAIMAN. More details are given in Methods and182

Materials and pseudocode descriptions of the main routines are given in the Appendix.183

Batch processing of large scale datasets on standalone machines184

The batch processing pipeline mentioned above can become a computational bottleneck when185

tackled without customized solutions. For instance, a naive approach to the problem might have as186

a �rst step to load in-memory the full dataset; this approach is non-scalable as datasets typically187

exceed available RAM (and extra memory is required by any analysis pipeline). To limit memory188

usage, as well as computation time, CAIMAN BATCH relies on a MapReduce approach (Dean and189

Ghemawat, 2008). Unlike previous work (Freeman et al., 2014), CAIMAN BATCH assumes minimal190

computational infrastructure (up to a standard laptop computer), is not tied to a particular parallel191

computation framework, and is compatible with HPC scheduling systems like SLURM (Yoo et al.,192

2003).193

Naive implementations of motion correction algorithms need to either load in memory the full194

dataset or are constrained to process one frame at a time, therefore preventing parallelization. Mo-195

tion correction is parallelized in CAIMAN BATCH without signi�cant memory overhead by processing196

several temporal chunks of a video data on di�erent CPUs. CAIMAN BATCH broadcasts to each CPU a197

meta-template, which is used to align all the frames in the chunk. Each process writes in parallel to198

the target �le containing motion-corrected data, which is stored in as a memory mapped array. This199

allows arithmetic operations to be performed against data stored on the hard drive with minimal200

memory use, and slices of data to be indexed and accessed without loading the full �le in memory.201

More details are given in Methods and Materials (Memory mapping).202

Similarly, the source extraction problem, especially in the case of detecting cell bodies, is203

inherently local with a neuron typically appearing in a neighborhood within a small radius from its204

center of mass (Fig. 2a). Exploiting this locality, CAIMAN BATCH splits the FOV into a set of spatially205

overlapping patches which enables the parallelization of the CNMF (or any other) algorithm to206

extract the corresponding set of local spatial and temporal components. The user speci�es the size207

of the patch, the amount of overlap between neighboring patches and the initialization parameters208

for each patch (number of components and rank background for CNMF, stopping criteria for CNMF-209

E). Subsequently the patches are processed in parallel by the CNMF/CNMF-E algorithm to extract210

the components and neuropil signals from each patch.211

Apart from harnessing memory and computational bene�ts due to parallelization, processing in212

patches acts indirectly as a dynamic range equalizer and enables CAIMAN BATCH to detect neurons213

across the whole FOV, a feature absent in the original CNMF, where areas with high absolute214

�uorescence variation tend to be favored. This results in better source extraction performance.215

After all the patches have been processed, the results are embedded within the FOV (Fig. 2a),216

and the overlapping regions between neighboring patches are processed so that components217

corresponding to the same neuron are merged. The process is summarized in algorithmic format in218

Alg. 1 and more details are given in Methods and Materials (Combining results from di�erent patches).219

Initialization Methods220

Initialization methods for matrix factorization problems can impact results due to the non-convex221

nature of their objective function. CAIMAN BATCH provides an extension of the GREEDYROImethod222

used in Pnevmatikakis et al. (2016), that detects neurons based on localized spatiotemporal activity.223

CAIMAN BATCH can also be seeded with binary masks that are obtained from di�erent sources, e.g.,224

through manual annotation or segmentation of structural channel (SEEDEDINITIALIZATION, Alg. 2).225

More details are given in Methods and Materials (Initialization strategies).226
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Figure 2. Parallelized processing and component quality assessment for CAIMAN BATCH. (a) Illustration of the
parallelization approach used by CAIMAN BATCH for source extraction. The data movie is partitioned into
overlapping sub-tensors, each of which is processed in an embarrassingly parallel fashion using CNMF, either
on local cores or across several machines in a HPC. The results are then combined. (b) Re�nement after
combining the results can also be parallelized both in space and in time. Temporal traces of spatially
non-overlapping components can be updated in parallel (top) and the contribution of the spatial footprints for
each pixel can be computed in parallel (bottom). Parallelization in combination with memory mapping enable
large scale processing with moderate computing infrastructure. (c) Quality assessment in space: The spatial
footprint of each real component is correlated with the data averaged over time, after removal of all other
activity. (d) Quality assessment in time: A high SNR is typically maintained over the course of a calcium transient.
(e) CNN based assessment. Top: A 4-layer CNN based classi�er is used to classify the spatial footprint of each
component into neurons or not. Bottom: Positive and negative examples for the CNN classi�er, during training
(left) and evaluation (right) phase. The CNN classi�er can accurately classify shapes and generalizes across
datasets from di�erent brain areas.
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Automated component evaluation and classi�cation227

A common limitation of matrix factorization algorithms is that the number of components that228

the algorithm seeks during its initialization must be pre-determined by the user. For example,229

Pnevmatikakis et al. (2016) suggest a large number of components which are then heuristically230

ordered according to their size and activity pattern. When processing large datasets in patches231

the target number of components is passed on to every patch implicitly assuming a uniform232

density of (active) neurons within the entire FOV. In general this assumption does not hold and can233

generate a large number of spurious components. CAIMAN introduces tests to assess the quality234

of the detected components and eliminate possible false positives. These tests are based on the235

observation that active components are bound to have a distinct localized spatio-temporal signature236

within the FOV. We present below unsupervised and supervised tests employed by CAIMAN for237

component classi�cation. In CAIMAN BATCH, they are initially applied after the processing of each238

patch is completed, and additionally as a post-processing step after the results from the patches239

have been merged and re�ned, whereas in CAIMAN ONLINE they are used to screen new candidate240

components. We brie�y present these tests below and refer to Methods and Materials (Details of241

quality assessment tests) for more details:242

Spatial footprint consistency: To test whether a detected component is spurious, we correlate243

the spatial footprint of this component with the average frame of the data, taken over the244

interval when the component, with no other overlapping component, was active (Fig. 2c).245

The component is rejected if the correlation coe�cient is below a certain threshold ✓
sp
(e.g.,246

✓
sp
< 0.5).247

Trace SNR: Similarly, for each component we computed the peak SNR of its temporal trace av-248

eraged over the duration of a typical transient (Fig. 2d). The component is rejected if the249

computed SNR is below a certain threshold ✓
SNR

(e.g., ✓
SNR

= 2).250

CNN based classi�cation: We also trained a 4-layer convolutional neural network (CNN) to classify251

spatial footprints into true or false components (Fig. 2e), where a true component here252

corresponds to a spatial footprint that resembles the soma of a neuron. The classi�er, named253

batch classi�er, was trained on a small corpus of manually annotated datasets (full description254

given in section Benchmarking against ground truth) and exhibited similar high classi�cation255

performance on test samples from di�erent datasets.256

While CAIMAN uses the CNMF algorithm, the tests described above can be applied to results obtained257

from any source extraction algorithm, highlighting the modularity of our tools.258

Online analysis with CAIMAN ONLINE259

CAIMAN supports online analysis on streaming data building on the core of the prototype algorithm260

of Giovannucci et al. (2017), and extending it in terms of qualitative performance and computational261

e�ciency:262

Initialization: Apart from initializing CAIMAN ONLINE with CAIMAN BATCH on a small time interval,263

CAIMAN ONLINE can also be initialized in a bare form over an even smaller time interval, where264

only the background components are estimated and all the components are determined dur-265

ing the online analysis. This process, named BAREINITIALIZATION, can be achieved by running266

the CNMF algorithm (Pnevmatikakis et al., 2016) over the small interval to estimate the back-267

ground components and possibly a small number of components. The SEEDEDINITIALIZATION268

of Alg. 2 can also be used.269

Deconvolution: Instead of a separate step after demixing as in Giovannucci et al. (2017), decon-270

volution here can be performed simultaneously with the demixing online, leading to more271

stable traces especially in cases of low-SNR, as also observed in Pnevmatikakis et al. (2016).272

Online deconvolution can also be performed for models that assume second order calcium273

dynamics, bringing the full power of Friedrich et al. (2017b) to processing of streaming data.274
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Epochs: CAIMAN ONLINE supports multiple passes over the data, a process that can detect early275

activity of neurons that were not picked up during the initial pass, as well as smooth the276

activity of components that were detected at late stages during the �rst epoch.277

New component detection using a CNN: To search for new components in a streaming setup,278

ONACID keeps a bu�er of the residual frames, computed by subtracting the activity of already279

found components and background signals. Candidate components are determined by280

looking for points of maximum energy in this residual signal, after some smoothing and281

dynamic range equalization. For each such point identi�ed, a candidate shape and trace are282

constructed using a rank-1 NMF in a local neighborhood around this point. In its original283

formulation (Giovannucci et al., 2017), the shape of the component was evaluated using the284

space correlation test described above. Here, we introduce a CNN classi�er approach that285

tests candidate components by examining their spatial footprint as obtained by the average286

of the residual bu�er across time. This online classi�er (di�erent from the batch classi�er287

for quality assessment described above), is trained to be strict, minimizing the number of288

false positive components that enter the online processing pipeline. It can test multiple289

components in parallel, and it achieves better performance with no hyper-parameter tuning290

compared to the previous approach. More details on the architecture and training procedure291

are given in Methods and Materials (Classi�cation through CNNs). The identi�cation of candidate292

components is further improved by performing spatial high pass �ltering on the average293

residual bu�er to enhance its contrast. The new process for detecting neurons is described in294

Algs. 3 and 4. See Supplemental Movies 1 and 2 on a detailed graphic description of the new295

component detection step.296

Component registration across multiple sessions297

CAIMAN provides a method to register components from the same FOV across di�erent sessions.298

The method uses a simple intersection over union metric to calculate the distance between di�erent299

cells in di�erent sessions and solving a linear assignment problem to perform the registration in300

a fully automated way (REGISTERPAIR, Alg. 5). To register the components between more than 2301

sessions (REGISTERMULTI, Alg. 6), we order the sessions chronologically and register the components302

of the current session against the union of component of all the past sessions aligned to the current303

FOV. This allows for the tracking of components across multiple sessions without the need of304

pairwise registration between each pair of sessions. More details as well as discussion of other305

methods (Sheintuch et al., 2017) are given in Methods and Materials (Component registration).306

Benchmarking against ground truth307

To quantitatively evaluate CAIMAN we benchmarked its results against ground truth data.308

Creating ground truth data through manual annotation309

We collected manual annotations from multiple independent labelers who were instructed to �nd310

round or donut shaped2 active neurons on 9 two-photon in vivomouse brain datasets. The datasets311

were collected at various labs and from various brain areas (hippocampus, visual cortex, parietal312

cortex) using several GCaMP variants. A summary of the features of all the annotated datasets is313

given in Table 2. Details about the annotation procedure are given in Methods and Materials.314

To address human variability in manual annotation each dataset was labeled by 3 or 4 inde-315

pendent labelers, and the �nal ground truth dataset was created by having the di�erent labelers316

reaching a consensus over their disagreements (Fig. 3a). The result of this process was de�ned as317

ground truth for the evaluation of CAIMAN as well as each individual labeler against the consensus318

(Fig. 3b)3. More details are given in Methods and Materials (Collection of manual annotations and319

2Since proteins expressing the calcium indicator are con�ned outside the cell nuclei, neurons will appear as ring shapes, with
a dark disk in the center.

3It is possible that this process generated slightly biased results in favor of each individual annotators since the ground truth
was always a subset of the union of the individual annotations.
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Figure 3. Ground truth generation. (a) Top: Individual manual annotations on the dataset N.04.00.t (only part of
the FOV is shown) for labelers L1 (left), L2 (middle), L3(right). Bottom: Disagreements between L1 and L2 (left),
and ground truth labels (right) after the consensus between all labelers has been reached. In this example,
consensus considerably reduced the number of initially selected neurons. (b) Matches (top) and mismatches
(bottom) between each individual labeler and consensus ground truth. Red contours on the mismatches panels
denote false negative contours, i.e., components in the consensus not selected by the corresponding labeler,
whereas yellow contours indicate false positive contours. Performance of each labeler is given in terms of
precision/recall and F1 score and indicates an unexpected level of variability between individual labelers.

10 of 40

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/339564doi: bioRxiv preprint first posted online Jun. 5, 2018; 

http://dx.doi.org/10.1101/339564
http://creativecommons.org/licenses/by/4.0/


Manuscript�submitted�

ground truth). We believe that the current database, which will be made publicly available, presents320

an improvement over the existing neuro�nder database (http://neuro�nder.codeneuro.org/) in321

several aspects:322

Consistency: The datasets are annotated using exactly the same procedure (see Methods and323

Materials), and in all datasets the goal is to detect only active cells. In contrast, the annotation of324

the various neuro�nder datasets is performed either manually or automatically by segmenting325

an image of a static (structural) indicator. Even though structural indicators could be used for326

ground truth extraction, the segmentation of such images is not a straightforward problem327

in the case of dense expression, and the stochastic expression of indicators can lead to328

mismatches between functional and structural indicators.329

Uncertainty quanti�cation: By employing more than one human labeler we discovered a sur-330

prising level of disagreement between di�erent annotators (see Table 1, Fig. 3b for details),331

which renders individual annotations somewhat unreliable for benchmarking purposes, and332

non-reproducible. The combination of the various annotations leads to more reliable ground333

truth and also quanti�es the limits of human performance.334

Comparing CAIMAN against ground truth335

To compare CAIMAN against the consensus ground truth, the manual annotations were used as336

binary masks to construct the ground truth spatial and temporal components, using the SEEDEDINI-337

TIALIZATION procedure (Alg. 2) of CAIMAN BATCH. The set of spatial footprints obtained from CAIMAN338

is registered against the set of ground truth spatial footprints (derived as described above) using339

the REGISTERPAIR algorithm (Alg. 5) for component registration described above. Performance is340

then quanti�ed using a precision/recall framework similar to other studies (Apthorpe et al., 2016;341

Giovannucci et al., 2017).342

Software343

CAIMAN is developed by and for the community. Python open source code for all the methods344

described above is available at https://github.com/�atironinstitute/CaImAn. The repository contains345

documentation, numerous demos, and Jupyter notebook tutorials, as well as visualization tools, and346

a message/discussion board. The code, which is compatible with Python 2 and Python 34, uses tools347

from several open source libraries, such as OpenCV (Bradski, 2000), scikit-learn (Pedregosa et al.,348

2011), and scikit-image (Van der Walt et al., 2014). Most routines are also available in MATLAB® at349

https://github.com/�atironinstitute/CaImAn-MATLAB.350

Results351

Manual annotations show a high degree of variability352

We compared the performance of each human annotator against a consensus ground truth. The353

performance was quanti�ed with a precision/recall framework and the results of the performance354

of each individual labeler against the consensus ground truth for each dataset is given in Table 1.355

The range of human performance in terms of F
1
score was 0.69-0.94, with average 0.83± 0.07 (mean356

± STD). All annotators performed similarly on average (0.83±0.05, 0.83±0.08, 0.84±0.06, 0.85±0.08).357

We also ensured that the performance of labelers was stable across time (i.e. their learning curve358

plateaued, data not shown). As shown in Table 1 (see also Fig 4b) the F
1
score was never 1, and in359

most cases it was less or equal to 0.9, demonstrating signi�cant variability between annotators.360

Fig. 3 (bottom) shows an example of matches and mismatches between individual labelers and361

consensus ground truth for dataset K53, where the level of agreement was relatively high. The high362

degree of variability in human responses indicates the challenging nature of the source extraction363

problem and raises reproducibility concerns in studies relying heavily on manual ROI selection.364

4All future development of CAIMAN will be in Python 3, eventually rendering it incompatible with Python 2.x.
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Table 1. Results of each labeler, CAIMAN BATCH and CAIMAN ONLINE algorithms against consensus ground truth.
Results are given in the form F1 score (precision, recall), and empty entries correspond to datasets not manually
annotated by the speci�c labeler. In italics the datasets used to train the CNN classi�ers.

Name L1 L2 L3 L4 CAIMAN BATCH CAIMAN ONLINE

N.03.00.t X 0.90
(0.88,0.92)

0.85
(0.78,0.93)

0.78
(0.73,0.83)

0.78
(0.77,0.79)

0.76
(0.77,0.75)

N.04.00.t X 0.69
(0.54,0.97)

0.75
(0.61,0.97)

0.87
(0.78,0.98)

0.67
(0.62,0.72)

0.68
(0.65,0.71)

N.02.00 0.89
(0.86,0.93)

0.87
(0.88,0.85)

0.84
(0.92,0.77)

0.82
(1.00,0.70)

0.79
(0.8,0.77)

0.77
(0.79,0.76)

N.00.00 X 0.92
(0.93,0.91)

0.83
(0.86,0.80)

0.87
(0.96,0.80)

0.72
(0.83,0.64)

0.72
(0.83,0.64)

N.01.01 0.80
(0.95,0.69)

0.89
(0.96,0.83)

0.78
(0.73,0.84)

0.75
(0.80,0.70)

0.77
(0.88,0.69)

0.73
(0.78,0.68)

YST 0.78
(0.76,0.81)

0.90
(0.85,0.97)

0.82
(0.75,0.92)

0.79
(0.96,0.67)

0.76
(0.9,0.66)

0.78
(0.76,0.81)

K53 0.89
(0.96,0.83)

0.92
(0.92,0.92)

0.93
(0.95,0.91)

0.83
(1.00,0.72)

0.77
(0.83,0.72)

0.82
(0.80,0.83)

J115 X 0.93
(0.94,0.91)

0.94
(0.95,0.93)

0.83
(1.00,0.71)

0.77
(0.9,0.68)

0.81
(0.75,0.88)

J123 0.85
(0.96,0.76)

0.83
(0.73,0.96)

0.90
(0.91,0.90)

0.91
(0.92,0.89)

0.68
(0.94,0.51)

0.80
(0.82,0.79)

CAIMAN BATCH and CAIMAN ONLINE detect neurons with near-human accuracy365

We �rst benchmarked CAIMAN BATCH and CAIMAN ONLINE against consensus ground truth for the366

task of identifying neurons locations and their spatial footprints, using the same precision recall367

framework (Table 1). Fig. 4a shows an example dataset (K53) along with neuron-wise matches368

and mismatches between CAIMAN BATCH and consensus ground truth (top) and CAIMAN ONLINE vs369

consensus ground truth (bottom).370

The results indicate a similar performance between CAIMAN BATCH and CAIMAN ONLINE; CAIMAN371

BATCH has F
1
scores in the range 0.68-0.79 and average performance 0.75±0.04 (mean±STD). On the372

other hand CAIMAN ONLINE had F
1
scores in the range 0.68-0.82 and average performance 0.76±0.04.373

While the two algorithms performed similarly on average, CAIMAN BATCH tends to perform better for374

shorter datasets whereas online processing tends to lead to better results for longer datasets (see375

Table 2 for characteristics of the various datasets). CAIMAN approaches but is in most cases below376

the accuracy levels of human annotators (Fig. 4b). This can be attributed to a number of reasons:377

First, to demonstrate the generality and ease of use of our tools, the results presented here are378

obtained by running CAIMAN BATCH and CAIMAN ONLINE with exactly the same parameters for each379

dataset (see Methods and Materials (Implementation details)): �ne-tuning to each individual dataset380

can signi�cantly increase performance. Second, CNMF detects active components regardless of381

their shape, and can detect non-somatic structures with signi�cant transients. While non-somatic382

components can be �ltered out to some extent using the CNN classi�er, their existence degrades383

performance compared to the ground truth that consists only of neurons. Lastly, the ground truth384

is by construction a subset of the union of all individual annotations, which can bias upwards the385

scores of individual labelers.386

Neurons with higher SNR transients are detected more accurately387

While CAIMAN ONLINE had balanced performance with respect to precision and recall (mean precision388

0.77±0.05, mean recall 0.76±0.07), CAIMAN BATCH showed signi�cantly higher precision than recall389

(mean precision 0.83±0.09, mean recall 0.69±0.08). We looked into this behavior, by analyzing390

CAIMAN BATCH performance as a function of the SNR of the inferred and ground truth traces391

(Fig. 4c-d). The SNR measure of a trace corresponds to the peak-SNR averaged over the length of a392

typical trace (see Methods and Materials (Detecting �uorescence traces with high SNR)). An example is393

shown in Fig. 4c where the scatter plot of SNR between matched ground truth and inferred traces is394

shown (false negative/positive components are shown along the x- and y- axis, respectively). To395

evaluate the performance we computed a precision metric as the fraction of inferred components396
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Figure 4. Evaluation of CAIMAN performance against manually annotated data. (a) Comparison of CAIMAN
BATCH (top) and CAIMAN ONLINE (bottom) when benchmarked against consensus ground truth for dataset K53.
For a portion of the FOV, correlation image overlaid with matches (left panels, true positives red for consensus
ground truth, yellow for CAIMAN) and mismatches (right panels, red for false negatives, yellow for false
positives). (b) Performance of CAIMAN BATCH, CAIMAN ONLINE and all labelers (L1, L2, L3, L4) for all 9 datasets in
terms of F1 score. CAIMAN BATCH and CAIMAN ONLINE reach near-human accuracy for neuron detection.
Complete results with precision and recall for each dataset are given in Table 1. (c-d) Performance of CAIMAN
BATCH increases with peak SNR. (c) Example of scatter plot between SNRs of matched traces between CAIMAN
BATCH and ground truth for dataset K53. False negative/positive pairs are plotted in green along the x- and
y-axes respectively, perturbed as a point cloud to illustrate the density. Most false positive/negative predictions
occur at low SNR values. Shaded areas represent thresholds above which components are considered for
matching (blue for CAIMAN BATCH selected components and red for GT selected components) (d) F1 score and
upper/lower bounds for all datasets as a function of various peak SNR thresholds. Performance increases
signi�cantly for neurons with high peak SNR traces (see text for de�nition of metrics and the bounds).
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Figure 5. Evaluation of CAIMAN extracted traces against traces derived from ground truth. (a) Examples of
shapes (left) and traces (right) are shown for �ve matched components extracted from dataset K53 for
consensus ground truth (GT, black), CAIMAN BATCH (yellow) and CAIMAN ONLINE (red) algorithms. The dashed
gray portion of the traces is also shown magni�ed (bottom-right). Spatial footprints and traces for ground truth
are obtained by seeding CAIMAN with the consensus binary masks. The traces extracted from both versions of
CAIMAN match closely the ground truth traces. (b) Slope graph for the average correlation coe�cient for
matches between ground truth and CAIMAN BATCH, and between ground truth and CAIMAN ONLINE. Batch
processing produces traces that match more closely the traces extracted from the ground truth data. (c)
Empirical cumulative distribution functions of correlation coe�cients aggregated over all the tested datasets.
Both distributions exhibit a sharp derivative close 1 (last bin), with the batch approach giving better results.

above a certain SNR threshold that are matched with a ground truth component (Fig. 4c, shaded397

blue). Similarly we computed a recall metric as the fraction of ground truth components above398

a SNR threshold that are detected by CAIMAN BATCH (Fig. 4c, shaded red), and an F
1
score as the399

harmonic mean of the two (Fig. 4d). The results indicate that the performance signi�cantly grows as400

a function of the SNR for all datasets considered, growing on average from 0.73 when all neurons401

are considered to 0.92 when only neurons with traces having SNR g 9 are considered (Fig. 4d)5.402

CAIMAN reproduces the ground truth traces with high �delity403

Testing the quality of the inferred traces is a more challenging task due to the complete lack404

of ground truth data in the context of large scale in vivo recordings. As mentioned above, we405

considered as ground truth the traces obtained by running the CNMF algorithm seeded with the406

5These precision and recall metrics are computed on di�erent sets of neurons, and therefore strictly speaking one cannot
combine them to form an F

1
score. However, they can be bound from above by being evaluated on the set of matched and

non-matched components where at least one trace is above the threshold (union of blue and pink zones in Fig. 4c) or below
by considering only matched and non-matched components where both ground truth and inferred traces have SNR above
the threshold (intersection of blue and pink zones in Fig. 4c). In practice these bounds were very tight for all but one dataset
(Fig. 4d). More details can be found in Methods and Materials (Performance quanti�cation as a function of SNR).
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binary masks obtained by consensus ground truth procedure. After alignment of the ground truth407

with the results of CAIMAN, the matched traces were compared both for CAIMAN BATCH and for408

CAIMAN ONLINE. Fig. 5a, shows an example of 5 of these traces for the dataset K53, showing very409

similar behavior of the traces in these three di�erent cases.410

To quantify the similarity we computed the correlation coe�cients of the traces (ground truth vs411

CAIMAN BATCH, and ground truth vs CAIMAN ONLINE) for all the 9 datasets (Fig. 5b-c). Results indicated412

that for all but one dataset (Fig. 5b) CAIMAN BATCH reproduced the traces with higher �delity, and413

in all cases the mean correlation coe�cients was higher than 0.9, and the empirical histogram414

of correlation coe�cients peaked at the maximum bin 0.99-1 (Fig. 5c). The results indicate that415

the batch approach extracts traces closer to the ground truth traces. This can be attributed to416

a number of reasons: By processing all the time points simultaneously, the batch approach can417

smooth the trace estimation over the entire time interval as opposed to the online approach where418

at each timestep only the information up to that point is considered. Moreover, CAIMAN ONLINE419

might not detect a neuron until it becomes strongly active. This neuron’s activity before detection is420

unknown and has a default value of zero, resulting in a lower correlation coe�cient. While this can421

be ameliorated to a great extent with additional passes over the data, the results indicate trade-o�s422

between using the online and o�ine versions of CAIMAN.423

Online analysis of a whole brain zebra�sh dataset424

We tested CAIMAN ONLINE with a 380GB whole brain dataset of larval zebra�sh (Danio rerio) acquired425

with a light-sheet microscope (Kawashima et al., 2016). The imaged transgenic �sh (Tg(elavl3:H2B-426

GCaMP6f)jf7) expressed the genetically encoded calcium indicator GCaMP6f in almost all neuronal427

nuclei. Data from 45 planes (FOV 820x410 �m2, spaced at 5.5 �m intervals along the dorso-ventral428

axis) was collected at 1Hz for 30 minutes (for details about preparation, equipment and experiment429

refer to Kawashima et al. (2016)). With the goal of simulating real-time analysis of the data, we run430

all the 45 planes in parallel on a computing cluster with 9 nodes (each node is equipped with 24431

CPUs and 128-256 GB RAM). Data was not stored locally in each machine but directly accessed from432

a network drive.433

The algorithm was initialized with CAIMAN BATCH run on 200 initial frames and looking for 500434

components. The small number of frames (1885) and the large FOV size (2048 ù 1188 pixels) for this435

dataset motivated this choice of increased number of components during initialization. In Fig. 6 we436

report the results of the analysis for plane number 11 of 45. For plane 11, CAIMAN ONLINE found437

1524 neurons after processing 1685 frames. Since no ground truth was available for this dataset,438

it was only possible to evaluate the performance of this algorithm by visual inspection. CAIMAN439

ONLINE identi�ed all the neurons with a clear footprint in the underlying correlation image (higher440

SNR, Fig. 6a) and missed a small number of the fainter ones (low SNR). By visual inspection of441

the components the authors could �nd very few false positives. Given that the parameters were442

not tuned and that the classi�er was not trained on zebra�sh neurons, we hypothesize that the443

algorithm is biased towards a high precision result. Spatial components displayed the expected444

morphological features of neurons (Fig. 6b-c). Considering all the planes (Figs 6e and 11) CAIMAN445

ONLINE was able to identify in a single pass of the data a total of 66108 neurons. See Supplemental446

Movie 3 for a summary across all planes. The analysis was performed in 21 minutes, with the �rst447

3 minutes allocated to the initialization and the remaining 18 to process the rest of the data in448

streaming mode (and in parallel for each plane). This demonstrates the ability of CAIMAN ONLINE449

to process large amounts of data in real-time (see also Fig. 8 for a discussion of computational450

performance).451

Analyzing 1p microendoscopic data using CAIMAN452

We tested the CNMF-E implementation of CAIMAN BATCH on in vivo microendosopic data from453

mouse dorsal striatum, with neurons expressing GCaMP6f. 6000 frames were acquired at 30454

frames per second while the mouse was freely moving in an open �eld arena (for further details455
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Figure 6. Online analysis of a 30 min long whole brain recording of the zebra�sh brain. (a) Correlation image
overlaid with the spatial components found by the algorithm (portion of plane 11 out of 45 planes in total). (b)
Left: Spatial footprints found in the dashed region in (a), contours represent neurons displayed in (c). Right:
Correlation image for the same region. (c) Spatial (left) and Temporal (right) components associated to the ten
example neurons marked in panel (a). (d) Temporal traces for all the neurons found in the FOV in (a), the
initialization on the �rst 200 frames contained 500 neurons (present since time 0). (e) Number of neurons found
per plane (See also Supplementary Fig. 11 for a summary of the results from all planes).
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refer to Zhou et al. (2018)). In Fig. 7 we report the results of the analysis using CAIMAN BATCH with456

patches and compare to the results of the MATLAB® implementation of Zhou et al. (2018). Both457

implementations detect similar components (Fig. 7a) with an F
1
-score of 0.89. 573 neurons were458

found by both implementations. 106 and 31 additional components were detected by Zhou et al.459

(2018) and CAIMAN BATCH respectively. The median correlation between the temporal traces of460

neurons detected by both implementations was 0.86. Similar results were also obtained by running461

CAIMAN without patches. Ten example temporal traces are plotted in Fig. 7b.462

Computational performance of CAIMAN463

We examined the performance of CAIMAN in terms of processing time for the various analyzed464

datasets presented above (Fig. 8). The processing time discussed here excludes motion correction,465

which is highly e�cient and primarily depends on the level of the FOV discretization for non-rigid466

motion correction (Pnevmatikakis and Giovannucci, 2017). For CAIMAN BATCH, each dataset was467

analyzed using three di�erent computing architectures: i) a single laptop (MacBook Pro) with 8468

CPUs and 16GB of RAM (blue in Fig. 8a), ii) a linux-based workstation (CentOS) with 24 CPUs and469

128GB of RAM (magenta), and iii) a linux-based HPC cluster (CentOS) where 112 CPUs (4 nodes, 28470

CPUs each) were allocated for the processing task (yellow). Fig. 8a shows the processing of CAIMAN471

BATCH as a function of dataset size on the 5 longest datasets, whose size exceeded 8GB, on log-log472

plot.473

Results show that, as expected, employing more processing power results in faster processing.474

CAIMAN BATCH on a HPC cluster processes data faster than acquisition time (Fig. 8a) even for very475

large datasets. Processing of an hour long dataset was feasible within 3 hours on a single laptop,476

even though the dataset has size multiple times the available RAM memory. Here, acquisition time477

is de�ned as number of frames times imaging rate, computed based on the assumption of imaging478

a FOV discretized over a 512 ù 512 grid at a 30Hz rate (a typical two-photon imaging setup with479

resonant scanning microscopes), and a representation of the measurements using single precision480

arithmetic, which is the minimum precision required for standard algebraic processing. These481

assumptions lead to a data rate of Ì105GB/hour. In general the performance scales linearly with482

the number of frames (and hence, the size of the dataset), but a dependence is also observed with483

respect to the number of components. The majority of the time (Fig. 8b-left) the majority of the484

time required for CAIMAN BATCH processing is taken by CNMF algorithmic processing either during485

the initialization in patches (orange bar) or during merging and re�ning the results of the individual486

patches (green bar).487

Fig. 8a also shows the speed performance of CAIMAN ONLINE (red markers). Because of the488

low memory requirements of the streaming algorithm, this performance only mildly depends on489

the computing infrastructure allowing for near real-time processing speeds on a standard laptop490

(Fig. 8a). As discussed in Giovannucci et al. (2017) processing time of CAIMAN ONLINE depends491

primarily on i) the computational cost of tracking the temporal activity of discovered neurons, ii)492

the cost of detecting and incorporating new neurons, and iii) the cost of periodic updates of spatial493

footprints. Fig. 8b-right shows that the two �rst steps, which are required for each frame, can494

be done in real-time. In Fig. 8c the cost per frame is plotted for the analysis of the whole brain495

zebra�sh recording. The lower imaging rate (1Hz) allows for the tracking of neural activity to be496

done with computational cost signi�cantly lower than the 1 second between volume imaging time497

(Fig. 8c), even in the presence of a large number of components (typically more than 1000 per plane,498

Fig. 6) and the signi�cantly larger FOV (2048 ù 1188 pixels). As expected the cost of updating spatial499

footprints can be signi�cantly larger if done simultaneously for all components (Fig. 8c, bottom).500

However, the average cost of updating a single spatial footprint is roughly 8ms, enabling real-time501

processing for each frame, when this step is evenly distributed among di�erent frames/volumes, or502

is performed by a parallel independent process (Giovannucci et al., 2017).503

The cost of processing 1p data in CAIMAN BATCH using the CNMF-E algorithm (Zhou et al., 2018)504

is shown (Fig. 8d) for the workstation hardware. Splitting in patches and processing in parallel can505
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Figure 7. Analyzing microendoscopic 1p data with the CNMF-E algorithm using CAIMAN BATCH. (a) Contour plots
of all neurons detected by the CNMF-E (white) implementation of Zhou et al. (2018) and CAIMAN BATCH (red)
using patches. Colors match the example traces shown in (b), which illustrate the temporal components of 10
example neurons detected by both implementations. CAIMAN BATCH reproduces with reasonable �delity the
results of Zhou et al. (2018).
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Figure 8. Time performance of CAIMAN BATCH and CAIMAN ONLINE for the analyzed datasets. (a) Log-log plot of
total processing time as a function of data size for CAIMAN BATCH for the 5 largest two-photon datasets using
three di�erent processing infrastructures: i) a laptop with 8 CPUs (blue), ii) a desktop workstation with 24 CPUs
(magenta), and iii) a HPC where 112 CPUs are allocated (yellow). The results indicate a near linear scaling of the
processing time with the size of dataset, with additional dependence on the number of found neurons (size of
each point). Even very large datasets (> 100GB) can be processed e�ciently with a single laptop, whereas access
to a HPC enables processing with speed faster than the acquisition time (considered 30Hz for a 512ù512 FOV
here). The results of CAIMAN ONLINE using the laptop are also plotted in red indicating near real-time processing
speed. (b) Break down of processing time for CAIMAN BATCH (left) and CAIMAN ONLINE (right) (excluding motion
correction). (Left) Processing with CNMF in patches and re�nement takes most of the time for CAIMAN BATCH.
Right: Tracking neural activity and new neuron detection can be done in real-time for CAIMAN ONLINE. (c) (Left)
Cost of neural activity online tracking for the whole brain zebra�sh dataset (maximum time over all planes per
frame). Tracking can be done in real-time. (Right) The most expensive part during online processing occurs
while updating the spatial footprints, a step that can be distributed or parallelized. Each color corresponds to
the update cost for the various di�erent planes. (d) Cost analysis of CNMF-E implementation for processing a
6000 frames long 1p dataset. Processing in patches in parallel induces a time/memory tradeo� and can lead to
speed gains (patch size in legend).
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lead to computational gains at the expense of increased memory usage. This is because the CNMF-E506

introduces a background term that has the size of the dataset and needs to be loaded and updated507

in memory in two copies. This leads to processing times that are slower compared to the standard508

processing of 2p datasets, and higher memory requirements. However, as Fig. 8d demonstrates,509

memory usage can be controlled enabling scalable inference at the expense of slower processing510

speeds.511

CAIMAN successfully tracks neurons across multiple days512

Fig. 9 shows an example of tracking neurons across 6 di�erent sessions corresponding to 6 di�erent513

days of mouse cortex in vivo data using our multi-day registration algorithm REGISTERMULTI (see514

Methods, Alg. 6). 453, 393, 375, 378, 376, and 373 active components were found in the six sessions,515

respectively. Our tracking method detected a total of 686 distinct active components. Of these, 172,516

108, 70, 92, 82, and 162 appeared in exactly 1, 2, 3, 4, 5, and all 6 sessions respectively. Contour517

plots of the 162 components that appeared in all sessions are shown in Fig. 9a, and parts of the518

FOV are highlighted in Fig. 9d showing that components can be tracked in the presence of non-rigid519

deformations of the FOV between the di�erent sessions.520

To test the stability of REGISTERMULTI for each subset of sessions, we repeated the same521

procedure running backwards in time starting from day 6 and ending at day 1, a process that522

also generated a total of 686 distinct active components. We identi�ed the components present523

in at least a given subset of sessions when using the forward pass, and separately when using524

the backwards pass, and compared them against each other (Fig. 9b) for all possible subsets.525

Results indicate a very high level of agreement between the two approaches with many of the526

disagreements arising near the boundaries (data not shown). Disagreements near the boundaries527

can arise because the forward pass aligns the union with the FOV of the last session, whereas the528

backwards pass with the FOV of the �rst session, potentially leading to loss of information near the529

boundaries.530

A step by step demonstration of the tracking algorithm for the �rst three sessions is shown in531

the appendix (Fig. 10). Our approach allows for the comparison of two non-consecutive sessions532

through the union of components without the need of a direct pairwise registration (Fig. 10f), where533

it is shown that registering sessions 1 and 3 directly and through the union leads to nearly identical534

results. Fig. 9c compares the registrations for all pairs of sessions using the forward (red) or the535

backward (blue) approach, with the direct pairwise registrations. Again, the results indicate a very536

high level of agreement, indicating the stability and e�ectiveness of the proposed approach.537

Discussion538

Reproducible and scalable analysis for the 99%539

Signi�cant advances in the reporting �delity of �uorescent indicators, and the ability to simulta-540

neously record and modulate neurons granted by progress in optical technology, have propelled541

calcium imaging to being the main experimental method in systems neuroscience alongside elec-542

trophysiology recordings. The resulting increased adoption rate has generated an unprecedented543

wealth of imaging data which poses signi�cant analysis challenges. The goal of CAIMAN is to provide544

the experimentalist with a complete suite of tools for analyzing this data in a formal, scalable,545

and reproducible way. The goal of this paper is to present the features of CAIMAN and examine546

its performance in detail. CAIMAN embeds existing methods for preprocessing calcium imaging547

data into a MapReduce framework and augments them with supervised learning algorithms and548

validation metrics. It builds on the CNMF algorithm of Pnevmatikakis et al. (2016) for source549

extraction and deconvolution, extending it along the lines of i) reproducibility and performance550

improvement, by automating quality assessment through the use of unsupervised and supervised551

learning algorithms for component detection and classi�cation, and ii) scalability, by enabling fast552

large scale processing with standard computing infrastructure (e.g., a commodity laptop or worksta-553
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Figure 9. Components registered across six di�erent sessions (days). (a) Contour plots of neurons that were
detected to be active in all six imaging sessions overlaid on the correlation image of the sixth imaging session.
Each color corresponds to a di�erent session. (b) Stability of multiday registration method. Comparisons of
forward and backward registrations in terms of F1 scores for all possible subsets of sessions. The comparisons
agree to a very high level indicating the stability of the proposed approach. (c) Comparison (in terms of F1 score)
of pair-wise alignments using readouts from the union vs direct alignment. The comparison is performed for
both the forward and the backwards alignment. For all pairs of sessions the alignment using the proposed
method gives very similar results compared to direct pairwise alignment. (d) Magni�ed version of the tracked
neurons corresponding to the squares marked in panel (a). Neurons in di�erent parts of the FOV exhibit
di�erent shift patterns over of the course of multiple days, but can nevertheless be tracked accurately by the
proposed multiday registration method.
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tion). Scalability is achieved by either using a MapReduce batch approach, which employs parallel554

processing of spatially overlapping, memory mapped, data patches; or by integrating the online555

processing framework of Giovannucci et al. (2017) within our pipeline. Apart from computational556

gains both approaches also result in improved performance. Towards our goal of providing a557

single package for dealing with standard problems arising in analysis of imaging data, CAIMAN558

also includes an implementation of the CNMF-E algorithm of Zhou et al. (2018) for the analysis559

of microendoscopic data, as well as with a novel method for registering analysis results across560

multiple days.561

Towards surpassing human neuron detection performance562

To evaluate the performance of CAIMAN BATCH and CAIMAN ONLINE, we generated a corpus of563

multiply annotated two-photon imaging datasets. The results indicated a surprising level of dis-564

agreement between individual labelers, highlighting both the di�culty of the problem, and the565

non-reproducibility of the laborious task of human annotation. CAIMAN reached near-human566

performance with respect to this ground truth, by using the same parameters for all the datasets567

without dataset dependent parameter tweaking. Such tweaking could for example include setting568

the SNR threshold based on the noise level of the recording, the complexity of the neuropil signal569

based on the level of background activity, or specialized treatment around the boundaries of the570

FOV to compensate for eventual imaging artifacts.571

Apart from being used as a benchmarking tool, the set of manual annotations can also be used572

as labeled data for supervised learning algorithms. CAIMAN uses two CNN based classi�ers trained573

on (a subset of) this data, one for post processing component classi�cation in CAIMAN BATCH, and574

the other for detecting new neurons in residual images in the CAIMAN ONLINE. The deployment575

of these classi�ers resulted in signi�cant gains in terms of performance, and we expect further576

advances in the future. The annotations will be made freely available to the community upon577

publication of the paper for benchmarking and training purposes.578

CAIMAN BATCH vs CAIMAN ONLINE579

Our results suggest similar performance between CAIMAN BATCH and CAIMAN ONLINEin terms of580

processing speed and quality of results with CAIMAN ONLINE outperforming CAIMAN BATCH on581

longer datasets in terms of neuron detection, possibly due to its inherent ability to adapt to non-582

stationarities arising during the course of a large experiment, and underperforming on shorter583

datasets potentially due to lack of enough information. By contrast, CAIMAN BATCH extracts better584

traces compared to CAIMAN ONLINE with respect to “ground truth” traces. While multiple passes585

over the data with CAIMAN ONLINE can mitigate these shortcomings, this still depends on good586

initialization with CAIMAN BATCH, as the analysis of the whole brain zebra�sh dataset indicates. In587

o�ine setups, CAIMAN ONLINE could also bene�t from the post processing component evaluation588

tools used in batch mode. e.g., using the batch classi�er for detecting false positive components at589

the end of the experiment.590

What sets the two algorithms apart is the streaming processing mode of CAIMAN ONLINE which,591

besides lowering memory requirements, can be used to enable novel types of closed-loop all-592

optical experiments (Packer et al., 2015; Carrillo-Reid et al., 2017). As discussed in Giovannucci593

et al. (2017), typical all-optical closed-loop experiments require the pre-determination of ROIs that594

are monitored/modulated. Processing with CAIMAN ONLINE can improve upon this by allowing595

identi�cation and modulation of new neurons on the �y, greatly expanding the space of possible596

experiments. Even though our simulated online processing setup is not integrated with hardware to597

an optical experimental setup, our results indicate that CAIMAN ONLINE performed close to real-time598

in most cases, without optimizing for speed. This suggest that large scale closed-loop experiments599

with single cell resolution are feasible by combining existing all-optical technology and our proposed600

analysis method.601
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Future directions602

While CAIMAN uses a highly scalable processing pipeline for two-photon datasets, processing of603

one-photon microendoscopic imaging data is less scalable due to the more complex background604

model that needs to be retained in memory during processing. Adapting CAIMAN ONLINE to the one-605

photon data processing algorithm of Zhou et al. (2018) is a promising way for scaling up e�cient606

processing in this case. The continuing development and quality improvement of neural activity607

indicators has enabled direct imaging of neural processes (axons/dendrites), imaging of synaptic608

activity (Xie et al., 2016), or direct imaging of voltage activity in vivo conditions (Piatkevich et al.,609

2018). While the approach presented here is tuned for somatic imaging through the use of various610

assumptions (space localized activity, CNN classi�ers trained on images of somatic activity), the611

technology of CAIMAN is largely transferable to these domains as well. These extensions will be612

pursued in future work.613

Methods and Materials614

Memory mapping615

In order to e�ciently access data in parallel, CAIMAN BATCH relies on memory mapping. With616

memory mapped (mmap) arrays, arithmetic operations can be performed on data residing on the617

hard drive without explicitly loading it to RAM, and slices of data can be indexed and accessed618

without loading the full �le in memory, enabling out-of-core processing (Toledo, 1999). The order619

in which data in a memory mapped �le is stored on the hard drive can dramatically a�ect the620

read-write performance of out-of-core operations on spinning disks, and to a lesser degree on solid621

state drives. On modern computers tensors are stored in linear format, no matter the number of622

the array dimensions. Therefore, one has to decide which elements of an array are contiguous in623

memory: in row-major order, consecutive elements of a row (�rst-dimension) are next to each other,624

whereas in column-major order consecutive elements of a column (last dimension) are contiguous.625

Such decisions signi�cantly a�ect the speed at which data is read or written: in column-major order626

reading a full column is fast because memory is read in a single sequential block, whereas reading a627

row is ine�cient since only one element can be read at a time and all the data needs to be accessed.628

Therefore, the original dataset must be saved in the right order to avoid performance problems.629

In the context of calcium imaging datasets, CAIMAN BATCH represents the datasets in a matrix630

form Y , where each row corresponds to a di�erent imaged pixel, and each column to a di�erent631

frame. As a result, a column-major order mmap �le enables the fast access of individual frames at a632

given time, whereas a row-major order �les enables the fast access of an individual pixel at all times.633

To facilitate processing in patches CAIMAN BATCH stores the data in row-major order. In practice,634

this is opposite to the order with which the data appears, one frame at a time. In order to reduce635

memory usage and speed up computation CAIMAN BATCH employs a MapReduce approach, where636

either multiple �les or multiple chunks of a big �le composing the original datasets are processed637

and saved in mmap format in parallel. This operation includes two phases, �rst the chunks/�les are638

saved in multiple row-major mmap format, and then chunks are simultaneously combined into a639

single large row-major mmap �le. In order to reduce preprocessing steps, if the �le(s) need to be640

corrected for motion artifacts, chunks of the registered data can be stored on-the-�y during motion641

correction.642

Mathematical model of the CNMF framework643

The CNMF framework (Fig. 1d) for calcium imaging data representation can be expressed in mathe-644

matical terms as (Pnevmatikakis et al., 2016)645

Y = AC + B + E. (1)

Here, Y À RdùT denotes the observed data written in matrix form, where d is the total number646

of observed pixels/voxels, and T is the total number of observed timesteps (frames). A À RdùN647
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denotes the matrix of the N spatial footprints, A = [a
1
, a

2
,… , a

N
], with a

i
À Rdù1 being the spatial648

footprint of component i. C À RNùT denotes the matrix of temporal components, C = [c
1
, c

2
,… , c

n
]
Ò,649

with c
i
À RTù1 being the temporal trace of component i. B is the background/neuropil activity650

matrix. For two-photon data it is modeled as a low rank matrix B = bf , where b À Rdùnb , f À RnbùT651

correspond to the matrices of spatial and temporal background components, and n
b
is the number652

of background components. For the case of micro-endoscopic data the integration volume is much653

larger and the low rank model is inadequate. A solution comes from the CNMF-E algorithm of Zhou654

et al. (2018) where the background is modeled as655

B = W (Y * AC), (2)

whereW À Rdùd is an appropriate weight matrix, where the (i, j) entry models the in�uence of the656

neuropil signal of pixel j to the neuropil signal at pixel i.657

Combining results from di�erent patches658

To combine results from the di�erent patches we �rst need to account for the overlap at the bound-659

aries. Neurons lying close to the boundary between neighboring patches can appear multiple times660

and must be merged. With this goal, we optimized the merging approach used in Pnevmatikakis661

et al. (2016): Groups of components with spatially overlapping footprints whose temporal traces are662

correlated above a threshold are replaced with a single component, that tries to explain as much of663

the variance already explained by the “local" components (as opposed to the variance of the data664

as performed in (Pnevmatikakis et al., 2016)). If A
old
,C

old
are the matrices of components to be665

merged, then the merged component a
m
, c

m
are given by the solution of the rank-1 NMF problem:666

min
amg0,cmg0 ÒAold

C
old

* a
m
cÒ
m
Ò. (3)

Prior to merging, the value of each component at each pixel is normalized by the number of patches667

that overlap in this pixel, to avoid counting the activity of each pixel multiple times.668

We follow a similar procedure for the background/neuropil signals from the di�erent patches.669

For the case of two-photon data, the spatial background/neuropil components for each patch can670

be updated by keeping their spatial extent intact to retain a local neuropil structure, or they can671

be merged when they are su�ciently correlated in time as described above to promote a more672

global structure. For the case of one-photon data, CNMF-E estimates the background using a673

local auto-regressive process (see Eq. (2)) (Zhou et al., 2018), a setup that cannot be immediately674

propagated when combining the di�erent patches. To combine backgrounds from the di�erent675

patches, we �rst approximate the backgrounds B
i from all the patches i with a low rank matrix676

using non-negative matrix factorization of rank g
b
to obtain global spatial, and temporal background677

components.678

[bi
, f i] = NNMF(Bi

, g
b
). (4)

The resulting components are embedded into a large matrix B À RdùT that retains a low rank679

structure. After the components and backgrounds from all the patches have been combined,680

they are further re�ned by running CNMF iteration of updating spatial footprints, temporal traces,681

and neuropil activity. CAIMAN BATCH implements these steps in a highly parallel fashion (as also682

described in Pnevmatikakis et al. (2016)): Temporal traces whose corresponding spatial traces do683

not overlap can be updated in parallel. Similarly, the rows of the matrix of spatial footprints A can684

also be updated in parallel (2b). The process is summarized in algorithmic format in Alg. 1.685

Initialization strategies686

Source extraction usingmatrix factorization requires solving a bi-convex problemwhere initialization687

plays a critical role. The CNMF/CNMF-E algorithms use initialization methods that exploit the locality688

of the spatial footprints to e�ciently identify the locations of candidate components (Pnevmatikakis689

et al., 2016; Zhou et al., 2018). CAIMAN incorporates these methods, extending them by using the690
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temporal locality of the calcium transient events. The available initialization methods for CAIMAN691

BATCH include:692

GREEDYROI: This approach, introduced in Pnevmatikakis et al. (2016), �rst spatially smooths the693

data with a Gaussian kernel of size comparable to the average neuron radius, and then694

initializes candidate components around locations wheremaximum variance (of the smoothed695

data) is explained. This initialization strategy is fast but requires speci�cation of the number696

of components by the user.697

ROLLINGGREEDYROI: The approach, introduced in this paper, operates like GREEDYROI by spatially698

smoothing the data and looking for points of maximum variance. Instead of working across699

all the data, ROLLINGGREEDYROI looks for points of maximum variance on a rolling window of700

a �xed duration, e.g., 3 seconds, and initializes components by performing a rank one NMF on701

a local spatial neighborhood. By focusing into smaller rolling windows, ROLLINGGREEDYROI702

can better isolate single transient events, and as a result detect better neurons with sparse703

activity. ROLLINGGREEDYROI is the default choice for processing of 2-photon data.704

GREEDYCORR: This approach, introduced in Zhou et al. (2018), initializes candidate components705

around locations that correspond to the local maxima of an image formed by the pointwise706

product between the correlation image and the peak signal-to-noise ratio image. By setting a707

threshold for acceptance, this approach does not require the prior speci�cation of number of708

components. This comes at the expense of a higher computational cost. GREEDYCORR is the709

default choice for processing of 1-photon data.710

SPARSENMF: Sparse NMF approaches, when ran in small patches, can be e�ective for quickly uncov-711

ering spatial structure in the imaging data, especially for neural processes (axons/dendrites)712

whose shape cannot be easily parametrized and/or localized.713

Algorithm seeding with binary masks714

Often locations of components are known either from manual annotation or from labeled data715

obtained in a di�erent way, such as data from a static structural channel recorded concurrently716

with the functional indicator. CAIMAN can be seeded with binary (or real valued) masks for the717

spatial footprints. Apart from A, these masks can be used to initialize all the other relevant matrices718

C and B as well. This is performed by i) �rst estimating the temporal background components f719

using only data from parts of the FOV not covered by any masks and, ii) then estimating the spatial720

background components b, and then estimating A,C (with A restricted to be non-zero only at the721

locations of the binary masks), using a simple NMF approach. Details are given in Alg. 2.722

Details of quality assessment tests723

Here we present the unsupervised and supervised quality assessment tests in more detail (Fig. 2).724

Matching spatial footprints to the raw data725

Let a
i
, c

i
denote the spatial footprint and temporal trace of component i, and the let A

\i
,C

\i
denote726

the matrices A,C when the component i has been removed. Similarly, let Y
i
= Y *A

\i
C

\i
*B denote727

the entire dataset when the background and the contribution of all components except i have been728

removed. If component i is real then Y
i
and a

i
cÒ
i
will look similar during the time intervals when729

the component i is active. As a �rst test CAIMAN �nds the �rst N
p
local peaks of c

i
(e.g., N

p
= 5),730

constructs intervals around these peaks, (e.g., 50 ms in the past and 300ms in the future, to cover731

the main part of a possible calcium transient around that point), and then averages Y
i
across time732

over the union of these intervals to obtain a spatial image < Y
i
> (Fig. 2c). The Pearson’s correlation733

over space between < Y
i
> and a

i
(both restricted on a small neighborhood around the centroid of734

a
i
) is then computed, and component i is rejected if the correlation coe�cient is below a threshold735

value ✓
sp
, (e.g., ✓

sp
< 0.5). Note that a similar test is used in the online approach of Giovannucci et al.736

(2017) to accept for possible new components.737
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Detecting �uorescence traces with high SNR738

For a candidate component to correspond to an active neuron its trace must exhibit dynamics739

reminiscent of the calcium indicator’s transient. A criterion for this can be obtained by requiring740

the average SNR of trace c
i
over the course a transient to be above a certain threshold ✓

SNR
, e.g.,741

✓
SNR

= 2, (Fig. 2d). The average SNR is as a measure of how unlikely it is for the transients of c
i
(after742

some appropriate z-scoring) to have been a result of a white noise process.743

To compute the SNR of a trace, let R = Y * AC * B be the residual spatiotemporal signal. We744

can obtain the residual signal for each component i, r
i
, by projecting R into the spatial footprint ai:745

r
i
=

1

Òa
i
Ò

2
R

Òa
i

(5)

Then the trace c
i
+ r

i
corresponds to the non-denoised trace of component i. To calculate its SNR746

we �rst compute a type of z-score:747

z
i
=

c
i
+ r

i
* BASELINE(c

i
+ r

i
)

NOISE(c
i
+ r

i
)

. (6)

The BASELINE(�) function determines the baseline of the trace, which can be varying in the case of748

long datasets exhibiting baseline trends, e.g., due to bleaching. The function NOISE(�) estimates749

the noise level of the trace. Since calcium transients around the baseline can only be positive, we750

estimate the noise level by restricting our attention only to the points t
n
where c

i
+ r

i
is below the751

baseline value, i.e., t
n
= {t : c

i
(t) + r

i
(t) f BASELINE(c

i
+ r

i
)}, and compute the noise level as the scale752

parameter of a half-normal distribution (Fig. 2b):753

NOISE(c
i
+ r

i
) = std([c

i
+ r

i
](t

n
))_

u

1 *
2

⇡
. (7)

We then determine how likely is that the positive excursions of z
i
can be attributed just to noise. We754

compute the probabilities p
i
(t) = �(*z

i
(t)), where �(�) denotes the cumulative distribution function755

of a standard normal distribution, and compute the most unlikely excursion over a window of N
s

756

timesteps that corresponds to the length of a typical transient, e.g., N
s
= ‰0.4s ù F Â, where 0.4s757

could correspond to the typical length of a GCaMP6f transient, and F is the imaging rate.758

p
i

min
= min

t

H

Ns*1
«

j=0

p
i
(t + j)

I1_Ns

. (8)

The (averaged peak) SNR of component i can then be de�ned as759

SNR
i
= �

*1
(1 * p

i

min
) = *�

*1
(p

i

min
), (9)

where �
*1 is the quantile function for the standard normal distribution (logit function) and a760

component is accepted if SNR
i
g ✓

SNR
. Note that for numerical stability we compute p

i

min
in the761

logarithmic domain and check the condition p
i

min
f �(*✓

SNR
).762

We can also use a similar test for the signi�cance of the time traces in the spike domain after763

performing deconvolution. In this case, traces can be considered as spiking if the maximum height764

due to a spike transient is signi�cantly larger than a threshold. If we assume that the shape of each765

calcium transient has been normalized to have maximum amplitude 1, then this corresponds to766

testing Òs
i
Ò

ÿ
g ✓

SNR
�
i
, where s

i
represents the deconvolved activity trace for component i, and ✓

SNR
767

is again an appropriate SNR threshold, e.g., ✓
SNR

= 2, and �
i
is the noise level for trace i.768

Classi�cation through convolutional neural networks (CNNs)769

The tests described above are unsupervised but require �ne-tuning of two threshold parameters770

(✓
sp
, ✓

SNR
) that might be dataset dependent and might be sensitive to strong non-stationarities. As a771

third test we trained a 4-layer CNN to classify the spatial footprints into true or false components,772

where a true component here corresponds to a spatial footprint that resembles the soma of a773

neuron (See Fig. 2e and section Classi�cation through convolutional networks for details). A simple774

threshold ✓
CNN

can be used to tune the classi�er (e.g., ✓
CNN

= 0.5).775
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Table 2. Properties of manually annotated datasets. For each dataset the duration, imaging rate and calcium
indicator are given, as well as the number of active neurons selected after consensus of the manual
annotations.

Name Area brain Lab Rate (Hz) Size (TùXùY) Indicator # labelers # neurons GT
NF.03.00.t Hippocampus Losonczy 7 2250x498x467 GCaMP6f 3 178
NF.04.00.t Cortex Harvey 7 3000x512x512 GCaMP6s 3 257
NF.02.00 Cortex Svoboda 30 8000x512x512 GCaMP6s 4 394
NF.00.00 Cortex Svoboda 7 2936x512x512 GCaMP6s 3 425
NF.01.01 Visual Cortex Hausser 7 1825x512x512 GCaMP6s 4 333
YST Visual Cortex Yuste 10 3000x200x256 GCaMP3 4 405
K53 Parietal Cortex Tank 30 116043x512x512 GCaMP6f 4 920
J115 Hippocampus Tank 30 90000x463x472 GCaMP5 3 891
J123 Hippocampus Tank 30 41000x458x477 GCaMP5 4 183

Collection of manual annotations and ground truth776

We collected manual annotations from four independent labelers who were instructed to �nd777

round or donut shaped neurons of similar size using the ImageJ Cell Magic Wand toolWalker (2014).778

We focused on manually annotating only cells that were active within each dataset and for that779

reason the labelers were provided with two summary statistics: i) A movie obtained by removing a780

running 20th percentile (as a crude background approximation) and downsampling in time by a781

factor of 10, and ii) the max-correlation image. The correlation image (CI) at every pixel is equal782

to the average temporal correlation coe�cient between that pixel and its neighbors Smith and783

Häusser (2010) (8 neighbors were used for our analysis). The max-correlation image is obtained784

by computing the CI for each batch of 33 seconds (1000 frames for a 30Hz acquisition rate), and785

then taking the maximum over all these images. Neurons that are inactive during the course of the786

dataset will be suppressed both from the baseline removed video (since their activity will always be787

around their baseline), and from the max-correlation image since the variation around this baseline788

will mostly be due to noise leading to practically uncorrelated neighboring pixels. 9 di�erent mouse789

in vivo datasets were used from various brain areas and labs. A description is given in Table 2. To790

create the consensus ground truth, the labelers were asked to jointly resolve the inconsistencies791

with each others annotations.792

The annotation procedure provides a binary mask per selected component. On the other793

hand, the output of CAIMAN for each component is a non-negatively valued vector over the FOV794

(a real-valued mask). The two sets of masks di�er not only in their variable type but also in their795

general shape: Manual annotation through the Cell Magic Wand tool tends to produce circular796

shapes, whereas the output of CAIMAN will try to accurately estimate the shape of each active797

component. To construct ground truth that can be directly used for comparison, the binary masks798

from the manual annotations were used to seed the CNMF algorithm (Alg. 2). This produced a set799

of ground truth real valued components with spatial footprints restricted to the areas provided by800

the annotations, and a corresponding set of temporal components that can be used to evaluate801

the performance of CAIMAN (Fig. 4). Registration was performed using the REGISTERPAIR algorithm802

(Alg. 5) and match was counted as a true positive when the (modi�ed) Jaccard distance (Eq. 11) was803

below 0.7. Details of the registration procedure are given below (see Component registration).804

Classi�cation through convolutional neural networks (CNNs)805

CAIMAN uses two CNN classi�ers; one for post processing component screening in CAIMAN BATCH,806

and a di�erent one for screening candidate components in CAIMAN ONLINE. In both cases a 4 layer807

CNN was used, with architecture as described in Fig. 2e.808
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CAIMAN BATCH classi�er for post processing classi�cation809

The purpose of the batch classi�er is to classify the components detected by CAIMAN BATCH into810

neuron somas or other shapes, by examining their spatial footprints. Only three annotated datasets811

(.03.00.t, NF.04.00.t, NF.02.00) were used to train the batch classi�er. The set of estimated812

footprints from running CAIMAN BATCH initialized with the consensus ground truth was matched813

to the set of ground truth footprints. Footprints matched to ground truth components were814

considered positive examples, whereas the remaining components were labeled as negatives. The815

two sets were enriched using data augmentation (rotations, re�ections, contrast manipulation etc.)816

through the Keras library (keras.io) and the CNN was trained on 60% of the data, leaving 20% for817

validation and 20% for testing. The CNN classi�er reached an accuracy of 97% on test data; that818

also generalized to the rest of the datasets (Fig. 2e) without any parameter change.819

Online classi�er for new component detection820

The purpose of the CAIMAN ONLINE classi�er is to detect new components based on their spatial821

footprints by looking at the mean across time of the residual bu�er. To construct the ground truth822

data for the online classi�er, CAIMAN BATCH was run on the �rst �ve annotated datasets seeded823

with the masks obtained through the manual annotations. Subsequently the activity of random824

subsets of found components and the background was removed from contiguous frames of the825

raw datasets to construct residual bu�ers, which were averaged across time. From the resulting826

images patches were extracted corresponding to positive examples (patches around a neuron that827

was active during the bu�er) and negative examples (patches around other positions within the828

FOV). A neuron was considered active if its trace attained an average peak-SNR value of 4 or higher829

during the bu�er interval. Similarly to the batch classi�er, the two sets were augmented and split830

into training, validation and testing sets. The resulting classi�er reached a 98% accuracy on the831

testing set, and also generalized well when applied to di�erent datasets.832

Di�erences between the two classi�ers833

Although both classi�ers examine the spatial footprints of candidate components, their required834

performance characteristics are di�erent which led us to train them separately. The batch classi�er835

examines each component as a post-processing step to determine whether its shape corresponds836

to a neural cell body. As such, false positive and false negative examples are treated equally837

and possible mis-classi�cations do not directly a�ect the traces of the other components. By838

contrast, the online classi�er operates as part of the online processing pipeline. In this case, a new839

component that is not detected in a residual bu�er is likely to be detected later should it become840

more active. On the other hand, a component that is falsely detected and incorporated in the online841

processing pipeline will continue to a�ect the future bu�er residuals and the detection of future842

components. As such the online algorithm is more sensitive to false positives than false negatives.843

To ensure a small number of false positive examples under testing conditions, only components844

with average peak-SNR value at least 4 were considered as positive examples during training of the845

online classi�er.846

Component registration847

Fluorescence microscopy methods enable imaging the same part of the brain across di�erent848

sessions that can span multiple days or weeks. While the microscope can visit the same location849

in the brain with reasonably high precision, the FOV might might not precisely match due to850

misalignments or deformations in the brain medium. CAIMAN provides routines for FOV alignment851

and component registration across multiple sessions/days. Let a1
1
, a1

2
,… , a1

N1

and a2
1
, a2

2
,… , a2

N2

the852

sets of spatial components from sessions 1 and 2 respectively, where N
1
and N

2
denote the total853

number of components from each session. We �rst compute the FOV displacement by aligning854

some summary images from the two sessions (e.g., mean or correlation image), using some non-855

rigid registration method, e.g., NoRMCorre (Pnevmatikakis and Giovannucci, 2017). We apply the856
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estimated displacement �eld to the components of A
1
to align them with the FOV of session 2. To857

perform the registration, we construct a pairwise distance matrix D À RN1ùN2 with D(i, j) = d(a1
i
, a2

j
),858

where d(�, �) denotes a distance metric between two components. The chosen distance corresponds859

to the Jaccard distance between the binarized versions of the components. A real valued component860

a is converted into its binary version m(x) by setting to 1 only the values of a that are above the861

maximum value of a times a threshold ✓
b
, e.g., ✓

b
= 0.2:862

m(a)((x)) =
T

1, a((x)) g ✓
b
ÒaÒ

ÿ

0, otherwise
. (10)

To compute the distance between two binary masks m
1
,m

2
, we use the Jaccard index (intersection863

over union) which is de�ned as864

J (m
1
,m

2
) =

m
1
„ m

2


m
1
‰ m

2


, (11)

and use it to de�ne the distance metric as865

d(a1
i
, a2

j
) =

h

n

l

n

j

1 * J (m(a1
i
),m(a2

j
)), 1 * J (m(a1

i
),m(a2

j
)) f ✓

d

0, (m(a1
i
) ” m(a2

j
)) OR (m(a2

j
) ” m(a1

i
))

ÿ, otherwise.
, (12)

where ✓
d
is a distance threshold, e.g., 0.5 above which two components are considered non-866

matching and their distance is set to in�nity to prevent false assignments.867

After the distance matrix D has been completed, an optimal matching between the components868

of the two sessions is computed using the Hungarian algorithm to solve the linear assignment869

problem. As in�nite distances are allowed, it is possible to have components from both sessions870

that are not matched with any other component. This process of registering components across871

two sessions (REGISTERPAIR) is summarized in Alg. 5.872

To register components across multiple sessions, we �rst order the sessions chronologically873

and register session 1 against session 2. From this registration we construct the union of the874

distinct components between the two sessions by keeping the matched components from session875

2 as well as the non-matched components from both sessions aligned to the FOV of session876

2. We then register this union of components to the components of session 3 and repeat the877

procedure until all sessions are have been registered. This process of multi session registration878

(REGISTERMULTI) is summarized in Alg. 6. At the end of the process the algorithm produces a list of879

matches between the components of each session and the union of all active distinct components,880

allowing for e�cient tracking of components across multiple days (Fig. 9), and the comparison881

of non-consecutive sessions through the union without the need of direct pairwise registration882

(Fig. 10)). An alternative approach to the problem of multiple session registration (CELLREG) was883

presented recently by Sheintuch et al. (2017) where the authors register neurons across multiple884

days by �rst constructing a similar union set of all the components which is then re�ned using a885

clustering procedure. REGISTERMULTI di�ers from the CELLREG method of Sheintuch et al. (2017) in886

a few key ways, that highlight its simplicity and robustness:887

• REGISTERMULTI uses a very simple intersection over union metric to estimate the distance888

between two neighboring neurons after the FOV alignment. Cells that have a distance above889

a given threshold are considered di�erent by default and are not tested for matching. This890

parameter is intuitive to set a priori for each dataset. In contrast CELLREG uses a probabilistic891

framework based on the joint probability distribution between the distance of two cells892

and the correlation of their shapes that makes speci�c parametric assumptions about the893

distributions of centroid distances between the same and di�erent cells, as well as their shape894

correlations. This model needs to be re-evaluated for every di�erent set of sessions to be895

registered and potentially requires a lot of data to learn the appropriate distance metric.896

29 of 40

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/339564doi: bioRxiv preprint first posted online Jun. 5, 2018; 

http://dx.doi.org/10.1101/339564
http://creativecommons.org/licenses/by/4.0/


Manuscript�submitted�

• REGISTERMULTI uses the Hungarian algorithm to register two di�erent set of components, a897

practice that solves the linear assignment problem optimally under the assumed distance898

function. In contrast CELLREG uses a greedy method for initializing the assignment of cells to899

the union superset relying on the following clustering step to re�ne these estimates, and thus900

adding extra computational burden to the registration procedure.901

Implementation details for CAIMAN BATCH902

Each dataset was processed using the same set of parameters, excepting the expected size of903

neurons (estimated by inspecting the correlation image), the size of patches and expected number904

of neurons per patch (estimated by inspecting the correlation image). For the dataset N.01.01,905

where optical modulation was induced, the threshold for merging neurons was slightly higher (the906

stimulation caused clustered synchronous activity). For shorter datasets, rigid motion correction907

was su�cient; for longer datasets K53,J115we applied non-rigid motion correction. The parameters908

for the automatic selection of components were optimized using only the �rst three datasets and909

�xed for all the remaining �les. For all datasets the background neuropil activity was modeled as a910

rank 2 matrix, and calcium dynamics were modeled as a �rst order autoregressive process. The911

remaining parameters were optimized so that all the datasets could be run on a machine with less912

than 128GB RAM.913

Implementation details for CAIMAN ONLINE914

Datasets were processed for two epochs with the exception of the longer datasets K53,J115,J123915

where only one pass of the data was performed to limit computational cost. For each dataset916

the online CNN classi�er was used to detect new neurons, and �ve candidate components were917

considered for each frame. The online CNN classi�er had the same threshold 0.5 for all datasets,918

with the exception of the longest datasets J115,J123 where the threshold was set to 0.75. Setting919

the threshold to 0.5 for these datasets led to slightly poorer performance. Large datasets were920

spatially decimated by a factor of 2 to enhance processing speed, a step that did not lead to changes921

in detection performance. For all datasets the background neuropil activity was modeled as a rank922

2 matrix, and calcium dynamics were modeled as a �rst order autoregressive process. For each923

dataset, CAIMAN ONLINE was initialized on the �rst 200 frames, using the BAREINITIALIZATION on924

the entire FOV with only 2 neurons, so in practice all the neurons were detected during the online925

mode. To highlight the truly online processing mode, no post-processing of the results was used, a926

step that can further enhance the performance of the algorithm. Similarly to batch processing, the927

expected size of neurons was chosen separately for each dataset after inspecting the correlation928

image.929

For the analysis of the whole brain zebra�sh dataset, CAIMAN ONLINE was run for 1 epoch with930

the same parameters as above, with only di�erences appearing in the number of neurons during931

initialization (600 vs 2), and the value of the threshold for the online CNN classi�er (0.75 vs 0.5).932

The former decision was motivated by the goal of retrieving with a single pass neurons from a933

preparation with a denser level of activity over a larger FOV in this short dataset (1885 frames).934

To this end, the number of candidate neurons at each timestep was set to 10 (per plane). The935

threshold choice was motivated by the fact that the classi�er was trained on mouse data only, and936

thus a higher threshold choice would help diminish potential false positive components. Rigid937

motion correction was applied online to each plane.938

Performance quanti�cation as a function of SNR939

To quantify performance as a function of SNR we approximate the ground truth traces by running940

CAIMAN BATCH on the datasets seeded with the “consensus" binary masks obtained from the manual941

annotators. After that the average peak-SNR of a trace c with corresponding residual signal r (5) is942

obtained as943

SNR(z) = *�
*1
(p

min
), (13)
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where �
*1
(�) denotes the probit function (quantile function for the standard Gaussian distribution),944

z is the z-scored version of c + r (6) and p
min

is given by (8).945

Let cgt
1
, c

gt

2
,… , c

gt

N
be the ground truth traces and c

cm

1
, c

cm

2
,… , c

cm

N
be their corresponding CAIMAN946

inferred traces. Here we assume that false positive and false negative components arematched with947

trivial components that have 0 SNR. Let also SNR
gt

i
= SNR(c

gt

i
) and SNR

cm

i
= SNR(c

cm

i
), respectively.948

After we compute the SNR for both ground truth and inferred traces the performance algorithm949

can be quanti�ed in multiple ways as a function of a SNR thresholds ✓
SNR

:950

Precision: Precision at level ✓
SNR

, can be computed as the fraction of detected components with
SNR

cm
> ✓

SNR
that are matched with ground truth components. It quanti�es the certainty that

a component detected with a given SNR or above corresponds to a true component.

PREC(✓
SNR

) =
{i : (SNR

cm

i
> ✓

SNR
) & (SNR

gt

i
> 0)}

{i : (SNRcm
i
> ✓

SNR
)}

Recall: Recall at level ✓
SNR

, can be computed as the fraction of ground truth components with
SNR

gt
> ✓

SNR
that are detected by the algorithm. It quanti�es the certainty that a ground truth

component with a given SNR or above is detected.

RECALL(✓
SNR

) =
{i : (SNR

gt

i
> ✓

SNR
) & (SNR

cm

i
> 0)}

{i : (SNRgt
i
> ✓

SNR
)}

F
1
score: An overall F

1
score at level ✓

SNR
, can be obtained by computing the harmonic mean

between precision and recall

F
1
(✓

SNR
) = 2

PREC(✓
SNR

) ù RECALL(✓
SNR

)

PREC(✓
SNR

) + RECALL(✓
SNR

)

The cautious reader will observe that the precision and recall quantities described above are951

not computed in the same set of components. This can be remedied by recomputing the quantities952

in two di�erent ways:953

AND framework: Here we consider a match only if both traces have SNR above the given threshold:

PREC
AND

(✓
SNR

) =
{i : (SNR

cm

i
> ✓

SNR
) & (SNR

gt

i
> ✓

SNR
)}

{i : (SNRcm
i
> ✓

SNR
)}

RECALL
AND

(✓
SNR

) =
{i : (SNR

gt

i
> ✓

SNR
) & (SNR

cm

i
> ✓

SNR
)}

{i : (SNRgt
i
> ✓

SNR
)}

OR framework: Here we consider a match if either trace has SNR above the given threshold and
its match has SNR above 0.

RECALL
OR
(✓

SNR
) =

{i : (max(SNR
gt

i
, SNR

cm

i
) > ✓

SNR
) & (min(SNR

gt

i
, SNR

cm

i
) > 0)}

{i : (SNRcm
i
> 0)}

RECALL
OR
(✓

SNR
) =

{i : (max(SNR
gt

i
, SNR

cm

i
) > ✓

SNR
) & (min(SNR

gt

i
, SNR

cm

i
) > 0)}

{i : (SNRgt
i
> 0)}

It is easy to show that

PREC
AND

(✓
SNR

) f PREC(✓
SNR

) f PREC
OR
(✓

SNR
)

RECALL
AND

(✓
SNR

) f RECALL(✓
SNR

) f RECALL
OR
(✓

SNR
)

F
1AND

(✓
SNR

) f F
1
(✓

SNR
) f F

1OR
(✓

SNR
),

with equality holding for ✓
SNR

= 0. As demonstrated in Fig. 4d, these bounds are tight.954

Additional features of CAIMAN955

CAIMAN contains a number of additional features that are not presented in the results section for956

reasons of brevity. These include:957

31 of 40

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/339564doi: bioRxiv preprint first posted online Jun. 5, 2018; 

http://dx.doi.org/10.1101/339564
http://creativecommons.org/licenses/by/4.0/


Manuscript�submitted�

Volumetric data processing958

Apart from planar 2D data, CAIMAN BATCH is also applicable to 3D volumetric data arising either959

from dense raster scanning methods, or from direct volume imaging methods such as light �eld960

microscopy (Prevedel et al., 2014; Grosenick et al., 2017).961

Segmentation of structural indicator data962

Structural indicators expressed in the nucleus and functional indicators expressed in the cytoplasm963

can facilitate source extraction and help identify silent or speci�c subpopulations of neurons964

(e.g., inhibitory). CAIMAN provides a simple adaptive thresholding �ltering method for segmenting965

summary images of the structural channel (e.g., mean image). The obtained results can be used966

for seeding source extraction from the functional channel in CAIMAN BATCH or CAIMAN ONLINE as967

already discussed.968

Duplicate Detection969

The ground truth obtained through the consensus process was screened for possible duplicate970

selections. To detect for duplicate components we de�ne the degree of spatial overlap matrix O as971

O
ij
=

h

n

l

n

j

0, i = j

m(ai) „ m(aj)
m(aj) , i ë j

, (14)

that de�nes the fraction of component i that overlap with component j, where m(�) is the thresh-972

olding function de�ned in (10). Any entry of O that is above a threshold ✓
o
(e.g., ✓

o
= 0.7 used973

here) indicates a pair of duplicate components. To decide which of the two components should be974

removed, we use predictions of the CAIMAN BATCH CNN classi�er, removing the component with the975

lowest score.976

Extraction of �F_F977

The �uorescence trace f
i
of component i can be written as978

f
i
= Òa

i
Ò

2
(c

i
+ r

i
). (15)

The �uorescence due to the component’s transients overlaps with a background �uorescence due979

to baseline �uorescence of the component and neuropil activity, that can be expressed as980

f
0,i

= BASELINE(f
i
+ B

Òa
i
), (16)

where BASELINE : RT ≠ RT is a baseline extraction function, and B is the estimated background981

signal. Examples of the baseline extraction function are a percentile function (e.g., 10th percentile),982

or a for longer traces, a running percentile function, e.g., 10th percentile over a window of a hundred983

seconds6. To determine the optimal percentile level an empirical histogram of the trace (or parts of984

it in case of long traces) is computed using a di�usion kernel density estimator (Botev et al., 2010),985

and the mode of this density is used to de�ne the baseline and its corresponding percentile level.986

The �F_F activity of component i can then be written as987

c�F_F

i
=

f
i
* BASELINE(f

i
)

f
0,i

(17)

The approach we propose here is conceptually similar to practical approaches where the �F_F is988

computed by averaging over the spatial extent of an ROI (Jia et al., 2011) with some di�erences:989

i) instead of averaging with a binary mask we use the a weighed average with the shape of each990

component, ii) signal due to overlapping components is removed from the calculation of the991

6Computing the exact running percentile function can be computationally intensive. To reduce the complexity we compute
the running percentile with a stride ofW , whereW is equal or smaller to the length of the window, and then linearly interpolate
the values.
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background �uorescence, and iii) the traces have been extracted through the CNMF process prior992

to the �F_F extraction. Note that the same approach can also be performed to the trace Òa
i
Ò

2c
i

993

that does not include the residual traces for each component. In practice it can be bene�cial to994

extract �F_F traces prior to deconvolution, since the �F_F transformation can alleviate the e�ects995

of drifting baselines, e.g., due to bleaching. For the non-deconvolved traces f
i
some temporal996

smoothing can also be applied to obtain more smooth �F_F traces.997
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Appendix 0 Figure 10. Tracking neurons across days, step-by-step description of multi session registration
(Fig. 9). (a) Correlation image overlaid to contour plots of the neurons identi�ed by CAIMAN BATCH in day 1 (top,
453 neurons), 2 (middle, 393 neurons) and 3 (bottom, 375 neurons). (b) Result of the pairwise registration
between session 1 and 2. The union of distinct active components consists of the components that were active
in i) both sessions (yellow - where only the components of session 2 are displayed), ii) only in session 2 (green),
and iii) only in session 1, aligned to the FOV of session 2 (red). (c) At the next step the union of sessions 1 and 2
is registered with the results of session 3 to produce the union of all distinct components aligned to the FOV of
session 3. (d) Comparison of non-consecutive sessions without pairwise registration. Keeping track of which
session each component was active in, enables e�cient and stable comparisons.
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Appendix 0 Figure 11. Pro�le of spatial (left) and temporal (right) components found in each plane of the
whole brain zebra�sh recording. (Left) Components are extracted with CAIMAN ONLINE and then
max-thresholded. (Right) See Results section for a complete discussion.
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Supplemental Data1135

Description of Supplemental Movies1136

Movie 1: Depiction of CAIMAN ONLINE on a small patch of in vivo cortex data. Top left: Raw1137

data. Bottom left: Footprints of identi�ed components. Top right: Mean residual bu�er and1138

proposed regions for new components (in white squares). Enclosings of accepted regions are1139

shown in magenta. Several regions are proposed multiple times before getting accepted. This is1140

due to the strict behavior of the classi�er to ensure a low number of false positives. Bottom right:1141

Reconstructed activity.1142

Movie 2: Depiction of CAIMAN ONLINE on a single plane ofmesoscope data courtesy of E. Froudarakis,1143

J. Reimers and A. Tolias (Baylor College of Medicine). Top left: Raw data. Top right: Inferred activity1144

(without neuropil). Bottom left: Mean residual bu�er and accepted regions for new components1145

(magenta squares). Bottom right: Reconstructed activity.1146

Movie 3: Results of CAIMAN ONLINE initialized by CAIMAN BATCH on a whole brain zebra�sh dataset.1147

Each panel shows the active neurons in a given plane (top-to-bottom) without any background1148

activity. See the text for more details.1149

Algorithmic Details1150

In the following we present in pseudocode form several of routines introduced and used by CAIMAN.1151

Note that the pseudocode descriptions do not aim to present a complete picture and may refer to1152

other work for some of the steps.1153

Algorithm 1 PROCESSINPATCHES
Require: Input data matrix Y , patch size , overlap size, initialization method, rest of parameters.
1: Y (1)

,… , Y
(Np) = CONSTRUCTPATCHES(Y , p

s
, o

s
) . Break data into memory mapped patches.

2: for i = 1,… ,N
p
do . Process each patch

3: [A
(i)
,C

(i)
, b(i)

, f (i)] = CNMF(Y (i)
, options) . Run CNMF on each patch

4: end for
5: [A,C] = MERGECOMPONENTS[{A(i)

,C
(i)
}
i=1,…,N

] .Merge Components
6: [b, f ] = MERGEBACKGROUNDS[{b(i)

, f (i)}
i=1,…,N

] .Merge background components
7: M } (A > 0). . Find masks of spatial footprints.
8: repeat . Optionally keep updating A,C ,b, f using HALS (Cichocki et al., 2007).
9: [b, f ] } NNMF(Y * AC , n

b
)

10: C } argmin
Cg0 ÒY * bf * ACÒ

11: A } argmin
Ag0,A(ÌM)==0

ÒY * bf * ACÒ

12: until Convergence
13: return A,C ,b, f
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Algorithm 2 SEEDEDINITIALIZATION
Require: Input data matrix Y , matrix of binary masksM , number of background components n

b
.

1: p = find(A1 == 0) . Find the pixels not covered by any component.
2: [Ì, f ] } NNMF(Y [p, :], n

b
) . Run NMF on these pixels just to get temporal backgrounds f

3: b } argminbg0 ÒY * bfÒ . Obtain spatial background b.
4: C } max

�

(M
Ò
M)

*1
M

Ò
(Y * bf ), 0

�

. Initialize temporal traces.
5: A } argmin

Ag0,A(ÌM)==0
ÒY * bf * ACÒ. . Initialize spatial footprints constrained within the

masks.
6: repeat . Optionally keep updating A,C ,b, f using HALS.
7: [b, f ] } NNMF(Y * AC , n

b
)

8: C } argmin
Cg0 ÒY * bf * ACÒ

9: A } argmin
Ag0,A(ÌM)==0

ÒY * bf * ACÒ

10: until Convergence
11: return A,C ,b, f

Algorithm 3 CAIMAN ONLINE (See Giovannucci et al. (2017) for explanation of routines)
Require: Data matrix Y , initial estimates A, b,C , f ,S, current number of components K , current

timestep t
®, rest of parameters.

1: W = Y [:, 1 : t
®
]C

Ò
_t

®

2: M = CC
Ò
_t

®
. Initialize su�cient statistics (Giovannucci et al., 2017)

3: G = DETERMINEGROUPS([A, b],K) . Giovannucci et al. (2017), Alg. S1-S2
4: Rbuf = [Y * [A, b][C; f ]][:, t® * l

b
+ 1 : t

®
] . Initialize residual bu�er

5: t = t
®

6: for i = 1,… ,N
epochs

do
7: while there is more data do
8: t } t + 1

9: y
t
} MOTIONCORRECT(y

t
, bf

t*1
) . (Pnevmatikakis and Giovannucci, 2017)

10: [c
t
; f

t
] } UPDATETRACES([A, b], [c

t*1
; f

t*1
], y

t
,G) . Giovannucci et al. (2017), Alg. S3

11: C ,S } OASIS(C , � , smin, �) . Friedrich et al. (2017b)
12: A

new
,C

new
} FINDNEWCOMPONENTS(Rbuf,Ncomp) . Alg. 4

13: [A, b], [C , f ],K ,G,Rbuf,W ,M } INTEGRATENEWCOMPONENTS(

14: [A, b], [C , f ],K ,G,A
new

,C
new

,Rbuf, yt,W ,M) . Giovannucci et al. (2017), Alg. S4
15: Rbuf } [Rbuf[:, 2 : l

b
], y

t
* Ac

t
* bf

t
] . Update residual bu�er

16: W ,M } UPDATESUFFSTATISTICS(W ,M , y
t
, [c

t
; f

t
])

17: if mod (t * t
®
, l

b
) = 0 then . UpdateW ,M , [A, b] every l

b
timesteps

18: [A, b] } UPDATESHAPES[W ,M , [A, b]] . Giovannucci et al. (2017), Alg. S5
19: end if
20: end while
21: t } 0

22: end for
23: return A, b,C , f ,S
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Algorithm 4 FINDNEWCOMPONENTS

Require: Residual bu�er Rbuf, number of new candidate components Ncomp, neuron radius r.
1: E }

≥

t
max(R

buf(t)
, 0)

2

2: E } HIGHPASSFILTER(E) . Spatial high pass �ltering for contrast enhancement.
3: P = FINDLOCALPEAKS(E,Ncomp, r) . Find local maxima at least 2r apart.
4: A

test
} Á

5: for p À P do
6: N

p
= {(x, y) : x * p

x
 f r, y * p

y
 f r} . De�ne a neighborhood around p

7: A
test

} A
test

‰MEAN(R
buf

)

8: end for
9: I

accept
} ONLINECNNCLASSIFIER(A

test
) . Find indeces of accepted components

10: A
new

} Á,C
new

} Á

11: for i À I
accept

do
12: [a, c] } NNMF(R

buf
[N

pi
, :], 1)

13: A
new

} A
new

‰ a
14: C

new
} C

new
‰ c

15: end for
16: return A

new
,C

new

Algorithm 5 REGISTERPAIR
Require: Spatial footprint matrices A

1
,A

2
, �eld of view templates I

1
, I

2
, thresholds for binarization

✓
b
and matching ✓

m
.

1: S = COMPUTEMOTIONFIELD(I
1
, I

2
) . Compute motion �eld between the templates.

2: A
1
} APPLYMOTIONFIELD(A

1
,S) . Align A

1
to the template I

2

3: [M
1
,M

2
] = BINARIZE([A

1
,A

2
], ✓

b
) . Turn components into binary masks.

4: D = COMPUTEDISTANCEMATRIX(M
1
,M

2
, ✓

D
) . Compute distance matrix.

5: P
1
,P

2
,L

1
,L

2
= HUNGARIAN(D) .Match using the Hungarian algorithm.

6: returnMatched components P
1
,P

2
, non-matched components L

1
,L

2
and aligned components

from �rst session A
1
.

Algorithm 6 REGISTERMULTI

Require: List of spatial footprint matrices A
1
,A

2
,… ,A

N
, list of FOV templates I

1
, I

2
,… , I

N
, thresh-

olds for binarization ✓
b
and matching ✓

m
.

1: for i = 1,… ,N do
2: K

i
= SIZE(A

i
, 2) . Number of components in each session.

3: end for
4: A

u
} A

1
. Initialize A

u
matrix

5: m[1] = [1, 2,… ,K
1
] . Initialize matchings list

6: K
tot

} K
1

. Total # of distinct components so far.
7: for i = 2,… ,N do
8: P

u
,P

i
,L

u
,L

i
,A

u
= REGISTERPAIR(A

u
,A

i
, I

i*1
, I

i
, ✓

b
, ✓

m
) . Register A

u
to session i.

9: A
u
[:,P

u
] } A

i
[:,P

i
] . Keep the matched components from session i.

10: A
u
} [A

u
,A

i
[:,L

i
]] . Include the non-matched components from session i.

11: m[i][P
i
] = P

u
. m[i][j] = k if component j from session i is mapped to component k in A

u
.

12: m[i][L
i
] = [K

tot
+ 1,K

tot
+ 2,… ,K

tot
+ L

i
] . Include newly added components.

13: K
tot

} K
tot

+ L
i
 . Update total number of distinct components.

14: end for
15: return Union of all distinct components A

u
, and list of matchings m.
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