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Quadrotor Guidance-Control for flight like nonholonomic vehicles

This paper introduces a velocity based guidance strategy for 3D time-prescribed path following. A second alternative, acceleration based guidance law that incorporates an integral action, is proposed to deal with the more adverse environments. The proposed strategy, which is combined with an efficient nonlinear control strategy for under-actuated systems, is applied to a quadrotor. It ensures the convergence toward the reference trajectory and allows the quadrotor to imitate the behavior of a fixed-wing UAV in the plane (non-holonomic like-navigation). The effectiveness of the proposed Guidance & Control (G&C) loop is shown through some numerical simulations.

I. INTRODUCTION

Nowadays, a broad range of studies treating the Guidance and Control (G&C) of autonomous systems especially for the Miniature-Unmanned Aerial Vehicles (MUAVs) have been published. These two loops (G&C) are necessary to achieve any mission properly as for instance the monitoring of structures [START_REF] Guerrero | Uav path planning for structure inspection in windy environments[END_REF], the coverage [START_REF] Bouzid | Two-scale geometric path planning of quadrotor with obstacle avoidance: First step toward coverage algorithm[END_REF], etc.

The guidance loop provides the reference signals (angles, velocities, etc.) required by the flight controller. It ensures many tasks from the trajectory planning [START_REF] Goerzen | A survey of motion planning algorithms from the perspective of autonomous uav guidance[END_REF] to the trajectory generation [START_REF] Mellinger | Trajectory generation and control for precise aggressive maneuvers with quadrotors[END_REF]. The paper [START_REF] Nelson | Vector field path following for small unmanned air vehicles[END_REF] presents straight-circular paths following method using vector fields while the reference [START_REF] Mellinger | Trajectory generation and control for precise aggressive maneuvers with quadrotors[END_REF] shows a strategy enabling aggressive maneuvers as well as flying through narrow gaps. In reference [START_REF] Osborne | Waypoint guidance for small uavs in wind[END_REF], the well-known helmsman guidance law has been studied deeply. Extensive other guidance strategies are worth citing but the reader may refer to review papers [START_REF] Breivik | Principles of guidance-based path following in 2d and 3d[END_REF] [START_REF] Sujit | Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless[END_REF] and the references therein for more details.

The quadrotor is a nonlinear, under-actuated and highly coupled system. Thus, various methods have been applied for the trajectory tracking control as well as for the attitude stabilization. The classic linear control strategies operate in particular waypoints and assume a linear model [START_REF] Bouabdallah | Pid vs lq control techniques applied to an indoor micro quadrotor[END_REF]. However, the application of the nonlinear control techniques can improve the performance as shown in [START_REF] Bouzid | Flight control boosters for three-dimensional trajectory tracking of quadrotor: Theory and experiment[END_REF] [START_REF] Bouzid | Energy based 3d autopilot for vtol uav under guidance & navigation constraints[END_REF] [START_REF] Bouzid | Nonlinear internal model control applied to VTOL multi-rotors UAV[END_REF].

The main objective of the present paper is to imitate a fixed-wing UAV in planar-flight (non-holonomic-like navigation) along a time-parameterized path as well as the tracking of a moving object. These abilities are requested for several applications (inspection, indoor navigation, filming, etc.). In [START_REF] Escareno | Nonholomic-like corridor navigation of a quad-rotor mav using optical flow[END_REF], a reactive vision-based autonomous navigation, within an indoor corridor, is performed by a quad-rotor. The dynamic model is divided into two parts considering two planes called Q-plane and R-plane using saturated PD controller. The same problem of navigation is considered in [START_REF] Escareño | Trajectory control of a quadrotor subject to 2d wind disturbances[END_REF] but under the effect of wind.

For non-holonomic navigation, the quadrotor has to satisfy some desired dynamic behavior while tracking the geometric path. Thus, the quadrotor dynamic model is arranged in such a way that the lateral motion (roll rotation) can be canceled. Then, the quadrotor is able to reach any configuration, defined in the space by its absolute position and the yaw angle, using the forward and heading motions. In other words, we employ only the longitudinal flight (pitch rotation), vertical flight and yaw rotation.

The paper addresses the use of virtual body based frame, which is represented by a position variable belonging to the desired path and supposed to move along it at all times. The proposed strategy mixes the construction of the geometric path in space and time assignments. The guidance law ensures that the vehicle converges towards the path in a nonholonomic way involving the velocity vector. This strategy also allows the tracking of a real moving body in the space. Besides, an efficient flight controller based on a nonlinear approach is required. Herein, we apply the Immersion & Invariance (I&I) approach to design the flight controller that ensures an asymptotic stability. The effectiveness of the proposed G&C strategy design is shown through some promising numerical simulations.

The paper is organized as follows: Section II introduces the problem. Section III presents the design of the proposed guidance strategy with an application to the quadrotor. Section IV addresses the design of the flight controller employing the I&I theory. Section V shows some obtained promising numerical results. Finally, a conclusion is drawn in Section VI.

II. PROBLEM STATEMENT

The classic way of quadrotor guidance is to focus on the absolute position of the vehicle without taking care of the velocity vector. Besides the stationary flight capability, the quadrotor is able to perform any trajectory in the space employing the longitudinal and lateral motions where the heading angle is maintained at the origin (see Figure 1 (a)). However, this way of navigation is not recommended for many applications such as: object tracking, movie filming and indoor building inspection (see Figure 2) where the heading and forward motions play a crucial role (e.g. quadrotor with frontal camera). Therefore, we propose a nonholonomic like-navigation way (see Figure 1 (b)). Herein, our guidance law is based on the notion of virtual body, which can instantaneously perform any desired motion P re f (t). This latter should take care of the obstacles avoidance and the optimality concerns 1 . It is worthwhile to stress that the proposed guidance law occurs for dynamic tasks. In other words, we seek to make the speed of the real vehicle converges to the desired speed of the virtual vehicle (see Figure 3) and of course it is required that the vehicle, of current absolute position P(t), reaches the timeparameterized path P re f (t) at time t n . The presence of wind causes erroneous flight trajectory shifting away the vehicle from the preplanned path. Therefore, a second alternative of guidance strategy is proposed to deal with this unfavorable circumstance.

Explicitly, we consider a virtual vehicle M v (x v , y v , z v ) that moves perfectly along a prescribed 3D-path P re f with a forward speed V v . The real vehicle M b (x b , y b , z b ), which moves with forward speed2 of magnitude V b (> V 0 ≥ 0), has as focusing task to track the virtual vehicle. In other words, the objective is to ensure identical speeds of vehicles and of course to reduce the tracking error between M b and M v . Therefore, three frames are considered that are: the inertial frame R 0 (O 0 , X,Y, Z), the body-fixed frame noted by R 1 (O 1 , X,Y, Z) and related to the vehicle center of mass and finally the virtual vehicle frame, R v (O v , T, N, B), related to a virtual vehicle where, T is the tangent, N the normal and N the bi-normal. We investigate in this work a guidance law that provides for the flight controller a forward speed V b , flight path angle denoted by γ and heading angle denoted by χ, which match with the desired forward speed V v and angles γ re f = ± π 2 , χ re f = ± π 2 that are related to the virtual vehicle respectively. Let γ re f the angle between the vertical axis Z and the bi-normal axis B and χ re f the angle between the tangent axis T and X (see Figure 4). Thus, the desired reference rotation matrix is

R re f |3D = =   cos(γ re f ) cos(χ re f ) cos(γ re f ) sin(χ re f ) -sin(γ re f ) -sin(χ re f ) cos(χ re f ) 0 sin(γ re f ) cos(χ re f ) sin(γ re f ) sin(χ re f ) cos(γ re f )   where R re f |3D is orthogonal rotation matrix. The first order time derivative gives Ṙre f |3D = S(γ re f , χ re f , γre f , χre f )R re f |3D (1) 
with S(γ re f , χ re f , γre f , χre f ) is a skew symmetric matrix written as 

S(γ re f , χ re f , γre f , χre f ) =   0 χre f cos(γ re f ) -γre f -χre f cos(γ re f ) 0 -χre f sin(γ re f ) γre f χre f sin(γ re f ) 0  

III. GUIDANCE LAW

A. Velocity based guidance law Let

δ (t) = R re f |3D ε(t) (2) 
being the position error vector with respect to the frame R v where ε(t) denotes the tracking error between the absolute position vector P(t) of the vehicle and the virtual one P re f (t) with respect to the inertial reference frame

ε(t) = P(t) -P re f (t) (3) 
This error should be converging toward the origin. To deal with this requirement, we impose the first order dynamics of the error expressed in the virtual frame as

δ (t) + λ v δ (t) = 0 (4)
where λ v is a diagonal positive definite matrix that adjusts the speed of convergence. By differentiating (2) with respect to time and using equation ( 4) we obtain a new first-order dynamic expressed in the inertial frame as

ε(t) + λ i ε(t) = 0 ( 5 
)
where

λ i = R -1 re f |3D (S(γ re f , χ re f , γre f , χre f ))R re f |3D + λ v I =   λ v χre f -γre f cos(χ re f ) -χre f λ v -γre f sin(χ re f ) γre f cos(χ re f ) γre f sin(χ re f ) λ v   (6) 
The velocity error vector in the inertial frame may be written as

ε(t) = V -V re f ( 7 
)
where V = (V x ,V y ,V z ) T is the vehicle velocity vector and V re f = (V x,re f ,V y,re f ,V z,re f ) T the virtual vehicle velocity vector. Hence, using ( 5) and ( 7), the velocity vector may be expressed as

V = -λ i ε(t) +V re f (8)
This last equation needs the computation of matrix [START_REF] Osborne | Waypoint guidance for small uavs in wind[END_REF], which amounts to first calculate the desired reference of the heading and flight path angles γ re f , χ re f together with their time derivatives γre f , χre f . In tri-dimensional space, the orientation is characterized by:

     χ = V y |V y | arccos V x V 2 γ = arcsin V z V b ( 9 
)
with

V 2 = V 2 x +V 2 y and V b = V 2 x +V 2 y +V 2 z
In addition, the first time derivatives are:

       χ = -V y V y a x V y -V x a y V 2 2 γ = a z V 2 2 -a x V z V x -a y V z V y V 2 (10)
a = (a x , a y , a z ) T denotes the vehicle acceleration vector. Therefore, employing systems ( 9) and ( 10) and considering the virtual vehicle, we are able to compute matrix [START_REF] Osborne | Waypoint guidance for small uavs in wind[END_REF].

Remark 1: As the forward speed is strictly positive (> V 0 ), there is not a problem of singularities at zero for the previous equations.

B. Quadrotor guidance law application

Since the attitude subsystem is totally decoupled from the altitude dynamics for the quadrotors (see Eqs (20-21)) 3 , the 3D description for the fixed-wing UAVs becomes a 2D one for the quadrotors. At this stage, the guidance law is synthesized in order to provide the heading angle χ and the speed V b that go closer to the reference angle χ re f and virtual vehicle speed V v respectively (no flight path angle, i.e. γ re f = 0). This means that the altitude reference trajectories are provided independently to those of the attitude angles, unlike the fixed-wing UAV where the altitude trajectories can be described in function of the flight path angle and the forward velocity. Therefore, we consider a projection P ⊥ re f (2D path) of the 3D-path P re f on the plane XY that should be followed by the quadrotor while the altitude is ensured independently in order to cancel the distance between the desired high and the current altitude of the quadrotor. Thus, we focus on the planar position of the virtual and real vehicles. In other words, P(t) = (x b , y b ) T , and

P re f (t) = (x v , y v ) T have herein only two components. Therefore, R re f |3D becomes R re f |2D = = cos(χ re f ) sin(χ re f ) -sin(χ re f ) cos(χ re f ) (11) 
3 The opposite is not true i.e. the altitude depends on the attitude angles.

where R re f |2D is orthogonal rotation matrix. Its first-time derivative gives

Ṙre f |2D = S(χ re f , χre f )R re f |2D = -χre f sin(χ re f ) χre f cos(χ re f ) -χre f cos(χ re f ) -χre f sin(χ re f ) (12) with S(χ re f , χre f ) = 0 χre f -χre f 0 and the second time derivative is Rre f |2D = Ṡ(χ re f , χre f )R re f |2D + S 2 (χ re f , χre f )R re f |2D = -χre f S χ re f -χ2 re f C χ re f χre f C χ re f -χ2 re f S χ re f -χre f C χ re f + χ2 re f S χ re f -χre f S χ re f -χ2 re f C χ re f ( 13 
)
The behavior of the quadrotor in this configuration is similar to the fixed-wing UAV that moves in the plane.

In the case of quadrotor, we follow the same methodology as described above. However, simpler matrix λ i is obtained

λ i = λ v χre f -χre f λ v ( 14 
)
The quadrotor guidance law proposed in (8) exhibits poor capabilities to cancel the steady-state errors. For the sake of improvement, we suppose now that the error has second order dynamics as

δ (t) + µ v δ (t) + α v δ (t) = 0 ( 15 
)
where α v and µ v are diagonal positive definite matrices that adjust the behavior of convergence. By two successive time derivatives of (2) and using equations [START_REF] Bouzid | Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy[END_REF] the dynamics of the tracking error expressed in the inertial frame becomes

ε(t) + µ i ε(t) + α i ε(t) = 0 ( 16 
)
with

α i = µ v R -1 re f |2D S(χ re f , χre f )R re f |2D + α v I +R -1 re f |2D Ṡ(χ re f , χre f )R re f |2D +R -1 re f |2D S 2 (χ re f , χre f )R re f |2D = α v -χ 2 re f µ v χre f + χre f -µ v χre f α v -χ 2 re f -χre f and µ i = 2R -1 re f |2D S(χ re f , χre f )R re f |2D + µ v I = µ v 2 χre f -2 χre f µ v
The acceleration error vector in the inertial frame is written as

ε(t) = a -a re f ( 17 
)
where a = (a x , a y ) T is the vehicle linear acceleration vector and a re f = (a x,re f , a y,re f ) T its reference one. We stress that both vectors δ (t) and ε(t) contain two components related to the planner position. Hence, using ( 16) and ( 17), the acceleration vector may be expressed as

a = -µ i ε(t) -α i ε(t) + a re f ( 18 
)
Integrating equation ( 18), the planar velocity is

V = -µ i ε(t) -α i t t 0 εdτ +V re f + ∆(t 0 ) (19) 
with initial term ∆(t 0 ) = V (t 0 ) + µ i ε(t 0 ) -V re f (t 0 ) and t 0 is the initial instant. Commonly, from a stationary flight (V (t 0 ) = 0) at the origin (ε(t 0 ) = -P re f (t 0 )), the quadrotor starts to follow the prescribed trajectory. This new formulation has an integral action compared to [START_REF] Sujit | Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless[END_REF], which gives more efficiency and cancel the steady-state errors. Then, we follow the same steps described in Section III-A, with

         χ = V y |V y | arccos V x V 2 χ = V y V y a x V y -V x a y V 2 x +V 2 y

IV. DYNAMIC MODEL AND NONLINEAR FLIGHT CONTROL

As the guidance law provides the velocities required to follow the prescribed trajectories, the flight controller is designed to ensure the velocity control. Thus, the quadrotor dynamic model should explicitly show the velocity term in the equations of motion.

A. Vehicle dynamics background

The quadrotor operates in two coordinate frames: the earth fixed frame R 0 (O 0 , X,Y, Z) and the body frame R 1 (O 1 , X 1 ,Y 1 , Z 1 ). Let η = (φ , θ , ψ) T describes the orientation of the aerial vehicle (Roll, Pitch, Yaw) and ζ = (x, y, z) T denotes the absolute position of the rotorcraft. For the current applications (inspection, coverage, etc.) that dont require aggressive maneuvers, the dynamic model of the quadrotor may be given by [START_REF] Bouabdallah | Pid vs lq control techniques applied to an indoor micro quadrotor[END_REF] 

ζ =       u 1 cψsθ cφ + sψsφ m u 1 sψsθ cφ -cψsφ m -g + u 1 cθ cφ m       (20) η =        θ ψ I y -I z I x + J r θ Ω r + u 2 I x φ ψ I z -I x I y + J r φ Ω r + u 3 I y φ θ I x -I y I z + u 4 I z        (21) 
where s (.) and c (.) are abbreviations for sin(.) and cos(.) respectively, m the mass, g the gravity acceleration and u 1 the total thrust. I = diag(I x , I y , I z ) is the diagonal inertia matrix, J r denotes the rotors inertia and Ω a mixer of the rotors speeds, τ = (u 2 , u 3 , u 4 ) T is the control torque. The quadrotor parameters are depicted in Table 1. 

B. Control oriented-model

According to our strategy of a non-holonomic way of navigation, the vehicle reaches any configuration in the space employing only the heading, the forward and the vertical motions. The heading is ensured by the control of the yaw while the forward motion is ensured by the pitch rotation.

Herein, we assume that the rolling angle is forced to be at the origin φ → 0 using a feedback controller as in [START_REF] Bouzid | Flight control boosters for three-dimensional trajectory tracking of quadrotor: Theory and experiment[END_REF].

Therefore, the overall dynamic model of quadrotor becomes

ζ =       u 1 cψsθ m u 1 sψsθ m -g + u 1 cθ m       (22) η =    u 3 I y u 4 I z    (23) 
where η = (θ , ψ) T . From the two first equations of system (22), we define the following forward linear speed

Vr = u 1 sθ m ( 24 
)
where x and y dynamics are obtained directly as

ẍ = Vr c ψ ÿ = Vr s ψ (25) 
Therefore any location in the plane XY can be reached using the forward velocity and the heading angle. Based on equation (25) and by using systems ( 22) and ( 23), the reduced dynamic model is given by

             Vr = u 1 sθ m z = -g + u 1 cθ m θ = u 3 m ψ = u 4 m (26)

C. Control approach

The controller is herein designed to ensure the tracking of the desired trajectory along the three axes (x r , y r , z r ) and the yaw angle ψ r and force the rolling angle to be at the origin (stabilization). The control structure is shown in Figure 5. The altitude and the yaw are controllers via u 1 and u 4 respectively using a simple feedback controller (see reference [START_REF] Bouzid | Flight control boosters for three-dimensional trajectory tracking of quadrotor: Theory and experiment[END_REF]).

The forward navigation in the plane XY is more challenging due to the fact that relates between the forward velocity and the pitch angle and it is considered as an underactuated subsystem. Therefore, I&I based control approach is proposed in order to deal with this problem of underactuation and ensures the asymptotic stability of the closed-loop of this subsystem.

1) Review of I&I based approach: The use of this approach (I&I) for stabilization of nonlinear systems was originated in [START_REF] Astolfi | Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems[END_REF]. First, we briefly recall, in the following, the definitions of the concepts of invariant manifold and immersion of systems.

Definition 1: Consider the following autonomous system

ẋ = f (x), y = h(x), with x ∈ R n and y ∈ R m ( 27 
)
The manifold

M = {x ∈ R n |φ (x) = 0}, is said to be invariant for ẋ = f (x) if: φ (x(0)) = 0 ⇒ φ (x(t)) t≥0 = 0 where φ (x) is a smooth flow.
Definition 2: Immersion is a mapping of the initial state to another state-space of higher dimension. Consider, the following system

ξ = α(ξ ), ζ = β (ξ ), with ξ ∈ R p and ζ ∈ R m (28)
System ( 28) is said to be immersed into system (27) if there exists a smooth mapping π : R p → R n which satisfies

• x(0) = π(ξ (0)) • β (ξ 1 ) = β (ξ 2 ) ⇒ h(π(ξ 1 )) = h(π(ξ 2 ))
and such that f (π(ξ )) = δ π δ ξ α(ξ ) and h(π(ξ )) = β (ξ ) for all ξ ∈ R p

The major result of Immersion and Invariance is introduced by the following theorem:

Theorem 1: Consider the system

ẋ = f (x) + g(x)u ( 29 
)
with a state vector x ∈ R n , input u ∈ R m and x * ∈ R n an equilibrium point to be stabilized.

Let p < n and assuming existence of smooth mappings α : R p → R p , π : R p → R n , ς : R n → R m φ : R n → R n-p , ψ : R n×(n-p) → R m such that the following hold.

• (C1) Target system The system ξ = α(ξ ) with state ξ ∈ R p , has an asymptotically stable equilibrium at ξ * ∈ R p and x * = π(ξ * )

• (C2) Immersion condition For all ξ ∈ R p , f (π(ξ )) + g(π(ξ ))ς (π(ξ )) = δ π δ ξ α(ξ ) • (C3) implicit manifold The set identity {x ∈ R p |φ (x) = 0} = {x ∈ R n |x = π(ξ ) for some ξ ∈ R p } holds • (C4) Manifold

attractively and trajectory boundedness

All trajectories of the system

ż = δ φ δ x ( f (x) + g(x)ψ(x, z)) ẋ = f (x) + g(x)ψ(x, z)
where z = φ (x), are bounded and satisfy lim t→∞ z(t) = 0. Then, x * is asymptotically stable equilibrium of the closedloop system ẋ = f (x) + g(x)ψ(x, φ (x)) (For the theorem proof, see [START_REF] Astolfi | Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems[END_REF]).

2) Application of I&I: By choosing a state vector as

(x 1 , x 2 , x 3 ) T = (V r -V r re f ,θ , θ ) T . The subsystem in (26) be- comes        ẋ1 = u 1 s x2 m -Vr re f ẋ2 = x 3 ẋ3 = u 3 I z ( 30 
)
I&I technique requires the selection of a target dynamical system. In order to avoid solving the partial differential equation (C2), it has been proposed to choose the target system as a mechanical one parameterized in terms of potential and damping functions (see [START_REF] Acosta | A constructive solution for stabilization via immersion and invariance: The cart and pendulum[END_REF]). Thus, we define the target system as

   ξ1 = ξ 2 ξ2 = δV (ξ 1 ) δ ξ 1 -Q(ξ 1 , ξ 2 )ξ 2 (31)
where the damping function, Q satisfies Q(0, 0) > 0 and

V the free potential scalar function, satisfies δV (ξ 1 )

δ ξ 1 = 0.
This ensures the asymptotic stability of the equilibrium point

(ξ * 1 , ξ * 2 )
. Remark 2: The first condition (C1) is automatically satisfied because the target system is a priori defined.

Remark 3: Linear target dynamics is not, necessarily, suitable because of the constraints imposed by the physical structure and many systems are not linearizable by feedback. Our choice has been made for simplification reasons.

By applying the immersion condition (C2), we obtain: For small angles of pitch and all ξ ∈ R 2 .

π =    ξ 1 m u 1 (ξ 2 + Vr re f ) π(ξ 1 , ξ 2 )    (32) π(ξ 1 , ξ 2 ) = m u 1 ( Vr re f -V (ξ 1 ) -Q(ξ 1 , ξ 2 )ξ 2 ) (33) ς (π(ξ )) I z = δ π(ξ 1 , ξ 2 ) δ ξ 1 ξ 2+ δ π(ξ 1 , ξ 2 ) δ ξ 2 (-V (ξ 1 )-Q(ξ 1 , ξ 2 )ξ 2 ) (34) 
From equations (33) and (34) we get π(ξ 1 , ξ 2 ) and the mapping ς (.) respectively. It is easy to define the manifolds of (C3) and can be implicitly described by

φ (x) x 3 -π(x 1 , x 2 ) = 0 (35)
To make the manifold attractive and satisfying (C4), the manifold dynamics is given as where

Ż = ( ẋ3 -π(x 1 , x 2 )) = ( ψ(x, Z) I z - δ π δ x 1 ( u 1 x 1 m -Vr re f ) - δ π δ x 2 x 3 ) (36) 
Z = φ (x) Taking Ż = -λ Z (37)
Hence selecting λ as positive constants exponentially drives Z to zero. The resulting controller then takes the form

ψ(x, φ (x)) = δ π δ x 1 ( u 1 x 2 m -Vr re f ) + δ π δ x 2 x 3 -λ (x 3 π(x 1 , x 2 )) (38) 
Remark 4: It is easy to verify that the control law satisfies ψ(x, 0) = ς (π) with ς (π) defined by (34), thus the immersion condition (C2) is satisfied.

Proposition 1: For any mapping satisfying (35), such that conditions (C3) and (C4) hold using appropriate V and Q, the equilibrium of system (30) in closed loop via controller ( 38) is asymptotically stable.

The design procedure is conducted by choosing the functions V and Q. For the sake of simplicity, we select

V = 1 2 k V ξ 2 1 and Q = K Q with k v , k Q > 0 Then π(x 1 , x 2 ) = - m u 1 k V x 1 -k Q x 2 (39) 
Finally, doing some computations, the control effort for system (30) is expressed as

u 3 = - m u 1 k V x 1 -(k V x 2 + λ k Q )x 2 -(k Q + λ )x 3 (λ m u 1 k Q + k V m u 1 ) Vr re f + λ m u 1 Vr re f ( 40 
)
where λ , k Q and k V are positive constants. V. NUMERICAL RESULTS

Now, since we have completed equations describing the dynamics of the system, the guidance law and the equation of the flight control law, we can design a simulation environment in order to test and view the results of various signals. The guidance and control parameters are tuned by minimizing the following objective function using Genetic Algorithms (GA).

O f = 1 t 1 -t 0 t 1 t 0 ε T εdτ (41)
where t 1 and t 0 are the final and the initial times respectively, ε(τ) is the tracking error of the considered output. They are given by

• Guidance laws: λ v = 5, α v = 5 and µ v = 0.5

• Flight control law: λ = 30, k V = 7 and k Q = 3 The reference trajectory is described by the inertial position vector P re f and the velocity vector V re f . They are considered as inputs for the guidance module. Using these inputs, the guidance module generate the adequate signals in order to ensure the non-holonomic like navigation way that are considered as inputs of the flight control system. They are the heading angle χ and the linear speed V b as well as the altitude. The flight controller sends the required inputs to the quadrotor represented by the overall dynamics (20-21). The global structure of the Guidance, Navigation and Control (GNC) loop is depicted in Figure 6. The tests have been performed in both cases in absence and presence of lateral wind with speed mean value of (1, 5, 10) m/sec.

Firstly, we investigate the effectiveness of the proposed G&C system in the ideal case. As example of scenario, the tracking errors of the absolute position and the heading angle are depicted in Figure 7. Finally, the 3D performed trajectory is shown in Figure 8. Clearly, the vehicle G&C system ensures a good tracking of the reference trajectory with good accuracy (see Figure 7). These observations may be confirmed by the 3D trajectory displayed in Figure 8 where the prescribed reference trajectory and the vehicle trajectory are quite consistent.

Secondly, we check the effectiveness of the G&C system with respect to the wind. Therefore, in the presence of lateral wind of mean values (1, 5, 10) m/sec, we illustrate in Figure 9 the 3D trajectory of the vehicle. The quadrotor manages to follow the prescribed reference trajectory but it exhibits much more deviation proportionally to the speed of the wind. Therefore, first guidance law ( 8) is not able to correct the trajectory affected by the wind where a clear steady-state is created.

For the sake of improvement an integral action is introduced by using guidance law (19). The tracking errors using laws ( 8) and ( 19) in presence of wind whose speed is of 10 m/sec are shown in Figure 10. The 3D trajectories are shown in Figure 11. Notice that the same controller and guidance law parameters are used. Figure 10 and Figure 11 show that the use of the second law raises the performance of the technique where the steady state is clearly reduced. For the remaining cases, the Integral Square Error (ISE) given by

ISE = 1 t f -t 0 t f t 0 ε(t) T ε(t)dt (42) 
is computed for the overall trajectory and tabulated in Table 2. One may observe that the method based on the second order law is shown to be the best one in case of windy environment. The first law leads to quite similar performance 

VI. CONCLUSION

This paper has treated the subject of guidance related to motion behavior in a 2D plane and a 3D space. Two alternatives of guidance law are developed that allows the quadrotor to follow any path as well as a fixed wing UAV (non-holonomic like-navigation). The first guidance law can perform the task with good features in the case without wind but with poor capabilities to cancel the steady-state errors. Therefore, the second law that incorporates an integral action and uses the acceleration instead of the velocities exhibits good results even in presence of wind. The flight controller, based on I&I approach, globally exhibits good performance. Simulation results are shown supporting these claims.
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 1 Fig. 1. (a) Classical navigation involving the roll, the pitch and the absolute position of the vehicle. Fig. 1. (b) Fixed wing like-navigation involving the heading angle and the forward motion.
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 2 Fig. 2. Indoor building inspection (Gazebo simulator).
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 3 Fig. 3. Virtual body velocity based guidance strategy.
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 4 Fig. 4. Frames representation.
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 5 Fig. 5. Controlled system Architecture.
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 6 Fig. 6. GNC global structure.

Fig. 7 .

 7 Fig. 7. Tracking errors of the absolute position and the heading angle (without wind).

Fig. 8 .

 8 Fig. 8. 3D trajectory (without wind).

Fig. 9 .

 9 Fig. 9. 3D trajectory (with wind).

Fig. 10 .

 10 Fig. 10. Tracking errors of the absolute position and the heading angle in presence of wind of 10 m/sec.

Fig. 11 .

 11 Fig. 11. 3D trajectory in presence of wind of 10 m/sec.

TABLE II SQUARE

 II TRACKING ERROR.

	Wind mean speed [m/sec] Law 1 (8)	Law 2 (19)
	0	0.00439	0.00440
	1	0.00476	0.00447
	5	0.01416	0.00569
	10	0.04379	0.00946
	in the ideal case.		

The optimal path planning with obstacles avoidance is already considered in our previous work and allows generating P re f (t) for the virtual body using Rapidly Random Trees (RRT) strategy[START_REF] Bouzid | Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy[END_REF].

[START_REF] Bouzid | Two-scale geometric path planning of quadrotor with obstacle avoidance: First step toward coverage algorithm[END_REF] V 0 is the minimal allowed speed. For the fixed wing UAV, V 0 > 0 is strictly positive and called stall velocity. It is a necessary condition to avoid the crash of the UAV. However, V 0 may equal zero for the quadrotors (hovering capability).