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Abstract

In high dimension, it is customary to consider
Lasso-type estimators to enforce sparsity. For
standard Lasso theory to hold, the regulariza-
tion parameter should be proportional to the
noise level, which is often unknown in prac-
tice. A remedy is to consider estimators such
as the Concomitant Lasso, which jointly opti-
mize over the regression coefficients and the
noise level. However, when data from differ-
ent sources are pooled to increase sample size,
noise levels differ and new dedicated estima-
tors are needed. We provide new statistical
and computational solutions to perform het-
eroscedastic regression, with an emphasis on
brain imaging with magneto- and electroen-
cephalography (M/EEG). When instantiated
to de-correlated noise, our framework leads to
an efficient algorithm whose computational
cost is not higher than for the Lasso, but ad-
dresses more complex noise structures. Ex-
periments demonstrate improved prediction
and support identification with correct esti-
mation of noise levels.

1 Introduction

In the context of regression, when the number of pre-
dictors largely exceeds the number of observations,
sparse estimators provide interpretable and memory
efficient models. Following the seminal work on
the Lasso/Basis pursuit [Tibshirani, 1996, Chen and
Donoho, 1995], a popular route to sparsity is to use
convex `1-type penalties. Lasso-type estimators rely
on a regularization parameter λ trading data-fitting
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versus sparsity, which requires careful tuning. Statisti-
cal analysis of the Lasso estimator states that λ should
be proportional to the noise level1 [Bickel et al., 2009],
though the latter is rarely known in practice. To ad-
dress this issue, it has been proposed to jointly esti-
mate the noise level along with the regression coeffi-
cients. A notable approach is via joint penalized max-
imum likelihood after a change of variable to avoid
minimization of a non-convex function [Städler et al.,
2010]. Another approach, the Concomitant Lasso
[Owen, 2007] (inspired by Huber [1981]), and equiv-
alent to the Square-root/Scaled Lasso [Belloni et al.,
2011, Sun and Zhang, 2012]) includes noise level es-
timation by modifying the Lasso objective function.
This estimator, which reaches optimal statistical rates
for sparse regression [Belloni et al., 2011, Sun and
Zhang, 2012], makes the regularization parameter in-
dependent of the noise level. From a practical point of
view, it is well-suited for high dimension settings [Reid
et al., 2016], and current solvers [Ndiaye et al., 2017]
make its computation as fast as for the Lasso. While
first attempts used second order cone programming
solvers [Belloni et al., 2011], e.g., TFOCS [Becker et al.,
2011], recent ones rely on coordinate descent algo-
rithms [Tseng, 2001, Friedman et al., 2007] and safe
screening rules [El Ghaoui et al., 2012, Fercoq et al.,
2015].

In various applied contexts it is customary to pool ob-
servations from different sources or devices, to increase
sample size and boost statistical power. Yet, this leads
to datasets with heteroscedastic noise. Heteroscedas-
ticity, to be opposed to homoscedasticity, is a common
statistical phenomenon occurring when observations
are contaminated with non-uniform noise levels [Engle,
1982, Carroll and Ruppert, 1988]. This is for exam-
ple the case of magneto- and electroencephalography
(M/EEG) data, usually recorded from three types of
sensors (gradiometers, magnetometers and electrodes),
each having different signal and noise amplitudes.

1with Gaussian noise, the noise level stands for the stan-
dard deviation
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Several statistical contributions have tried to address
heteroscedastic models in high dimensional regression.
Most works have relied on an exponential representa-
tion of the variance (the log-variance being modeled
as a linear combination of the features), leading to
non-convex objective functions. Solvers considered for
such approaches require alternate minimization [Kolar
and Sharpnack, 2012], possibly in an iterative fash-
ion [Daye et al., 2012], a notable difference with a
jointly convex formulation, for which one can control
global optimality with duality gap certificates as pro-
posed here. Similarly, Wagener and Dette [2012] esti-
mate the variance with a preliminary adaptive Lasso
step, and correct the data-fitting term in a second step.

Here, we propose the multi-task Smoothed General-
ized Concomitant Lasso (SGCL), an estimator that
can handle data from different origins in a high di-
mensional sparse regression model by jointly estimat-
ing the regression coefficients and the noise levels of
each modality or data source. Contrary to other het-
eroscedastic Lasso estimators such as ScHeDs (a sec-
ond order cone program) [Dalalyan et al., 2013], its
computational cost is comparable to the Lasso, as
it can benefit from coordinate descent solvers [Tseng,
2001, Friedman et al., 2007] and other standard speed-
ups for the Lasso (safe rules [El Ghaoui et al., 2012],
strong rules [Tibshirani et al., 2012], etc.). This model
also leads to a parameterization of the problem with
one single scalar λ, independent of the multiple noise
levels present in heterogeneous data.

Our manuscript is organized as follows. In Section 2,
after reminding the necessary background of the Con-
comitant Lasso estimator, we introduce our general
framework. We derive in Section 3 the necessary math-
ematical results to obtain an efficient solver based on
coordinate descent. We then present in Section 4 a
lightweight version of it, adapted to more specific noise
models. Finally, in Section 5 we provide empirical evi-
dence using simulations with known ground truth that
our model yields better support recovery and predic-
tion than homoscedastic estimators. On the problem
of source localization with real M/EEG recordings, we
show that the proposed model leads to consistent esti-
mators of the noise standard deviations for each modal-
ity, hence learning from the data the right balance be-
tween modalities with high or low SNRs.

2 Concomitant estimators

Notation For any integer d ∈ N, we denote by [d]
the set {1, . . . , d}. Our observation matrix is Y ∈ Rn×q
with n the number of samples, with q the number of
tasks and the design matrix X = [X1, . . . , Xp] ∈ Rn×p
has p explanatory variables or features, stored column-

wise. The standard Euclidean norm (resp. inner prod-
uct) on vectors or matrices is written ‖·‖ (resp. 〈·, ·〉),
the `1 norm ‖·‖1, the `∞ norm ‖·‖∞, and the matrix
transposition of a matrix Q is denoted by Q>. For
B ∈ Rp×q, its jth row is Bj,: and ‖B‖2,1 =

∑p
j=1‖Bj,:‖

(resp. ‖B‖2,∞ = maxj∈[p]‖Bj,:‖) is its row-wise `2,1
(resp. `2,∞) norm. For matrices, ‖·‖2 is the spectral
norm. For real numbers a and b, a ∨ b stands for the
maximum of a and b, and (a)+ = a ∨ 0.

We denote BST (·, τ) the block soft-thresholding oper-
ator at level τ > 0, i.e., BST (x, τ) = (1− τ/‖x‖)+ · x
for any x ∈ Rd (with the convention 0

0 = 1).

The sub-gradient of a convex function f : Rd → R at x
is defined as ∂f(x) = {z ∈ Rd : ∀y ∈ Rd, f(y)−f(x) ≥
〈z, y − x〉}. We denote by ιC the indicator function of
a set C, defined as ιC(x) = 0 if x ∈ C and ιC(x) = +∞
if x /∈ C. The identity matrix of size n× n is denoted
by In (or I, when there is no dimension ambiguity).

We write Sn for the set of symmetric matrices and
Sn+ (resp. Sn++) for the set of positive semi-definite
matrices (resp. positive definite matrices). For two
matrices S1 and S2 we write S1 � S2 (resp. S1 � S2)
for S1−S2 ∈ Sn+ (resp. S1−S2 ∈ Sn++). The symbol Tr

denotes the trace operator, and ‖A‖S =
√

TrA>SA is
the Mahalanobis norm induced by S ∈ Sn++. For more
compact notation, for σ > 0 we denote Σ = σ In.

As much as possible, we denote vectors with lower case
letters and matrices with upper case ones.

2.1 Reminder on Concomitant Lasso

Let us first recall the Concomitant Lasso estimator,
following the vector formulation (y ∈ Rn) proposed
in Owen [2007], Sun and Zhang [2012].

Definition 1. For λ > 0, the Concomitant Lasso co-
efficient and standard deviation estimators are defined
as solutions of the optimization problem

arg min
β∈Rp,σ>0

‖y −Xβ‖2
2nσ

+
σ

2
+ λ ‖β‖1 . (1)

To avoid numerical issues when σ approaches 0, it was
proposed in Ndiaye et al. [2017] to add a constraint
on σ in the objective function. Following the terminol-
ogy introduced in Nesterov [2005], this was coined the
Smoothed Concomitant Lasso.

Definition 2. For σ > 0 and λ > 0, the Smoothed
Concomitant Lasso estimator β̂ and its associated stan-
dard deviation estimator σ̂ are defined as

(β̂, σ̂) ∈ arg min
β∈Rp,σ≥σ

‖y −Xβ‖2
2nσ

+
σ

2
+ λ ‖β‖1 . (2)
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2.2 General problem formulation

Motivated by our application to the M/EEG inverse
problem (see Section 5.3, we present all the results
in a multi-task setting. These results are still valid
for single task problems (q = 1), in which case the
formulas and algorithms are simpler (see Appendix B).

We now extend the Smoothed Concomitant Lasso to
more general noise models, and present some proper-
ties obtained thanks to convexity and duality. As a
warning, in our formulation the matrix Σ∗ ∈ Sn++ is
the co-standard-deviation matrix (the square-root of
the covariance matrix), in contrast with the standard
Gaussian noise model notation. The model reads:

Y = XB∗ + Σ∗E , (3)

where entries of E are independent, centered and nor-
mally distributed.
Definition 3. For σ > 0 and λ > 0 (recall that we
denote Σ = σ In), we define the multi-task Smoothed
Generalized Concomitant Lasso (multi-task SGCL) es-
timator B̂ and its associated co-standard-deviation ma-
trix Σ̂ as the solutions of the optimization problem

(B̂, Σ̂) ∈ arg min
B∈Rp×q,Σ∈Sn++,Σ�Σ

P(λ)(B,Σ) , (4)

with P(λ)(B,Σ) =
‖Y −XB‖2Σ−1

2nq
+

Tr(Σ)

2n
+ λ ‖B‖2,1.

Remark 1. Concomitant estimators such as the
Smoothed Concomitant Lasso rely on perspective func-
tions. A general framework for optimization with sim-
ilar functions is provided in Combettes and Müller
[2016], and applies for instance to other (potentially
non-convex) alternative noise estimators, e.g., TREX
[Lederer and Müller, 2015]. Yet, we are not aware of a
matrix perspective theory as we propose in the present
work to handle anisotropic noise.
Proposition 1. Problem (4) is jointly convex.

Proof. The constraint set is convex and the matrix-
fractional function (Z,Σ) 7→ TrZ>Σ−1Z is jointly
convex over Rn×q × Sn++, cf. Boyd and Vandenberghe
[2004, Example 3.4].

As for σ in the Smoothed Concomitant Lasso, the con-
straint Σ � Σ acts as a regularizer in the dual, and it
is introduced for numerical stability. In practice, the
value of Σ = σ In can be set as follows:

• If prior information on the minimal noise level
present in the data is available, σ can be set as
this bound. Indeed, if Σ̂ � Σ , then the constraint
Σ � Σ is not active and the solution to (4) is a so-
lution of the non-smoothed problem with Σ = 0.

• Without prior information on the noise level, one
can use a proportion of the initial estimation of
the noise standard deviation σ = 10−α‖Y ‖/√nq,
with for example α ∈ {2, 3}.

3 Properties of the multi-task SGCL

3.1 Optimization

Theorem 1. The dual formulation of the multi-task
Smoothed Generalized Concomitant Lasso reads

Θ̂ = arg max
Θ∈∆X,λ

〈Y, λΘ〉+ σ

(
1

2
− nqλ2

2
‖Θ‖2

)
︸ ︷︷ ︸

D(λ,Σ)(Θ)

, (5)

for ∆X,λ =
{

Θ ∈ Rn×q : ‖X>Θ‖2,∞ ≤ 1, ‖Θ‖2 ≤ 1
λn
√
q

}
.

The link between B̂ and Σ̂ is detailed in Proposition 2.
We also have the link-equation between primal and dual
solutions:

Θ̂ =
1

nqλ
Σ̂−1(Y −XB̂) , (6)

and the sub-differential inclusion:

X>Σ̂−1(Y −XB̂) ∈ nqλ∂‖·‖2,1(B̂) . (7)

The proof of these results is in Appendix A.1.
Remark 2. The link equation provides a natural
way to construct a dual feasible point from any pair
(B,Σ). Since at convergence Equation (6) holds, we
can choose as a dual point Θ = Σ−1(Y −XB)/α where
α = ‖X>Σ−1(Y −XB)‖2,∞ ∨ λn√q‖Σ−1(Y −XB)‖2
is a scalar chosen to make Θ dual feasible.
Proposition 2. The solution of

Σ0 ∈ arg min
Σ∈Sn++,Σ�Σ

1

2nq
‖Y −XB‖2Σ−1 +

1

2n
Tr(Σ) ,

(8)
is given by

Σ0 = Ψ(Z, σ ) := U diag(µ1, . . ., µr, σ , . . ., σ )U> , (9)

where Z = 1√
q (Y −XB), U diag(λ1, . . ., λr, 0, . . ., 0)U>

is an eigenvalue decomposition of ZZ>, (i.e., r is the
rank of ZZ>, λ1 ≥ · · · ≥ λr > 0 and UU> = In), and
for i ∈ [r], µi =

√
λi ∨ σ .

The proof is included in Appendix A.2.
Remark 3. Formula (9) makes it straightforward to
compute Σ−1 and Tr Σ, which we rather store than Σ
for computational efficiency in Algorithm 1.

At every update of Σ, it is also beneficial to precom-
pute Σ−1X and Σ−1R: maintaining Σ−1R rather than
R avoids multiplication by Σ−1 at every BCD step.
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Remark 4. Similarly to the Concomitant Lasso, and
contrary to the Lasso, the multi-task SGCL is equiv-
ariant under scaling of the response, in the following
sense: consider the transformation

Y ′ = αY, B′ = αB, Σ′ = αΣ, (α > 0) ,

which leaves the model (3) invariant. Then one can
check that the solutions of (4) are multiplied by the
same factor: B̂′ = αB̂ and Σ̂′ = αΣ̂

As for the Lasso, the null vector is optimal for the
multi-task Smoothed Generalized Concomitant Lasso
problem when the regularization parameter becomes
too large. We refer to the smallest λ leading to a null
solution as the critical parameter and denote it λmax.
Its computation is detailed in the next proposition.

Proposition 3. For the multi-task SGCL estimator
we have the following property: with Σmax = Ψ(Y, σ ),

B̂ = 0, ∀λ ≥ λmax :=
1

nq
‖X>Σ−1

maxY ‖2,∞ . (10)

Proof. Fermat’s rule for (4) states that

(0, Σ̂) ∈ arg min
B∈Rp×q,Σ∈Sn++,Σ�Σ

P(B,Σ)

⇔ 0 ∈
{
− 1
nqX

>Σ̂−1Y
}

+ λB2,∞

⇔ 1
nq

∥∥∥X>Σ̂−1Y
∥∥∥

2,∞
≤ λ.

Thus, λmax = 1
nq‖X>Σ̂−1Y ‖2,∞ is the critical param-

eter. Then, notice that for B̂ = 0 one has

Σ̂ = Ψ(Y, σ ) = arg min
Σ∈Sn++,Σ�Σ

1

2nq
‖Y ‖2Σ−1 +

1

2n
Tr(Σ) .

3.2 Algorithm

Since the multi-task SGCL formulation is jointly con-
vex, one can rely on alternate minimization to find a
solution. Moreover, the formulation has the appealing
property that when Σ is fixed, the convex problem in
B is a standard "smooth + `1-type" problem. This
can be solved easily using standard block coordinate
descent (BCD) algorithm. Alternatively, when B is
fixed, the minimization in Σ has the closed-form solu-
tion of Proposition 2. The Σ update being more costly
than the B update, one can perform it every f BCD
epochs (i.e., if f = 10, every ten passes over the p
rows Bj,:). This minimization scheme is summarized
in Algorithm 1, and details of the updates formulas
are given in Appendix A.3.

Algorithm 1: Alternate min. for multi-task
SGCL
input : X,Y, Σ , λ, f, T
init : B = 0p,q, Σ−1 = Σ−1, R = Y
for iter = 1, . . . , T do

if iter = 1 (mod f) then
Σ← Ψ(R, Σ) // update of Proposition 2
for j = 1, . . . , p do

Lj = X>j Σ−1Xj

for j = 1, . . . , p do
R← R+XjBj // partial residual update

Bj ← BST
(X>j Σ−1R

Lj
,
λnq

Lj

)
// coef. update

R← R−XjBj // residual update
return B,Σ

Since strong duality holds for (4), we use the duality
gap as a stopping criterion for the convergence. Ev-
ery f epochs of BCD as presented in Algorithm 1, we
compute a dual point Θ (see Remark 2), evaluate the
duality gap, and stop if it is lower than ε = 10−6/ ‖Y ‖.
The pair (B,Σ) obtained when the duality gap goes
below ε is then guaranteed to be an ε-solution of (4).

3.3 Statistical limitations

We provided the most general framework to adapt the
Concomitant Lasso to multi-task and non scalar covari-
ances. However, in its general formulation the multi-
task Smoothed Generalized Concomitant Lasso has an
obvious drawback: in practice estimating Σ∗ requires
to fit n(n−1)/2 parameters with only nq observations,
which is problematic if q is not large enough. Hence,
additional regularization might be needed to provide
an accurate estimator of Σ∗, e.g., following the direc-
tion proposed in Ledoit and Wolf [2004].

Nevertheless, in common practical scenarios Σ∗ can
be assumed to have a more regular structure. In the
following, we address in details a special case of het-
eroscedastic models, where the noise is de-correlated
and has a known block-wise structure.

4 Block homoscedastic model

Motivated by the specificities of the M/EEG inverse
problem (see Section 5.3), but more generally by su-
pervised learning problems where data come from an
identified, finite set of sources, we propose a specifica-
tion of (3) when more assumptions can be made about
the noise. Indeed, when the observations come from K
different sources or K types of sensors (in the M/EEG
case: magnetometers, gradiometers and electrodes), Σ
can be estimated in a simplified way. Assuming inde-
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pendent noise among data sources or sensor types, we
propose a variant of (3), called the block homoscedastic
model. In this model, Σ∗ is constrained to be diagonal,
the diagonal being constant over known blocks.

Formally, if the k-th group of sensors is composed of nk
sensors (

∑K
1 nk = n), with design matrixXk ∈ Rnk×p,

observation matrix Y k ∈ Rnk×q and noise level σ∗k >
0, the block homoscedastic model is a combination of
K homoscedastic models: ∀k ∈ [K], Y k = XkB∗ +
σ∗kEk, with the entries of Ek independently sampled
from N (0, 1). In the following we denote

X =

X1

...

XK

 , Y =

Y 1

...

Y K

 , E =

E1

...

EK

 , and

Σ∗ =

σ
∗
1 In1 0

. . .

0 σ∗K InK

 ∈ Sn++.

Following this model, we call multi-task Smoothed
Block Homoscedastic Concomitant Lasso (multi-task
SBHCL) the estimator similar to (4) with the ad-
ditional constraint that Σ is a diagonal matrix
diag(σ1 In1

, . . . , σK InK ), with K constraints σk ≥ σ k:

arg min
B∈Rp×q,

σ1,...,σK∈RK++

σk≥σ k,∀k∈[K]

K∑
k=1

(∥∥Y k −XkB
∥∥2

2nqσk
+
nkσk
2n

)
+ λ ‖B‖2,1 .

(11)

Since (11) does not admit a closed-form solution, we
also propose an iterative solver (see Section 3.2), along
with a stopping condition based on the duality gap,
which is derived for this problem in Appendix A.4.

• When the constraints on the σk’s are not satu-
rated at optimality, formulation (11) has an equivalent
square-root Lasso [Belloni et al., 2011] formulation:
arg minB∈Rp×q

1
nq

∑K
k=1

√
nk
∥∥Y k −XkB

∥∥+ λ ‖B‖2,1.
• To fix the values of the lower bounds on the noise
levels σk, we use an arbitrary proportion of the initial
estimation of the noise variances per block i.e., Σ =
10−α diag(‖Y 1‖/√n1q In1

, . . . , ‖Y K‖/√nKq InK ).
α = 3 is used in the experiments.

The equivalents of Theorem 1, Proposition 2 and
Proposition 3 for the multi-task SBHCL are:

Theorem 2. The dual formulation of (11) is

Θ̂ = arg max
Θ∈∆

′
X,λ

〈Y, λΘ〉+

K∑
k=1

σ k
2

(nk
n
− nqλ2‖Θk‖2

)
,

where ∆
′

X,λ is defined by

∆
′

X,λ =
{

Θ ∈ Rn×q :

‖X>Θ‖2,∞ ≤ 1,∀k ∈ [K], ‖Θk‖ ≤
√
nk

nλ
√
q

}
.

Proposition 4. When optimizing (11) with B̂ being
fixed, then Σ̂ = diag(σ̂1 In1

, . . . , σ̂K InK ), with residu-
als Rk = Y k −XkB̂ and σ̂k = σ k ∨ (‖Rk‖/√nkq).
Proposition 5. For the multi-task SBHCL the
critical parameter is λmax := 1

nq‖X>Σ−1
maxY ‖2,∞

where Σmax = diag(σmax
1 In1

, . . ., σmax
K InK ) and ∀k ∈

[K], σmax
k = σ k ∨ (

∥∥Y k∥∥ /√nkq).
The proofs are similar to those of Proposition 2 and
Proposition 3 and delayed to Appendix A.4.

The strategy of Algorithm 1 can also be applied to the
multi-task SBHCL. Because of the special form of Σ,
the computations are lighter and the standard devia-
tions σk’s can be updated at each coordinate descent
update. Indeed, updating all the σk’s may seem costly,
since a naive implementation requires to recompute
all the residual norms ‖Rk‖, where Rk = Y k − XkB,
which is O(nq). However, it is possible to store the
values of ‖Rk‖2 and update them at each Bj update
with a O(kq) cost. Indeed, if we denote B̃j and R̃k the
values before the update, we have:

Rk = R̃k +Xk >
j (B̃j − Bj)∥∥Rk∥∥2

= ‖R̃k‖2 + 2 Tr[(B̃j − Bj)R̃
k >Xk

j ]

+ ‖B̃j − Bj‖2Lj,k

and all the quantities R̃k >Xk
j are already computed

for the soft-thresholding step. As k ≤ n, this makes
the cost of one Bj update of Algorithm 2 O(nq), the
same cost as for the `2,1 regularized Lasso, a.k.a. multi-
task Lasso (MTL) [Obozinski et al., 2010].

5 Experiments

To demonstrate the benefits of handling non-
homoscedastic noise, we now present experiments us-
ing both simulations and real M/EEG data. First, we
show that taking into account multiple noise levels im-
proves both prediction performance and support iden-
tification. We then illustrate on M/EEG data that
the estimates of the noise standard deviations using
multi-task SBHCL match the expected behavior when
increasing the SNR of the data. We also demonstrate
empirically the benefit of our proposed multi-task SB-
HCL to reduce the variance of the estimation. The
implementation is done in Python/Cython and is avail-
able at https://github.com/mathurinm/SHCL.

https://github.com/mathurinm/SHCL
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Algorithm 2: Alternate min. for multi-task
SBHCL
input :X1, . . . , XK , Y 1, . . . , Y K , σ 1, . . . , σK , λ, T
init :B = 0p,q,

∀k ∈ [K], σk = ‖Y k‖/√nkq,Rk = Y k,
∀k ∈ [K],∀j ∈ [p], Lk,j = ‖Xk

j ‖22
for iter = 1, . . . , T do

for j = 1, . . . , p do
for k = 1, . . . ,K do

Rk ← Rk +Xk
j Bj // residual update

Bj ← BST

(
K∑
k=1

Xk >
j Rk

σk
, λnq

)
/

K∑
k=1

Lk,j
σk

// soft-thresholding
for k = 1, . . . ,K do

Rk ← Rk −Xk
j Bj // residual update

σk ← σ k ∨
‖Rk‖√
nkq

// std dev update

return B, σ1, . . . , σk

We consider the case where the block structure of the
noise is known by the practitioner. Therefore, all ex-
periments use the block homoscedastic setting. Note
that this is relevant with the M/EEG framework where
the variability of the noise is due to different data ac-
quisitions sensors that are known.

5.1 Prediction performance

We first study the impact of the multi-task SBHCL on
prediction performance, evaluated on left-out data.

The experiment setup is as follows. There are n = 300
observations, p = 1, 000 features and q = 100 tasks.
The design X is random with Toeplitz-correlated fea-
tures with parameter ρ = 0.7 (correlation between fea-
tures i and j is ρ|i−j|). The true coefficient matrix B∗

has 20 non-zero rows, whose entries are independently
and normally (centered and reduced) distributed. We
simulate data coming from K = 3 sources (each one
containing 100 observations) whose respective noise
levels are σ∗, 2σ? and 5σ?. The standard deviation
σ? is chosen so that the signal-to-noise ratio

SNR := ‖Y ‖/‖XB∗‖ = 1 .

The two estimators are trained for λ varying on a log-
arithmic grid of 15 values between the critical parame-
ter2 λmax and λmax/10. The training set contains 150
samples (n1 = n2 = n3 = 50 of each data source) and
the test set consists of the remaining 150.

Figure 1 shows prediction performance for the Smooth
Concomitant Lasso (SCL), which estimates a single

2Note that λmax is model specific
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Figure 1: RMSE normalized by oracle RMSE, per
block, for the multi-task SBHCL and Smooth Con-
comitant Lasso (SCL), on training (top) and testing
(bottom) set, for various values of λ. The flexibility of
the block homoscedastic model enables the multi-task
Smoothed Block Homoscedastic Concomitant Lasso to
reach a lower RMSE on every block of the test set.

noise level for all blocks, and the multi-task SBHCL.
Since each block has a different noise level, for each
block k and each estimator, we report the Root Mean
Squared error (RMSE, ‖Y k−XkB̂‖/√qnk) normalized
by the oracle RMSE (‖Y k−XkB∗‖/√qnk). After tak-
ing the log, zero value means a perfect estimation, a
positive value means under-fitting of the block, while
a negative value corresponds to over-fitting. Figure 1
reports normalized RMSE values on both the training
and the test data.

As it can be observed, the RMSE for the multi-task
SBHCL is lower on every block of the test set, mean-
ing that it has better prediction performance. By at-
tributing a higher noise standard deviation to the nois-
iest block (block 3), the multi-task SBHCL is able to
down-weight the impact of these samples on the esti-
mation, while still benefiting from it.

While the 3 normalized RMSE have similar behaviors
on the test set for the SCL, for low values of λ, the
multi-task SBHCL overfits more on the least noisy
block. However this does not result in degraded predic-
tion performance on the test set, neither for this block
nor for others, and the prediction is even better on the
noisiest block. Indeed, the SCL overfits more on the
the noisiest block, which has a greater impact on pre-
diction (as overfitting on noiseless data would lead to
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Figure 2: ROC curves of true support recovery for
the SBHCL, the MTL and SCL on all blocks, and the
MTL and SCL on the least noisy block. The black
curve marks the limit of supports of size 0.9n. Top:
SNR = 5, ρ = 0.1, middle: SNR=1, ρ = 0.1, bottom:
SNR = 1, ρ = 0.9.

perfect parameter inference). When the regularization
parameter becomes too low, taking into account differ-
ent noise levels allows our estimator to limit the impact
of overfitting by favoring the most reliable source. This
experiments shows that our formulation is appealing
for parameter selection, as the best left-out prediction
is obtained for similar values of λ.

5.2 Support recovery

In this experiment, we demonstrate the superior per-
formance of the multi-task SBHCL for support recov-
ery, i.e., its ability to correctly identify the predictive
features. The experimental setup is the same as in
Section 5.1, except that the support of B∗ is of size
50. We also vary ρ ∈ {0.1, 0.9} and the SNR ∈ {1, 5}
(additional results are included in Appendix C).

The five estimators compared on Figure 2 are the
multi-task SBHCL, the SCL, the MTL, and also the

Table 1: Mean values of pAUC for the main estimators,
across ten simulations of X and Y .

SNR 1 1 5
ρ 0.1 0.9 0.1

SBHCL 0.92± 0.12 0.86± 0.05 0.98± 0.02
MTL 0.79± 0.08 0.71± 0.07 0.99± 0.00
MTL (block 1) 0.44± 0.04 0.48± 0.05 0.48± 0.04

MTL and the SCL trained on the least noisy block
(i.e., the most favorable block). Following the empir-
ical evaluation from [Bühlmann and Mandozzi, 2014],
the figure of merit is the ROC curve, i.e., the true pos-
itive rate as a function of the false positive rate. The
curve is obtained by varying the value of λ (lower val-
ues leading to larger predicted support and therefore
potentially more false positives).

We can see that when the SNR is sufficiently high (top
graph with SNR = 5), the multi-task SBHCL, the
SCL and the MTL successfully recover the true sup-
port, while the MTL or SCL trained on the least noisy
block with only one third of the data fails. However,
when the SNR is lower (middle graph with SNR = 1),
the multi-task SBHCL still achieves almost perfect sup-
port identification, while the performance of the MTL
and SCL decreases. The performance is naturally even
worse when using only one block of samples. Finally,
when the features are more correlated (ρ = 0.9) and
the conditioning of X is degraded, the multi-task SB-
HCL, despite not perfectly recovering the true support,
still has superior performance. Note also that unsur-
prisingly the MTL and the SCL lead to almost per-
fectly the same ROC curves as both estimators (if σ
is small enough) have the same solution path. Any
difference between SCL and MTL in our graph is due
to the choice of a discrete set of λ values.

To study the stability of Figure 2, we repeat the sim-
ulation 10 times. Since the curves are not guaranteed
to reach TPR = 1, it is not possible to use AUC as a
scalar figure of merit. As we are usually interested in
sparse estimators when the recovered support is small,
we follow Bühlmann and Mandozzi [2014, Fig. 1-4],
and limit the study to estimated supports of size in-
ferior to 0.9n (i.e., the part to the left of the black
curve). This leads to the use of pAUC or “0.9–perfor-
mance”: the area under the ROC curve, but restricted
to the left of the black line, and normalized by its max-
imal value. The mean pAUCs for 10 repetitions, for
all estimators in the different settings are in Table 1.

5.3 Results on joint M/EEG real data

We now evaluate our estimator on magneto- and elec-
troencephalography (M/EEG) data. The data consists
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of M/EEG recordings, which measure the electric po-
tential and magnetic field induced by active neurons.
Data are time-series so that n corresponds to the num-
ber of sensors and q to the number of consecutive time
instants in the data. Thanks to their high temporal res-
olution, M/EEG help to elucidate where and precisely
when cognitive processes happen in the brain [Baillet,
2017]. The so-called M/EEG inverse problem, which
consists in identifying active brain regions, can be cast
as a high-dimensional sparse regression problem. Be-
cause of the limited number of sensors, as well as
the physics of the problem, this problem is severely
ill-posed, and regularization is needed to provide so-
lutions which are both biologically plausible and ro-
bust to measurement noise [Wipf et al., 2008, Haufe
et al., 2008, Gramfort et al., 2013]. As foci of neural
activity are observed from a distance by M/EEG and
since only a small number of brain regions are involved
in a cognitive task during a short time interval, it is
common to employ sparsity-promoting regularizations.
Amongst these, the `1/`2 penalty has been success-
fully applied to the M/EEG inverse problem in either
time [Ou et al., 2009] or frequency domain [Gramfort
et al., 2013].

The experimental condition considered is a monaural
auditory stimulation in the right ear of the subject.
The same subject undergoes the same stimulation 61
times, and the M/EEG measurements are recorded
from 0.2 s before to 0.5 s after the stimulus. The data
(from the MNE software [Gramfort et al., 2014]) thus
contains 61 repetitions (trials) of this stimulation.

In the experimental setup we have 204 gradiometers,
102 magnetometers and 60 EEG electrodes. We have
discarded one magnetometer and one electrode cor-
rupted by strong artifacts. We therefore have K = 3
sensor types with n1 = 203, n2 = 102 and n3 = 59
(so n = 364). X is obtained by numerically solving
the M/EEG forward problem using p = 1884 can-
didate sources distributed over the cortical surface
(X ∈ R364×1884). The orientations of the dipoles are
assumed known and normal to the cortical mantle.

The measurements for q = 1 (single time measure-
ments) are selected 75ms after the stimulus onset, and
between 60 and 115 ms (resp. 70 and 102 ms) after
the stimulus for q = 34 (resp q = 20). This time in-
terval corresponds to the main cortical response to the
auditory stimulation.

For a number t of repetitions of experiment (t ranging
from 2 to 56), we create an observation matrix Yt by
averaging the first t trials. By doing so, the noise stan-
dard deviations of each block should be proportional to
1/
√
t. We then run the multi-task SBHCL with fixed

λ, equal to 3% of λmax. Figure 3 shows the noise stan-
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Figure 3: Noise standard deviation estimated on au-
ditory data for q = 1, q = 20 and q = 34 time in-
stants using the SBHCL estimator. Data consist of
combined MEG gradiometers (n1 = 203 sensors) and
magnetometers (n2 = 102 sensors), as well as EEG
(n3 = 59 sensors). We used λ = 0.03λmax.

dard deviation estimated by the multi-task SBHCL,
when ran on a single time instant (single task), 20 and
34 time instants.

We can see that the estimated values are plausible:
they have the correct orders of magnitude, as well as
the expected 1/

√
t decrease. We also see that taking

more tasks into account leads to more stable noise esti-
mation: for magnetometers, the curve is smoother for
q = 34 than for q = 20 and q = 1. Indeed, using more
tasks reduces the variance of the estimation.

6 Conclusion

This work proposes the multi-task Smoothed Gener-
alized Concomitant Lasso, a new sparse regression es-
timator designed to deal with heterogeneous observa-
tions coming from different origins and corrupted by
different levels of noise. Despite the joint estimation of
the regression coefficients as well as the noise level, the
problem considered is jointly convex, thus guarantee-
ing global convergence which one can check by duality
gap certificates. The efficient BCD strategy we pro-
posed leads to a computational complexity not higher
than the one observed for a classic sparse regression
model, while solving a fundamental practical problem.
Indeed with the SBHCL, the regularization parame-
ter is less sensitive to the noise level of each combined
modality, making it easier to tune across experimen-
tal conditions and datasets. Finally, thanks to the
flexibility of our model, better prediction performance
and support recovery are achieved w.r.t. traditional
homoscedastic estimators.
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