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Abstract: Estimating visibility in point clouds has many applications such as visualization, surface reconstruction and
scene analysis through fusion of LiDAR point clouds and images. However, most current works rely on
methods that require strong assumptions on the point cloud density, which are not valid for LiDAR point
clouds acquired from mobile mapping systems, leading to low quality of point visibility estimations. This
work presents a novel approach for the estimation of the visibility of a point cloud from a viewpoint. The
method is designed to be fully automatic and it makes no assumption on the point cloud density. The visibility
of each point is estimated by considering its screen-space neighborhood from the given viewpoint. Our results
show that our approach succeeds better in estimating the visibility on real-world data acquired using LiDAR
scanners. We evaluate our approach by comparing its results to a new manually annotated dataset, which we
make available online.

1 Introduction

Over the past decade, the use of 3D point clouds
as an alternative to meshes has been constantly grow-
ing. A 3D point cloud simply consists in 3D posi-
tions, sometimes associated with supplementary in-
formation such as its color, reflectance or normal. It
can be considered as a sampling of continuous sur-
face, providing a simpler representation than the full
topology.

The estimation of the visibility of a point cloud
consists in assigning a label to each point of the scene:
visible if the point lies on an object that is directly
visible from a given viewpoint, non-visible otherwise
(Fig. 1). This task is a typical step for various ap-
plications in computer graphics such as in surface re-
construction (Zach et al., 2007; Shalom et al., 2010;
Berger et al., 2017) in which estimating and remov-
ing points that are not visible from a given point of
view improves the interpolation and the approxima-
tion of the surface to recover. In point cloud rendering
and visualization (Pintus et al., 2011; Bouchiba et al.,
2017), the estimation of the visibility enables better
rendering performances as well as an improvement of
the scene understanding. For both application scenar-
ios, the existing methods (Zach et al., 2007; Shalom
et al., 2010; Berger et al., 2017; Pintus et al., 2011;

a. b. c. d.

Figure 1: Illustration of the visibility problem. (a) an optical
image corresponding to a view point, (b) the 3 main struc-
tures of the scene, (c) the projection of the acquired point
cloud seen from the same view point with same colors as in
(b), (d) the visibility errors brought by the projection (red
points should not be visible).

Bouchiba et al., 2017) strongly rely on strict sampling
assumptions (Berger et al., 2017) (e.g. on point clouds
with constant density in terms of number of points per
cubic meters).

Recently, the development of acquisition systems
designed for acquiring urban scenes has been increas-
ing. In particular, Mobile Mapping Systems (MMS)
equipped with LiDAR (Light Detection And Rang-
ing) (Paparoditis et al., 2012; Geiger et al., 2013;
Maddern et al., 2017) have been widely used to sur-
vey cities, road, highways, etc. Those campaigns have
resulted in the production of large, unorganized point
clouds that provide precise 3D representations of the



urban environment. Due to the acquisition method,
these point clouds present high variation in their sam-
pling and density. Most modern MMS also embed ad-
ditional materials, mostly optical images, which pro-
vide complementary information on the scene. The
multimodal aspect of these datasets may be leveraged
to improve detection, classification and prediction
techniques in urban environments (Benenson et al.,
2014; Eigen et al., 2014). Therefore, the fusion and
the registration of LiDAR and optical data became
critical as the use of multi-modal data definitely in-
creases performances of classification/prediction al-
gorithms. Most of the recent related works strongly
rely on good visibility estimates (Mastin et al., 2009;
Guislain et al., 2017).

The majority of actual LiDAR/optical registration
techniques that use visibility rely on estimation tech-
niques that were built for point clouds with strict sam-
pling assumptions that are not met by the LiDAR
data on which they operate. On the other hand, point
cloud rendering and surface reconstruction methods
presented above are not designed to perform on point
clouds with variable density. However, the quality of
the visibility estimation is a crucial preprocessing step
for multi-modal fusion applications as it drastically
lowers the ambiguities from one modality to another.
This work aims at studying a new method for esti-
mating the visibility in point clouds without constant
density acquired via MMS to improve the data fusion.

The paper contribution is threefold: first, we pro-
pose a novel approach for the visibility estimation in
a point cloud that is robust to high density variations.
This method is designed to be fully automatic and to
perform well on any types of 3D point clouds. The
second contribution of this article is a new visibility
dataset of over 1 million annotated points for test-
ing the performances of visibility estimation methods.
This dataset, as well as the code for our method, are
made publicly available online. The third contribu-
tion of this dataset is a full numerical and visual com-
parison between our method and other state-of-the-art
methods.

The paper is organized as follows: first, a brief
overview of the related work is presented. Then, the
methodology of the method is explained. Finally,
evaluation and results are shown and a conclusion is
drawn.

2 Related works

There has been many contributions to the state-of-
the-art techniques for the estimation of the visibility
of a point cloud given a certain viewpoint. In this

section, we briefly overview the methods that are most
relevant to our work.

Surface reconstruction based One intuitive way to
compute the visibility of a point cloud is to recon-
struct the surface. Indeed, the projection of the sur-
face as a depth map may be used to estimate which
points are not visible. Some methods do not require
prior knowledge of the visibility and can therefore be
used for visibility estimation. Surface smoothness ap-
proaches (Lipman et al., 2007; Xiong et al., 2014)
approximate the surface by locally defining operators
that weigh surrounding points in order to estimate the
local surface. This constrains the reconstructed sur-
face to fit the point cloud as close as possible while
ensuring a certain level of smoothness and preserving
sharp features. To deal with large amounts of miss-
ing data, Volume smoothness techniques (Tagliasacchi
et al., 2011; Huang et al., 2013) exploit the prior of
smooth variation of the volume of the reconstructed
surface. Unfortunately, these methods are based on
strong prior of uniform sampling of the point cloud,
which is not suitable for MMS LiDAR point clouds.
Primitive based methods (Schnabel et al., 2009; La-
farge and Alliez, 2013) aim at fitting geometric shapes
(i.e. planes, spheres, cylinders, boxes, etc.) in order to
reconstruct the scene. However, the complex shapes
that can be met in real world scene often jeopardize
the results of such methods. Finally, Global regular-
ity approaches (Li et al., 2011a; Li et al., 2011b; Mon-
szpart et al., 2015) take advantage of the repeatabil-
ity of certain parts of the scene. These methods have
shown great strength for the reconstruction of individ-
ual regular shapes such as facades or roads but under-
perform on realistic complete scenes. Although each
technique provides satisfying results on specific sce-
narios, surface reconstruction is a difficult problem,
which often requires additional information, such as
normals, sufficiently dense input and uniform sam-
pling.

Convex hull based Some methods estimate the vis-
ibility based on the local geometry of the 3D point
cloud. Based on the raw point cloud (i.e. only 3D
positions), (Katz et al., 2007) proposes an approach
for estimating which part of the point cloud is not
self-occluded given a certain viewpoint. This method
admits to perform better on closed shapes. A spher-
ical inversion is performed on the point cloud. The
convex hull of the inverted point cloud augmented
by the viewpoint position is computed. Then, points
that are lying on the convex hull are considered vis-
ible, and the rest of the point cloud as non-visible.
The acceptance of concave features is tuned by the



sphere radius, which is a global parameter so that this
method strongly relies on a uniform sampling of the
point cloud. Later, this method was improved to han-
dle small changes in the sampling corresponding to
noisy acquisitions (Mehra et al., 2010), but still relies
on constant density in the point cloud. Moreover, the
computational cost of the convex hull (Barber et al.,
1996) can rapidly increase depending on the wanted
concavity. Finally, (Katz et al., 2007; Mehra et al.,
2010) are both designed to perform on point clouds
that represent closed shapes, acquired from all direc-
tions, which is not realistic in urban scenarios where
MMS are not able to scan all surfaces.

Likelihood based Different methods aim at esti-
mating the likelihood of a point to be visible given
a point of view, by considering its neighborhood. The
most common methods rely on the estimation of visi-
bility cones in screen-space (Shalom et al., 2010), and
more recently (Pintus et al., 2011). For each point,
a visibility cone is estimated, where the apex of the
cone is the given viewpoint. The aspect of the cone
is directly related to the visibility. Thus, a point that
belongs to a wide cone is more likely to be visible
than a point that belongs to a narrow cone. However,
the threshold on how open a cone should be in order
to consider the point visible strongly depends on the
point cloud, and can be hard to set.

In this paper, we propose an automatic screen-
space method for estimating the visibility of points in
a point cloud given a viewpoint. This method makes
no assumptions on the sampling or the density of the
point cloud and can therefore performed on any point
cloud.

3 Visibility estimation method

The first contribution of this paper is a method for
estimating visibility in a 3D point cloud that is robust
to high sampling variations.

As illustrated in Fig. 2, points from two objects lo-
cated at different distances from the given viewpoint
overlap in the image plane once projected. In this con-
text, a point is visible only if it lies on the closest ob-
ject and occluded otherwise. From this observation,
we propose an algorithm that considers the neighbor-
hood of a point in screen-space in order to estimate
whether this point lies on the closest object or not.
The algorithm consists in 4-steps detailed hereafter.

Figure 2: Illustration of notations in 3D and in the screen-
space. Blue points corresponds to the points lying on the
closest object while red points lies on the farthest object.
Although the blue points and red points are well separated
in 3D, they overlap in screen-space.

(a) (b)
Figure 3: Illustration of the depth and of the closest points.
(a) dp corresponds to the depth between P and the center of
the viewpoint, (b) shows an example of the N closest points
in screen-space (N = 6).

Projection to screen-space Let P be a 3D point
cloud, and Φ a viewpoint such that any 3D point

P =

x
y
z

 ∈ P can be projected as a point p =

[
x
y

]
∈

PΦ in the image plane of the viewpoint Φ. The rela-
tion between P and p is illustrated on Fig. 2. We also
define dp as the depth of the point p. It corresponds to
the 3D Euclidean distance between P and the center
of the viewpoint as illustrated Fig. 2(a).

Neighbors computation We define N (p) as the set
of the N nearest neighbor points of p in the image
plane as explained in Fig. 3(b) The N (p) set can
be computed using any K-NN alogrithm with a Eu-
clidean distance. The use of the K-NN algorithm de-
fined in (Friedman et al., 1977) ensures logarithmic
computation time while being parallelizable.

Visibility estimation For each point, we want to de-
termine if it lies on the object in its neighborhood that
is the closest to the viewpoint. If so, we can consider
it as visible. To that end, we compare its position to
the closest and the farthest point of its neighborhood.
We define the visibility of each point as follows:

αp = e
− (dp−dmin

p )
2

(dmax
p −dmin

p )
2

(1)



where

dmin
p = min

q∈N (p)
dq,dmax

p = max
q∈N (p)

dq

The visibility estimation of each point p ∈ PΦ is now
given by αp ∈ [0,1], where αp = 0 means that p is
occluded and αp = 1 means that p is surely visible.

Binarization The visibility of a point cloud being a
binary notion, we propose the following binarization
of αp:

α̂p =

{
1 if αp ≥ ᾱ

0 otherwise. (2)

with ᾱ= 1
Card(Pφ)

∑
p∈Pφ

αp the mean of the estimated vis-

ibilities. Note that various ᾱ values have been tested
such as ᾱ = 0.5 or the median value of the estimated
visibilities as discussed Section 5. However, in our
experiments on LiDAR data, the mean value remains
the best threshold. When point clouds have constant
densities, ᾱ = 0.99 appears to be more adequate.

4 Visibility estimation dataset for
LiDAR point clouds

The evaluation of visibility estimation techniques
has mostly been done either by visual analysis or
by comparison to degradated synthetic models. In
(Shalom et al., 2010; Katz et al., 2007), visual results
are displayed to show the qualitative performances
of each algorithm. In (Mehra et al., 2010), small
degradations on synthetic model are applied in or-
der to build groundtruths. Although these methods
of evaluation provide convincing results, they do not
provide complete and objective quantitative measures
on real data. Real data, such as LiDAR, differ from
synthetic data in two aspects. The first difference is
that the point cloud density is highly variable on real
data depending on the distance to the sensor, while
constant on synthetic data. The second one is that
real urban data only acquire partial representations of
each object of the scene as the sensor does not see
objects from every possible viewpoints. On the other
hand, the synthetic data presented in the related works
(Shalom et al., 2010; Katz et al., 2007; Mehra et al.,
2010) are always complete 3D objects, which can be
seen from any viewpoint. To our knowledge, we give
here the first annoted dataset on real urban LiDAR
data, which makes the second contribution of this pa-
per.

Figure 4: Overview of the proposed dataset. First row: op-
tical image corresponding to each viewpoint. Second row:
point cloud once projected in the image domain, where red
pixels correspond to occluded points. Third row: 3D visu-
alization of each point cloud, with the same color code than
in the second row.

4.1 Overview of the dataset

We propose a manually annotated dataset containing
over a 1 million points with the label 1 or 0 depend-
ing on if the points are visible or not. This dataset has
been obtained by manually labeling 3 point clouds ac-
quired by the RobotCar system (Maddern et al., 2017)
at different locations, in urban environment. Two of
these point clouds are acquired several meters from
one another in order to test the stability of visibil-
ity estimation methods. The third point cloud corre-
sponds to another location and covers a much wider
area which enables testing the limit of methods in case
of large distances (> 100m).

Annotations were done manually by comparing
the projections of the point clouds to the optical im-
ages acquired at the same viewpoints. Fig. 4 presents
an overview of the produced dataset. The first row il-
lustrates each scene as acquired from the optical sen-
sor at each viewpoint. The second row shows the
projections of each point cloud in the image domain
(with the calibration matrices provided by the Robot-
car dataset (Maddern et al., 2017)), where occluded
points are highlighted in red. Finally, the third row
shows a 3D visualization of each point cloud, with
same color code than above. It illustrates the amount
of points to be processed as well as the size of the
scenes. The statistics of the dataset are summed up in
Table 1. The dataset proposes different levels of vis-
ible / occluded points, as well as different size of the
scene.

This dataset is publicly available online1. The

1http://www.labri.fr/perso/pbiasutt/Visibility/



Table 1: Content of the visiblity estimation dataset

Points Visibility Farthest point Size

Scene #1 337384 55.5% 75.8m 20.6Mb
Scene #2 247682 57.0% 54.3m 15.1Mb
Scene #3 463531 65.9% 179.2m 28.3Mb

Total 1048597 59.46% - 64Mb

archive contains 3 text files in the .xyz format that
correspond to each point cloud. In each file, a line
corresponds to [x, y, z, u, v, label] where x,y,z are the
3D coordinates of the point, u,v are the 2D coordi-
nates of the point when projected into φ and label is
the visibility label (0 for occluded points, 1 for visible
points). To ensure good understanding of each of the
3 scenes, we also provide the optical RGB image of
size 1280×960px associated to each viewpoint.

5 Experiments & Results

In order to evaluate the performances of our vis-
ibility estimation method, we first perform a full nu-
merical and visual comparison between our method
and other state-of-the-art methods on (1) the proposed
visibility dataset, (2) a point cloud with constant den-
sity. Next, we show application of our method to data
fusion by performing point cloud colorization from
RGB images. All the algorithms are run on Matlab
2018a with a 3.5Ghz CPU.

5.1 Evaluation on the Visibility
Estimation Dataset

Using our new annotated dataset, we propose an eval-
uation with two state-of-the art methods, and with
our proposed model, against a groundtruth. For each
method, we set all the parameters to its optimal value
(e.g. the parameters that gives best results against the
groundtruth). In our case, we set N = 75 and we de-
tail results for different ᾱ values. We measure the ef-
ficiency of each method by computing the following
metric:

S(P ) =
1

Card(P ) ∑
P∈P

αp×GTp (3)

where GTp corresponds to the annotation of the point
P (0 or 1, occluded or visible respectively). This met-
ric aims at capturing the percentage of correctly la-
beled points provided by each method. The results of
this evaluation are displayed in Table 2.

Table 2 demonstrates that our algorithm outper-
forms each compared methods for the 3 scenes. The

best scores are obtained by setting the threshold ᾱ

equal to the mean of visibility estimations for our
method. This observation is explanable. Indeed, as
mentionned above, LiDAR aquisitions only capture
pieces of the scene. Thus, objects are represented by
one of their face only which makes them well sepa-
rated from one another. In this sense, when an object
overlaps an other in screen-space, the mean of the vis-
ibility estimations usually represents the visibility of
a point that would be in between those two objects. If
a point has a visibility estimation above this thresh-
old, it is likely to fall on the closest object, otherwise,
it is occluded. Therefore, the mean value can be used
when working on LiDAR point clouds because of the
way objects are separated from one another, making
the method fully automatic in this context.

We also demonstrate that our method operates
faster than any other tested method with the ability
of treating the whole dataset in less than a second.
Moreover, the code is run on a single CPU. Among
the 4 steps of the algorithm, the computation of the
K-NN is the most time consuming (about 86% of the
total running time). Therefore, one can expect much
faster running times by operating on GPU with paral-
lel implementation of the K-NN algorithm.

The problem of visibility estimation is a classifi-
cation problem with two classes: visible and occluded
points. Therefore, we enrich our evaluation by com-

(a) Point cloud (b) Ground truth

(c) HPR d. Proposed model
Figure 5: Results of visibility estimation on the first scene of
our visibility estimation dataset.. (a) the point cloud where
the heat of the color is proportional to the depth, (b) is the
annotated point cloud (red: visible, grey: non-visible), (c)
HPR result and (d) our result. The result brought by HPR
estimates too many visible points, whereas our method pro-
vides a result that is very close to the groundtruth.



Table 2: Comparison of the scores of two state-of-the art and our visibility estimation methods on our visibility estimation
dataset

HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours Ours Ours
Threshold optimal optimal ᾱ = 0.5 αp median αp mean

POV #1 74.09% 68.76% 90.15% 86.35% 90.96%
POV #2 69.09% 61.68% 86.95% 86.78% 88.39%
POV #3 81.55% 75.58% 82.21% 76.35% 83.75%

Average 74.91% 68.67% 86.43% 83.16% 87.70%

Total time 7.82s 1.53s 0.91s 1.03s 0.91s

Table 3: Comparison of the different methods for point cloud visibility classification

HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours Ours Ours
Threshold optimal optimal ᾱ = 0.5 αp median αp mean

True-positive 89.54% 85.16% 95.45% 78.31% 88.23%
False-positive 18.84% 17.78% 10.78% 3.66% 5.15%
False-negative 6.26% 8.61% 2.79% 13.18% 7.14%
True-negative 54.47% 56.24% 72.45% 90.80% 86.93%

Accuracy 85.16% 84.27% 92.52% 90.94% 93.44%
F1-score 87.71% 86.59% 93.37% 90.29% 93.49%

puting typical classification metrics for each method
and display them in Table 3. For each metric, the best
scores are obtained using our method. In particular,
our method with ᾱ= 0.5 maximizes the true-positives
and minimizes the false-negatives. On the oppo-
site, our method with ᾱ as the median of the estima-
tions maximizes the false-positives and true-positives.
Once again, using our method with ᾱ as the mean
of the estimations provides a good tradeoff between
true-positives/true-negatives and false-positives/false-
negatives. On the other hand, (Katz et al., 2007) and
(Pintus et al., 2011) tend to over-estimate the visibility
of each point, resulting in many occluded points be-
ing label as visible. This is expressed by the very high
percentage of false-positive. We computed accuracy
and the F1-score of each method against the ground
truth. For both, our method with ᾱ as the mean of the
estimation achieves, once again, the best results.

For the task of data-fusion, it is often preferable to
discard the maximum of occluded points (Bevilacqua
et al., 2017). Therefore, the number of false-positives
has to be kept as low as possible. In this sense, our
method provides very satisfactory results, especially
using the ᾱ as the mean of estimations when working
on LiDAR data.

We conclude this evaluation on LiDAR data by a
visual analysis of the results of the different methods.
Fig. 5 shows the results of the visibility estimations
visualized in 3D. For each result, the dark cone in the
bottom left corner represents the viewpoint. Fig. 5(a)
shows the point cloud colorized with the depth toward

the viewpoint (cold colors for close points, hot col-
ors for far points). Fig. 5(b) shows the annotated
groundtruth for this scene, where red points are points
that are visible from the viewpoint and dark points
are supposed to be occluded. Fig. 5(c) and 5(d) are
the results of HPR (Katz et al., 2007) and our method
(with ᾱ set as the mean of estimations) respectively.
We can see that HPR (Katz et al., 2007) estimates too
many points as visible points, especially on the clos-
est points. On the opposite, our method succeeds in
discarding occluded points, and provides a result that
is very close to the groundruth.

We also illustrate these results as seen from the
associated viewpoint in Fig. 6. For better understand-
ing purpose, Fig. 6(a) shows an image acquired from
the same viewpoint. In Fig. 6(b), we only display
visible points of the groundtruth. Fig. 6(c) and 6(d)
shows the results of HPR (Katz et al., 2007) and our
method respectively. We can see once again that HPR
(Katz et al., 2007) labels too many occluded points as
visible and fails to distinguish foreground from back-
ground objects. This is mostly due to the fact that
this scene presents very high variations of density. In
particular, the center of the road concentrates a very
high density of points as the sensor is close from the
road. Therefore, the convex-hull has to be relaxed
enough to fit this region of the point cloud, which
leads to visual abberations on regions with lower den-
sity. Our method succeeds better results this scene,
which demonstrates its robustness against high den-
sity variations.



(a) Optical image (b) Groundtruth

(c) HPR (d) Proposed model
Figure 6: Results of the visibility estimations on the first
scene of the dataset in screen-space. (a) the optical image
associated with the point of view, (b) visible points with
respect to our annotation, (c) HPR result and (d) ours. Red
points in (c) and (d) correspond to misestimated points.

Table 4: Comparison of the scores of the different methods
on constant density point cloud

HPR Cone Ours Ours
Threshold optimal optimal ᾱ = 0.99 αp mean

Score (Eq. (3)) 96.57% 93.75% 95.23% 93.02%

True-positive 95.17% 88.63% 94.44% 98.07%
False-positive 1.15% 0.88% 2.14% 6.07%
False-negative 2.28% 5.37% 2.63% 0.91%
True-negative 97.82% 98.33% 95.95% 88.50%

Accuracy 98.25% 96.76% 97.56% 96.40%
F1-score 98.23% 96.59% 97.54% 96.57%

5.2 Evaluation on constant density
point cloud

In previous section, we demonstrated that our method
performs better than other methods for point clouds
with high density variations. In this section, we aim
at showing that our method remains competitive on
constant density point clouds. The Stanford Bunny
model is a point cloud (from the Stanford University
CG Laboratory) that was created by merging 10 depth
aquisitions of a real object and equalizing the den-
sity of the fused point cloud. The final point cloud
is composed of 31655 points. As each depth acqui-
sition only acquires points that are visible from a sin-
gle viewpoint, we created a groundtruth by comparing
the final point cloud to the points that were aquired
at a certain viewpoint. Criterion (3) and classification
metrics have been computed for our method and state-
of-the-art methods. Results are displayed in Table 4.

Here, the point cloud is of constant density and
represents a very smooth object as illustrated Fig. 7.

This is a scenario that is perfectly adequate for the
HPR algorithm, which shortly outperforms the two
other methods. Our method underperforms only by
about 1 percent but still remains very efficient on
these types of data. Compared to the two other meth-
ods, our method fails on tangential points that are lo-
cated at the boundaries of the projection of the object
as it is presented on the last row of Fig. 7. This is
mostly due to the fact that on tangential points, the
neighborhood covers only a small area, thus the dif-
ference between foreground and background is hard
to set. These artifacts are limited when using the mean
of estimation as visibility threshold, but it increases
false-positives. Table 4 also illustrates the classifi-
cation metrics. We can see that all tested methods
reach very good levels of accuracy and F1-score. Our
method succeeds better when ᾱ = 0.99 than when
using the mean value. Indeed, for complete object,
there is no separation between foreground object and
background object as was the case for LiDAR point
clouds. Thus, only points with high likelihood should
be kept to improve results, which justifies ᾱ = 0.99.

Finally, Table 4 assesses that all methods limit the
appearance of false-positives while ensuring to gather
as many visible points as possible. To that end, HPR
and our method succeed the best true-positive/false-
positive ratio, which is ideal for data-fusion purposes,
as discussed in next section.

5.3 Example of application to data
fusion

To conclude our experiments, we show the interest of
our visibility estimation for the task of data fusion.
Using the KITTI dataset (Geiger et al., 2013), we
aim at colorizing a 3D LiDAR point cloud acquired
in a street using only RGB images. Each point is
projected in the image domain of the closest image
(e.g. the image that was acquired at the closest posi-
tion from the point). The point then takes the color
of the pixel it projects into only if it is considered
visible. Fig. 8 presents the result of the coloriza-
tion on a point cloud composed of 3289533 points,
and is colorized using 40 RGB images. Fig. 8(a)
shows the colorization result where all points are con-
sidered visible. We can see that artifacts appear as
the colors do not match the objects. This is particu-
larly noticeable behind cars where the ground points
take the color of the car. Fig. 8(b) displays the col-
orization result where the visibility is estimated using
HPR (Katz et al., 2007). There, some artifacts appear
behind cars as the convex-hull go through the glasses
of the car. Moreover, this method discards many vis-
ible points on the ground and behind cars compared



Ground truth HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours (ᾱ = 0.99) Ours (mean)

Figure 7: Visual comparison of the visibility estimation from different methods on a point cloud with constant and high
density. Each column corresponds to one method. Rows are respectively: the results in 3D, the results in 2D (seen from
the viewpoint), and a zoom of the 2D result focused on the ear region. The 3 methods succeed very well in estimating the
visibility. Our methods lacks of precision for points that are tangent to the viewpoint as can be seen on the last row.

(a) (b) (c)
Figure 8: Comparison of the colorization of point clouds using RGB images. (a) colorization without any visibility informa-
tion, (b) colorization with HPR (Katz et al., 2007) for the visibility estimation, (c) colorization with our visibility estimation
method. The result provided by our method presents no artifacts on occluded areas, especially behind cars compared to the
two other results.

to our method (about 17% less points are colorized).
Fig. 8(c) presents the colorization result using our
visibility estimation method. We can see that the arti-
facts behind cars have completely disappeared, while
keeping most of the visible points. Finally, due to the
number of points, the visibility estimation using HPR
(Katz et al., 2007) for each viewpoint takes an aver-
age of 10.9 seconds whereas our method processes
the point cloud at each viewpoint in about 1.2 sec-
onds.

6 Conclusion & Perspectives

In this paper, we have proposed a novel method
for the visibility estimation in a point cloud. Com-
pared to other methods from literature, this method
is very robust to high variations of density. By con-
sidering the closest neighbors of each point in screen-
space, we defined a criterion in order to automatically
determine the visibility of each point. We have also
proposed a new annotated dataset for testing the ef-
ficiency of point cloud visibility algorithms on real
LiDAR urban data. This dataset is composed of over



a million manually annotated points. Finally we have
compared our method to state-of-the-art methods. We
have validated that our method significantly outper-
forms existing methods on real urban data. Although
our method was specifically designed for the estima-
tion of visibility on point cloud with various density
(such as LiDAR point clouds), we have also demon-
strated that it still remains competitive on point clouds
with constant density.

In the future, we would like to focus on the eval-
uation of our method against photogrammetric point
clouds, for tasks such as view generation. We also
would like to improve LiDAR / Optic fusion thanks
to the visibility estimation.
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