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A Random Matrix Approach to Echo-State Neural Networks

Recurrent neural networks, especially in their linear version, have provided many qualitative insights on their performance under different configurations. This article provides, through a novel random matrix framework, the quantitative counterpart of these performance results, specifically in the case of echo-state networks. Beyond mere insights, our approach conveys a deeper understanding on the core mechanism under play for both training and testing.

Introduction

Echo-state networks (ESN's) are part of the broader family of recurrent neural networks, specifically dedicated to handling time-series related tasks (such as prediction, non-linear interpolation, etc.) (Jaeger, 2001a;b). Their main feature, as opposed to more conventional neural networks, is to rely on a fixed (but generally randomly chosen) connectivity matrix, the so-called reservoir, and only to enforce network-to-sink edges during the training phase. This reduces overfitting but in turn only allows for shortterm memorization capabilities, unlike backward propagated neural networks that instead target long-term memory.

The fact that the reservoir is chosen once and for all, instead of constantly being updated, eases the theoretical analysis of these networks. As such, by means of a succession of works (e.g., (Jaeger, 2001a;[START_REF] Ganguli | Memory traces in dynamical systems[END_REF]Ganguli Proceedings of the 33 rd International Conference on Machine Learning, New York, NY, USA, 2016. JMLR: W&CP volume 48. Copyright 2016 by the author(s). & Sompolinsky, 2010; [START_REF] Strauss | Design strategies for weight matrices of echo state networks[END_REF][START_REF] Charles | Short-term memory capacity in networks via the restricted isometry property[END_REF]), many qualitative aspects of ESN's have been fairly well understood. In particular, it has been made clear that both the operator norm and the spectral radius of the connectivity matrix play a central role in the ESN performance, that normal versus non-normal connectivity matrices convey strikingly different behavior [START_REF] White | Short-term memory in orthogonal neural networks[END_REF], etc. However, to the best of the authors' knowledge, there has never been an attempt to turn these qualitative considerations into concrete quantitative figures of the end-to-end neural network performance (such as here the reconstruction mean square error).

The objective of the present article is to provide a first theoretical analysis of the (mean-square error) performance of linear ESN's with internal noise for both the training and the testing tasks (an illustration of such a network is depicted in Figure 1). To this end, we shall leverage recent tools from the field of random matrix theory (the applications of which are so far almost not existent in neural networks) and shall conveniently work under the assumption that both the reservoir size n and the training (or test-ing) duration T (or T ) are large and commensurable. The large dimensional framework will induce concentration of measure properties that bring asymptotic determinism in the performance of the random outputs. These results take closed-form expressions which, if not completely explicit, are easily interpreted. Turning the connectivity matrices into (large) random realizations of simple random matrix models, we then further simplify these expressions that turn into elementary formulas.

Among the noteworthy outcomes of these theoretical results, we shall structurally isolate the impact of each system component (normal or non-normal connectivity matrix, independent or not input layer, internal noise level, etc.) on both the ESN training and testing performance. We shall also bridge the qualitative notion of Fisher-memory curve to our quantitative findings in specific scenarios. As an aftermath of our theoretical analysis, we shall finally propose a new practical connectivity matrix design, coined multi-memory matrix that helps handling time series with multiple-scale memory properties.

Note in passing that, beyond their machine learning attractiveness for obvious network stability reasons (although ridge regularized networks without internal noise are often preferred), ESN's with internal noise appropriately model biological short-term memory in the brain. Our results may then also embrace both the neurophysiology and neurocomputation fields.

In the remainder of the article, we shall first introduce the necessary random matrix toolbox used throughout the article (so far not conventional in machine learning), before addressing the performance estimation of network training and testing tasks. Applications of our results will be discussed next, before closing on a reflective discussion. The technical results found throughout the paper are proved in the extended version of the present article [START_REF] Couillet | The asymptotic performance of linear echo state neural networks[END_REF].

The Random Matrix Framework

Before delving into the concrete ESN performance, we shall first consider the elementary objects under study from a random matrix perspective.

We assume here an n-node ESN with connectivity matrix W ∈ R n×n , source-to-reservoir vector m ∈ R n , states x t ∈ R n , t = -∞, . . . , ∞, and internal noise ηε t ∼ N (0, η 2 I n ), fed by a scalar input u t ∈ R. The state evolution equation follows:

x t+1 = W x t + mu t+1 + ηε t+1 .
(1)

The ESN will be trained for a period T and tested for a period T , using a least-square regression approach. Denoting X = [x 0 , . . . , x T -1 ] ∈ R n×T , it shall appear in Section 3 that the mean-square error performance in training relies fundamentally on the matrices

Q γ ≡ 1 T XX T + γI n -1 Qγ ≡ 1 T X T X + γI T -1 (2) 
for γ > 0. These matrices, respectively called resolvent and co-resolvent of the Gram matrix 1 T XX T in the operator theory jargon, have been extensively used in random matrix theory for various models of X [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF][START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF] with multiple applications to engineering notably [START_REF] Couillet | Random Matrix Methods for Wireless Communications[END_REF]. The model of X defined through (1) is not part of those models studied in classical random matrix works, but the technical tools exist to handle it. Precisely, we shall use here the Gaussian framework devised by Pastur [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF], based on an integration-by-parts formula for Gaussian random variables and the so-called Nash-Poincaré inequality.

To this end, we first need elementary growth assumptions on the size n and the periods T and T (these, in themselves, are a first result of a "stable" growth regime of ESN's).

Assumption 1 Define the matrix

A = M U with M = [m, W m, . . . , W T -1 m] and U = T -1 2 {u j-i } T -1 i,j=0 . Then, as n → ∞, 1. n/T → c ∈ (0, ∞) and n/ T → ĉ ∈ [0, ∞) 2. lim sup n W < 1 3. lim sup n AA T < ∞ with • the operator norm.
For notational convenience, we define the relation X n ↔ Y n to mean that the (random or deterministic) matrices X n , Y n satisfy a T n (X n -Y n )b n → 0, almost surely, for all deterministic unit norm vectors a n , b n . Under Assumption 1, applying the aforementioned Gaussian framework, we have the following result.

Theorem 1 (Deterministic Equivalent) Let Assumption 1 hold. For γ > 0, and with Q γ and Qγ defined in (2), as n → ∞,

Q γ ↔ Qγ ≡ 1 γ I n + η 2 Rγ + 1 γ A I T + η 2 R γ -1 A T -1 Qγ ↔ Qγ ≡ 1 γ I T + η 2 R γ + 1 γ A T I n + η 2 Rγ -1 A where R γ ∈ R T ×T and Rγ ∈ R n×n are solutions to R γ = 1 T tr S i-j Qγ T i,j=1 Rγ = ∞ q=-∞ 1 T tr J q Qγ S q with [J q ] ij ≡ δ i+q,j , S q ≡ k≥0 W k+(-q) + (W k+q + ) T (and (x) + = max(x, 0)).
Theorem 1 precisely states that any random bilinear form of the type a T n Q γ b n for deterministic a n , b n , can be well approximated, for all large n, T , by the deterministic quantity a T n Qγ b n . As shall be seen in Section 3, this will provide us with a deterministic approximation of the training performance of ESN's. Note in passing that Theorem 1 is strongly reminiscent of the earlier results [START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF] in a close but different context, and are thus not surprising.

The testing phase performance is more involved and does not solely rely on a single Q γ -type matrix. This is because this phase involves both the trained dataset X and the newly observed states X = [x 0 , . . . , x T -1 ], where xt = x t+L for some L T (we assume here a post-training washout step for simplicity). Surprisingly enough, we shall not need the advanced statistics of X explicitly (as opposed to X as seen previously) but shall rather exploit its independence from X. As such, the quantities at stake here are the matrices

1 √ T Q γ X, 1 T X T Q γ BQ γ X
for B any symmetric matrix independent of X such that lim sup n B < ∞. Precisely, we have the following second deterministic equivalents.

Theorem 2 (Second deterministic equivalent) Let Assumption 1 hold and let B ∈ R n×n be a symmetric matrix of bounded spectral norm, independent of X. Then, recalling the notations of Theorem 1, for every γ > 0,

Q γ 1 √ T X ↔ Qγ A(I n + η 2 R γ ) -1 1 T X T Q γ BQ γ X ↔ η 2 γ 2 Qγ G [B] γ Qγ + P T Qγ B + G[B] γ Qγ P with P = A(I n + η 2 R γ ) -1 and where G [B] γ , G[B] γ are so- lutions to G [B] γ = 1 T tr S i-j Qγ B + G[B] γ Qγ T i,j=1 G[B] γ = ∞ q=-∞ η 4 γ 2 1 T tr J q Qγ G [B] γ Qγ S q .
Equipped with these technical results, we are now in position to provide our main contribution to the asymptotic performance of ESN as n, T, T → ∞.

Asymptotic Performance

Recall that the ESN under study is defined by the state equation ( 1). We shall successively discuss the performance of the training and testing steps of this linear ESN.

Training Performance

In the training phase, one wishes to map an input sequence u = [u 0 , . . . , u T -1 ] T to a corresponding known output sequence r = [r 0 , . . . , r T -1 ] T . To this end, we shall enforce the reservoir-to-sink connections of the network, gathered into a vector ω ∈ R n and depicted in color in Figure 1, so to minimize the quadratic reconstruction error

E η (u, r) ≡ 1 T X T ω -r 2 .
The solution to this classical problem is to take ω to be the least-square regressor

ω ≡ (XX T ) -1 Xr , T > n X(X T X) -1 r , T ≤ n. (3) 
To such an ω are associated an E η (u; r) which it is convenient to see here as

E η (u, r) = lim γ↓0 γ 1 T r T Qγ r , T > n 0 , T ≤ n (4)
where Qγ was defined in (2).

Applying Theorem 1 in the limit where γ → 0, we have the following first limiting performance result.

Proposition 1 (Training MSE) Let Assumption 1 hold and let r ∈ R T be a vector of Euclidean norm O( √ T ). Then, with E η (u, r) defined in (4), as n → ∞,

E η (u, r) ↔ 1 T r T Qr , c < 1 0 , c > 1.
where, for c < 1,

Q ≡ I T + R + 1 η 2 A T R-1 A -1 and R, R are solutions to 1 R = c 1 n tr S i-j R-1 T i,j=1 R = ∞ q=-∞ 1 T tr J q (I T + R) -1 S q .
Although seemingly not simple, note that, by writing

A T R-1 A = U T m T (W i-1 ) T R-1 W j-1 m T i,j=1
U the matrix Q involved in the asymptotic expression for E η (u, r) clearly features independently:

• the input data matrix U composed in columns of the successive delayed versions of the vector

T -1 2 [u -(T -1) , . . . , u T -1 ] T ;
• the network structuring matrices R and

(W i-1 ) T R-1 W j-1 ;
• the factor η -2 , not present in R, R, which trades off the need for regularizing the ill-conditioned matrix A T R-1 A (through the matrix M in A) and the need to increase the weight of the information-carrying matrix

A T R-1 A (through the matrix U in A).
Note in particular that, since W < 1, the matrix {m T (W i-1 ) T R-1 W j-1 m} T i,j=1 has an exponentially decaying profile down the rows and columns (essentially decaying with i + j). As such, all but the first few columns of R-1 2 M U vanish as n, T grow large, providing us with a first testimony of the ESN short term memory specificity, since only the first columns of U (i.e., the first delays of {u t }) are accounted for. The matrix R-1 2 M then plays the important role of tuning the memory decay.

A particularly interesting scenario is when c = 0 (i.e., n/T → 0). In this case, it is immediate that R = 0 and

R = S 0 = k≥0 W k (W k ) T , so that E η (u, r) ≡ η 2 T r T η 2 I T + U T M T S -1 0 M U -1 r
where

[M T S -1 0 M ] kk = m T (W k-1 ) T S -1 0 W k-1
m is recognized to be J(k -1) with J the Fisher memory curve introduced in [START_REF] Ganguli | Memory traces in dynamical systems[END_REF]. The latter was shown to provide a qualitative measure of the capacity of the ESN to store a k-step delayed information. In Proposition 1, the notion is generalized to account for the finiteness of T with respect to n (i.e., c > 0) and, even when c = 0, conveys a non trivial importance to the off-diagonal terms m T (W i-1 ) T R-1 W j-1 m, i = j.

1 R and R are rigorously the limits of Rγ and γ Rγ from Theorem 1, respectively, as γ ↓ 0.

Testing Performance

Having considered the training performance in Section 3.1, we now assume ω given through its definition (3). To avoid unnecessary complications, we shall stick here to the case where c < 1 and leave the case c > 1 to the extended version of the article [START_REF] Couillet | The asymptotic performance of linear echo state neural networks[END_REF]. We wish to evaluate the performance in testing new data inputs û = [û 0 , . . . , û T -1 ] T which ought to be mapped by the ESN to the desired output r = [r 0 , . . . , r T -1 ] T . Thus our next quantity of interest is the mean square error

Êη (u, r; û, r) = 1 T r -XT ω 2 where X = [x 0 , . . . , x T -1 ] with xt =
x t+L for some L sufficiently large (larger than 2T , say) to ensure approximate independence between {x t } and {x t }. That is, we assume a sufficiently long wash-out period between training and testing (as conventionally done). Alternatively, one may merely reinitialize the network after training and generate a sufficiently long dry-run period prior to testing. Similarly, we shall denote next

 = M Û with Ûij = ûj-i and M = [m, . . . , W T -1 m].
Developing the expression of Êη (u, r; û, r), it is convenient to observe that

Êη (u, r; û, r) = 1 T r 2 + lim γ↓0 1 T 2 T r T X T Q γ X XT Q γ Xr -lim γ↓0 2 T T rT XT Q γ Xr.
We may then straightforwardly apply Theorem 2 in the limit of vanishing γ to retrieve the testing counterpart of Proposition 1 as follows.

Proposition 2 (Testing MSE) Let Assumption 1 hold with c < 1 and let r ∈ R T be a vector of Euclidean norm O( T ). Then, as n → ∞, with the notations of Proposition 1,

Êη (u, r; û, r) ↔ 1 η 2 ÂT QP r √ T - r T 2 + 1 T r T QG Qr + 1 η 2 T r T P T Q S 0 + G QPr with P = A(I T + R) -1 and (G, G) solution to G = c 1 n tr S i-j R-1 S 0 + G R-1 T i,j=1 G = ∞ q=-∞ 1 T tr J q (I T + R) -1 G(I T + R) -1 S q .
Note that the deterministic approximation for Êη (u, r; û, r) in Proposition 2 may be divided into a first term involving û, r and the next two terms only involving u, r. As such, once training is performed, only the former term may alter the asymptotic performance. Again, the case c = 0 leads to simpler expressions, as G = 0 and G = 0 in this case, so that

Êη (u, r; û, r) ↔ ÂT η 2 S 0 + AA T -1 A r √ T - r T 2 + 1 T r T A T η 2 S 0 + AA T -2 Ar.
In order to validate the results of Section 3.1 and Section 3.2, we provide in Figure 2 an example of simulated versus asymptotic performance for a prediction task over the popular Mackey-Glass model [START_REF] Glass | A simple model for phase locking of biological oscillators[END_REF]. Disregarding for the moment the difference between the two displayed theoretical curves, note importantly that the accuracy of the approximation, while increasing as it should for larger values of n, T, T , may strongly decrease as η 2 → 0. This is an expected outcome (from deeper mathematical analysis of the proofs of our propositions) which is reminiscent of the ESN instability observed and documented in (Jaeger, 2001b) as the internal noise vanishes. As a matter of fact, it can be shown that one needs η 2 n -1 2 for a theoretical guarantee that the approximation is accurate. This places our analysis within a regime where overfitting does not occur.

Applications

Let us now move to particular scenarios where Propositions 1-2 either greatly simplify or convey new insights.

Random W matrices

We consider here the scenario where, instead of being considered deterministic, we take W to be a single realization of an elementary (large dimensional) random matrix.

REAL HAAR W .

First consider the scenario where W = σZ with Z random orthogonal with statistical invariance by left-and rightmultiplication by orthogonal matrices, i.e., Z is a random real Haar matrix. Then one can determine an explicit expression for the matrices R, R, G, and G involved in Propositions 1-2. In particular, we have the following result (also depicted in Figure 2).

Corollary 1 (Haar W , c < 1) Let W = σZ with Z random real Haar and m be independent of W with m = 1. Then, under Assumption 1 with c < 1,

E η (u, r) ↔ (1 -c) 1 T r T Qr Êη (u, r; û, r) ↔ 1 η 2 Û T DU Q r √ T - r T 2 + 1 1 -c 1 T r T Qr - 1 T r T Q 2 r where Q = (I T + 1 η 2 U T DU ) -1 , while D ∈ R T ×T and D ∈ R T × T are diagonal with D ii = Dii = (1 -σ 2 )σ 2(i-1) .
We clearly see through Corollary 1 the impact of σ which weighs through D ii the successive delay vectors U •,i starting from i = 1 for zero delay. This is again reminiscent of the works [START_REF] Ganguli | Memory traces in dynamical systems[END_REF] where the diagonal elements of D were understood qualitatively as a memory curve, with the property that i≥1 D ii = 1, so that the ESN allocates a total unit amount of memorization capabilities across the successively delayed versions of u.

This observation inspires the generalization of Corollary 1 to a less obvious, although desirable, structure for W . Indeed, note that, with W = σZ and Z real Haar, memory is allocated according to the exponential decay function k → σ k , thus only allowing for a "single mode" memory, i.e., r t should be an exponentially decaying function of u t-k . If instead, as is more common, r t is a more elaborate function of both close past u t-k but also of further past u t-k values, then it might be appropriate for the ESN not to get restricted to a single k → σ k decay profile.

As such, we propose to consider the matrix W = diag(σ 1 Z 1 , . . . , σ Z ) (with diag the block-diagonal operator), where the matrices Z i ∈ R ni×ni are independent real Haar matrices of given sizes and σ i > 0 assume different values across i. In this case, we have the following natural extension of Corollary 1.

Corollary 2 (Multi-memory W ) Let the assumptions of Corollary 1 hold but for W = diag(σ 1 Z 1 , . . . , σ Z ) with Z i ∈ R ni×ni independent real Haar matrices, i n i = n, and σ i > 0. Then the conclusions of Corollary 1 remain valid but for

D ii = Dii = j=1 n j σ 2(i-1) j j=1 n j (1 -σ 2 j ) -1
. 

τ W W + 1 W + 2 W + 3 Figure 3. Memory curve τ → Dτ,τ for W = diag(W1, W2, W3
), Wj = σjZj, Zj ∈ R n j ×n j Haar distributed, σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and σ3 = .5, n3/n = .89. The matrices W + i are defined by

W + i = σiZ + i , with Z + i ∈ R n×n Haar distributed.
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= .99Z + 1 , W + 2 = .9Z + 2 , W + 3 = .5Z + 3 (with Z + i
Haar distributed) all defined as in Figure 3, n = 400, T = T = 800. We subsequently move to the next natural model for W , that is W composed of i.i.d. zero mean entries with or without Hermitian symmetry. In the latter case, the study is similar to that of the real Haar case and shall lead to the same result as Corollary 1 but for a different profile of the diagonal entries of the matrix D. As for the former symmetrical case (referred to in random matrix theory as the Wigner case), it leads to a more involved (non explicit) expression for R, which assumes a strikingly different structure than when W is non-symmetric (where R is proportional to the identity matrix). Visually, we find in the large n limit the structure depicted in Figure 5.

When placed in the context of Proposition 1, the observed checkerboard structure for the Wigner case suggests an inappropriate spread of the reservoir energy when it comes to fulfilling pure delay tasks. This is indeed observed numerically with strong performance losses already induced by elementary memorization tasks. A particular example is depicted in Figure 6 where, again for the Mackey-Glass input dataset but for a memorization task (consisting in recalling τ past outputs rather than predicting future outputs). This study and the observed performance results suggest an outstanding performance advantage of non-normal versus normal matrix structures, which might deserve deeper future investigation.

Internal noise and robustness

We complete this section by investigating a scenario in which we assume input data corrupted by extra noise in the testing dataset. This models the fact that one may often possess a large bank of "clean" data to train an ESN but that the reality of test data can sometimes be somewhat, if not strongly, different. Our toy model here consists in considering that an extra Gaussian noise is added to the data û with probability p on each sample ût , while the output r is still expected to be consistent with the noiseless version of û.

From a proper theoretical analysis of the result of Proposition 2, conducted precisely in the extended version of the article, we claim that, letting s 2 be the aforementioned additive noise variance and assuming that Êη → 0 as η → 0 and s = 0 (a scenario that can be enforced by letting e.g., r be a linear combination of finitely many past inputs of u), then there exists a trade-off by which too small values of η 2 induce an increase in the mean square error (all the more that s 2 is large) while large values of η 2 induce too much internal noise. There thus exists an optimal value for η 2 which minimizes the testing MSE.

This phenomenon is depicted in a concrete scenario in Figure 7, still for the same Mackey-Glass one-step ahead prediction task. A particular realization of a random Mackey-Glass time series is also presented in Figure 8, which clearly highlights the robustness strength of internal noise.

Concluding Remarks

The random matrix framework introduced in this article brings new light to the actual performance of linear echostate networks with internal noise (and more generally re- current networks), where existing works so far only provide insights based on partial considerations of the network processing (such as information theoretic metrics of the reservoir information). Our results make it clear what levers should be tuned and optimized upon when designing these networks. Although not presently discussed, an outcome of this study (documented in [START_REF] Couillet | The asymptotic performance of linear echo state neural networks[END_REF]) contradicts some beliefs, such as that suggesting that it is appropriate to take m as one of the leading eigenvectors of W ; we can prove that this choice necessarily leads to poor mean square error performance. But aside from purely theoretical considerations, our results also allow for a fast evaluation of the ESN performance without requiring extensive Monte Carlo simulations which we believe experimenters should find convenient.

We stressed above the words linear and internal noise, as they constitute debatable choices. Regarding internal noise, while being an appropriate model assumption in biological networks, it is often regarded as artificial in machine learning (where a regularized least square ω is chosen to stabilize the network). Since large networks induce concentration of measure phenomena that stabilize the MSE performance of the network, we believe that internal noise (leading to random but equally performing outputs) are sometimes more desirable than deterministic (and thus statically biased) outputs. In the full version of this article, comparisons are performed between both cases. But the utmost limiting aspect of the present work rather lies in the linear character of the state equation (1). It is known, more from experiments and insights than theory, that breaking the linear frontier brings vastly more interesting properties to neural networks, with in particular the possibility for W to exceed one. A necessary next step of our study line is the extension of the random matrix framework to handle the behavior of non linear versions of echo-state networks.
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 1 Figure 1. Echo-state neural network.
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 2 Figure 2. Training and testing (normalized) MSE for the Mackey Glass one-step prediction, W defined as in Figure 3, n = 200, T = T = 400 (top) and n = 400, T = T = 800 (bottom). Comparison between Monte Carlo simulations (Monte Carlo) and theory from Propositions 1-2 (Th. (fixed W )) or Corollary 2 (Th. (limit)).

Figure 3

 3 Figure 3 depicts the function k → D kk (which again may be thought of as a memory curve) for the "multimemory" matrix W of Corollary 2 versus elementary random Haar matrices with single σ values. Note the evolution of the function slope which successively embraces the memory curves of each individual Haar matrix composing W . Following the same example, we now compare in Figure 4 the testing performance for the Mackey-Glass onestep prediction task under the multi-memory W versus the composing Haar W +i . It is interesting to see here that the multi-memory matrix is almost uniformly more powerful than the composing matrices and that it matches the performance of the best among the latter. This suggests the possibility to use such a matrix structure in scenarios where

Figure 4 .

 4 Figure 4. Testing (normalized) MSE for the Mackey Glass onestep ahead task, W (multimemory) versus W + 1= .99Z + 1 , W + 2 = .9Z + 2 , W + 3 = .5Z + 3 (with Z + iHaar distributed) all defined as in Figure3, n = 400, T = T = 800.

  4.1.2. NORMAL AND NON NORMAL I.I.D. W .

Figure 5 .

 5 Figure5. Upper 9 × 9 part of R for c = 1/2 and σ = 0.9 for W with i.i.d. zero mean Gaussian entries (left) and W Gaussian Wigner (right). Linear grayscale representation with black being 1 and white being 0.

Figure 6 .

 6 Figure 6. Training (top) and testing (bottom) performance of a τ -delay task for τ ∈ {1, . . . , 4} compared for i.i.d. W versus Wigner W , σ = .9 and n = 200, T = T = 400 in both cases (here on the Mackey-Glass dataset).

Figure 7 .Figure 8 .

 78 Figure 7. Testing (normalized) MSE for the Mackey-Glass onestep ahead task with 1% or 10% impulsive N (0, .01) noise pollution in test data inputs, W Haar with σ = .9, n = 400, T = T = 1000. Circles indicate the NMSE theoretical minima. Error bars indicate one standard deviation of the Monte Carlo simulations.
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