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Generic dynamic modeling for multirotor VTOL UAVs and robust

Sliding Mode based Model-Free Control for 3D navigation

Yasser BOUZID1, Houria SIGUERDIDJANE2 and Yasmina BESTAOUI1

Abstract— This paper introduces a generic and accurate dy-
namic model, based on Newton-Euler formalism, for multirotor
vehicles taking into consideration aerodynamic effects. Besides,
the paper considers a reformulation of the well-known Model-
Free Control (MFC), which is applied for a low-cost quadrotor
even in the presence of various type disturbances, including
unmodeled or neglected dynamics, parametric uncertainties,
external disturbances, etc. This reformulation takes into consid-
eration the limitation of the estimator used by the classical MFC
by using a Sliding Mode auxiliary Controller (SMC) leading to
SMC-MFC controller. In addition, instead of using a pure data-
driven based control, we introduce the available mathematical
dynamics of the system even if they are poorly known. Herein,
the MFC principle is employed to deal with the unknown part of
the plant only (i.e. unmodeled dynamics, disturbances, etc.). The
stability of the closed-loop system is guaranteed and for which
a theoretical analysis is provided. The numerical simulations
have shown satisfactory results. An in-depth discussion, with
respect to the control performance and consumed energy, is
highlighted by considering several scenarios and using several
metrics.

I. INTRODUCTION

A. Short review

The Unmanned Aerial Vehicles (UAVs) are traditionally

used in the military for diverse classical missions such

as real-time video reconnaissance, inspection, surveillance,

etc. Recently, they are being increasingly used in civilian

domains in various applications such as environmental and

weather monitoring, fire detection, pollutant estimation and

coverage [1].

The involving of UAVs, in the ease and profit of the

human life, has attracted the attention of industries and

academia around the world to deal with the new challenges,

which leads to immense advances and fast-growing in the

field of autonomous flying robots. Indeed, a broad range of

prototypes have been constructed, in the last two decades,

motivated by the technological progress in electrical motors,

embedded electronics, wireless communication, etc. Several

monographs such as [2] may give the readers some basic

understanding of each UAV type and the related issues.

Among the broad range of UAVs platforms, the Vertical

Take-Off and Landing (VTOL) multirotors have a special

form that involves pairs of counter-rotating rotors to provide

lift and directional control. Due to the structural properties
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of the multirotor dynamics: under-actuated, highly coupled

and highly nonlinear and hierarchical system, a huge amount

of advanced control strategies, such as nonlinear internal

model control [3], energy based control [4], Immersion and

Invariance [5], etc. have been proposed as flight control

systems. In fact, flight control field is well developed and

can offer many solutions. There is a rich literature describing

different control techniques (see as for instance [6]).

B. Motivations & contribution

Notice that the multirotor vehicles are very sensitive to

the disturbances especially the wind, during outdoor manip-

ulations. Most of the implemented control laws are model-

based control strategies that require a complete knowledge

of the system and its surrounded phenomena. Therefore,

these control techniques, initially designed in the ideal case,

considering an accurate model, behave with less efficiency

in the presence of some disturbances then leading to poor

performance even if the controller exhibits robustness fea-

tures.

Our poor knowledge of the disturbed model may produce

poor control performance and lead to the instability of

the system in more extreme conditions making the control

tasks more challenging. To alleviate the above issues, we

distinguish, in the literature, more sophisticated tools that

have been proposed and can be classified into three main

categories based on distinct principles: 1) adaptation prin-

ciple such as the controller proposed in [7] for steering a

quadrotor vehicle along a trajectory, while rejecting constant

force disturbances, 2) on-line estimation & observation as

the Active Disturbance Rejection Control (ADRC) algorithm

detailed in [8] by means of extended state observer (ESO)

and 3) sliding mode framework as for instance the controller

developed in [9], which is combined with a backstepping

technique for the sake of trajectory tracking.

Recently, a Model-Free Control (MFC) technique based

on a continuous updating of the input-output behavior of

a very-local model is proposed. The main advantage of

the MFC strategy is that it does not require knowledge of

the system dynamics. Its anticipation property makes the

control possible even with the presence of disturbances [10].

It is employed recently, in many real cases such as planar

manipulator [11], mobile robot [12] and quadrotors [13].

To avoid the difficulties in obtaining an accurate multirotor

model, a revisited formulation of the classic MFC is used in

this paper to control the multirotor vehicles. The first step is

to consider a mathematical model of the system affected by

some uncertainties and disturbances. After a compensation
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of the known dynamics, an MFC principle is applied to

deal with the unknown part of the system to simultaneously

accommodate the unmodeled (neglected) dynamics and the

disturbances. However, the steady-state error, in this case, de-

pends on the accuracy of the unknown dynamics estimation.

In order to achieve a robust and accurate tracking error, a

sliding mode based control is added to MFC, thus obtaining

an efficient and robust controller of multirotors.

The development of a matched model is highly important

to validate and test the effectiveness of the various control

laws. Rich literature shows considerable advances in the

subject of modeling such as Altug et al. [14] and Wang

[15]. Thus, in this paper, a complete and generic mathe-

matical modeling of the dynamic behavior of multirotors is

proposed, which is valid whatever the multirotors typology.

Our modeling is a rectified version of Wang’s model [15]

that is proposed for quadrotors. Moreover, Wang includes

the hub forces without paying attention to the fact that these

forces generate a moment about Z−axis. This moment has

been taken into account in our model. Moreover, the flapping

moment and its effect are included in this paper. To validate

the designed controllers, a simplified model is first used prior

applying them on the complete model.

C. Outlines

The remainder of this paper is organized as follows: in

Section II, the multirotors structure is discussed. Section

III details a generic dynamic model of multirotor vehicles.

Section IV introduces the design of our nonlinear control

approach. The simulation results are illustrated in Section V.

Finally, concluding remarks are given.

II. STRUCTURAL OPERATIONS

The multirotor vehicles have almost the same principle of

flight. They are differentiated by the placement and the size

of arms as well as the number of rotors. Indeed, all of them

can be designed, doing some structural operations that we

classify below, from the main configuration of a quadrotor

(see Figure 1).

The multirotors considered in this paper are those with

an even number of rotors (2Nr ≥ 4 where Nr ∈ N is the

number of pairs). For the sake of symmetry, each pair of

rotors are placed on two opposite sides of the airframe. We

stress also that the axis of rotation of the rotors are parallel

to ZB−axis (see Figure 1).

The quadrotor in Figure 1 is the most widely used config-

uration. It is controlled to fly in “X-flight configuration”, i.e.

pointing two arms in the longitudinal navigation direction,

which is better suited for aerial photography. It has two

pairs of rotors (propellers) (Nr = 2) where two rotors

spin in the clockwise direction (Sp = 1) whilst the other

two spin anticlockwise direction (Sp = −1). Each rotor is

mounted on a separated arm of length li|i=1,...,2Nr = lM .

The angles between the successive arms, αi,i+1|i=1,..,Nr−1,

are considered as characteristic angles that equals for this

main configuration to αi,i+1|i=1,..,Nr−1 = αM . Changing

the speed of the four rotors, the quadrotor will produce

different motions (roll, pitch, yaw, altitude) with six degrees

of freedom. The throttle input is the sum of the thrusts

generated by each rotor. This main configuration leads to

many other possible configurations.

1) Rotation around the ZB-axis: By rotating the main

configuration of the quadrotor in Figure 1 around the ZB-

axis by an angle αM/2 = π/4, we get another famous

configuration called +shaped quadrotor i.e. one arm is

oriented into the longitudinal navigation direction (see Figure

2a).

2) Variation of the characteristic angles: By varying the

characteristic angles αi,i+1|i=1,..,Nr−1, we get new configu-

rations. For the quadrotor main configuration, we obtain just

one form called H4− shaped quadrotor, which is displayed

in Figure 2b. The H4 − shaped quadrotor provides some

benefits for specific applications such as aerial photography

and allows more space to place equipment and battery.

3) Variation of the arms length: By changing the length

of arms li|i=1,...,2Nr , we get new configurations. We stress

that for the sake of symmetry, the lengths are not changed

arbitrarily. An example is shown in Figure 2c. This configu-

ration is called V 4− shaped quadrotor, which is an uncon-

ventional quadrotor design. This configuration is proposed to

reduce the airframe drag or if more responsive yaw control

is required. Moreover, it allows wider field of view. The

unsymmetrical design will make it slightly harder to balance

the Center of Gravity (CoG) properly.

4) Coaxial rotors: At the same axis of rotation for each

rotor, we can add another rotor that rotates inversely. For

the quadrotor main configuration, we obtain an octorotor

called X8 coaxial octorotor as presented in Figure 2d. It has

higher thrust to weight ratio among the most common ones.

Using this redundant quadrotors, the chances of a safe return

in case of actuator failure is also significantly increased

but will result in a significant decrease in attitude control

performance.

5) Variation of the rotors number: If we increase the

number of the rotors pairs Nr, starting from the quadrotor

main form, we get a main configuration of an hexarotor,

which is shown in Figure 2e. Hexacopters are generally used

when quadrotors aren’t strong enough or when some limited

redundancy is required because of expensive equipment. This

redundancy allows a safe landing in the case of emergences.

The overall mass and inertia of the multirotor will increase

because of the additional arms and rotors, which will increase

the stability of the system as well as its payload capacity.

However, the agility of the aircraft will be limited. This

configuration becomes among the popular platforms. If the

same operation is applied to the hexarotor, an ocotrotor

with main configuration is obtained (see Figure 2h). This

configuration becomes also a popular one.

Applying these operations to the resulting configurations,

new shapes are obtained where some of them is shown in

Figure 2.
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Fig. 1: Quadrotor main configuration.

(A) +4 quadrotor (D) X8 coaxial octorotor(C) V4 quadrotor(B) H4 quadrotor

(E)  X6 haxrotor (F) +6 haxrotor (G)  H6 haxrotor (H)  X8 ocotorotor

(K) V8 ocotorotor(J)  □8 ocotorotor(I)  ◊8 Ocotorotor

Fig. 2: Structural applied operations.

III. MATHEMATICAL MODELING AND EQUATIONS OF

MOTION

The vehicle operates in two coordinate frames as shown

in Figure 3: the Earth-fixed frame RE(OE , XE , YE , ZE) and

the Body-fixed frame RB(OB , XB , YB , ZB). RE is regarded

as an inertial reference frame in which Newton’s laws of

motion are valid and RB is attached to the vehicle and

constrained to move with it where the vehicle is considered

as rigid body based on the following assumptions [15]:

Assumption 1: The structure and the propellers are rigid

and perfectly symmetrical.

Assumption 2: The dynamic of the rotors is relatively fast

and therefore it will be neglected.

The origin of the Body-fixed frame OB is an invariant

point and belongs to the vehicle structure. To simplify, it

is chosen to be the vehicle Center of Gravity (CoG). The

attitude of the multirotor aerial vehicle is described in the

Earth-fixed frame adopting the Tait-Bryan angles.

Starting from the Body-fixed frame to the Earth-fixed

frame, the sequence of rotations chosen is: the X − Y − Z
sequence, meaning that the attitude is obtained first by the

𝜓 𝜃

𝜑

𝑋𝐵

𝑍𝐵

𝑌𝐵
𝑂𝐵

𝑋𝐸

𝑌𝐸

𝑍𝐸

𝑂𝐸

Fig. 3: Frames and rotations representation.

roll angle "ϕ", then by the pitch angle "θ" and then by the

yaw "ψ". The obtained rotation matrix R is given by

R (ϕ, θ, ψ)=




cψcθ cψsθsϕ� sψcϕ cψsθcϕ+sψsϕ
sψcθ sψsθsϕ+cψcϕ sψsθcϕ� cψsϕ
� sθ cθsϕ cθcϕ




(1)

where R ∈ SO(3) = {R ∈ R
3×3|RTR = I3×3, det(R) =

1}. The subscript 3×3 means the dimension of the matrix is

3×3 and I3×3 is the identity matrix of dimension 3. s(.) and

c(.) are abbreviations for sin (.) and cos (.) respectively.

Based on the previous description, the transformation be-

tween the world frame and the body frame can be expressed

explicitly using the rotation matrix R. So, the velocity vector

V B = (u, v, w)T of the vehicle expressed in a Body-fixed

frame can be rotated into the Earth-fixed frame as follows

χ̇ = R (ϕ, θ, ψ)V B (2)

where χ̇ = (ẋ, ẏ, ż)T is the velocity vector of the multirotor

in the inertial frame RE .

The relation between the angular velocities ̟ = (p, q, r)T

of the multi-rotor in the Body-fixed frame and the angular

velocities η̇ = (ϕ̇, θ̇, ψ̇)T in the Earth-fixed frame is pre-

sented as [16]:

η̇ =




1 sϕtanθ cϕtanθ
0 cϕ −sϕ
0 sϕsecθ cϕsecθ


 ̟ (3)

Obviously, Tait-Bryan angles representation suffers from

some singularities: ϕ = ±
π

2
, θ = ±

π

2
. In practice, this

limitation does not affect the multirotor in normal flight

mode.

A. Rigid body dynamics

The rigid body has six degrees of freedom, with a mass

m and an inertia I ∈ R
3×3 about the center of gravity.

Let V B = (u, v, w)T ∈ R
3 denotes the linear velocity

of the center of gravity and ̟ = (p, q, r) ∈ R
3 its

angular velocity expressed in the Body-fixed frame. Let

η = (ϕ, θ, ψ)T ∈ R
3 describes the orientation of the rigid

body (Roll, Pitch, Yaw) and χ=(x, y, z)T ∈ R
3 denotes its

absolute position with respect to RE . Notice that χ and η
can be regarded as translational and rotational coordinates

3



respectively. Therefore, the relation between the velocities

and the external forces FB = (FB
x ,F

B
y ,F

B
z )T ∈ R

3 and

moments MB = (MB
x ,M

B
y ,M

B
z )

T ∈ R
3, applied to

CoG, expressed in RB frame, is written using Newton-Euler

formalism as
[
mI3×3 O3×3

O3×3 I

] [
V̇ B

˙̟

]
+

[
̟ ×mV B

̟ × I̟

]
=

[
FB

MB

]
(4)

The symbol O3×3 means a 3 × 3 dimensional zero matrix

and × denotes the cross product. Based on Assumption 1

and with an appropriate choice of the Body-fixed frame as

represented in Figure 3, the inertia matrix is diagonal I =
diag(Ix, Iy, Iz). The next step is to determine the forces FB

and the moments MB .

B. Description of the multirotor vehicles

In the previous subsection, we have deduced the Newton-

Euler equations for a rigid body system, which are suitable

to describe any multirotor system. The main difference,

essentially, lies in various aerodynamic forces and moments

that are defined in function of the rotors speeds through

the shape of the vehicle and its number of rotors. Before

presenting the main external forces and moments, we provide

first a global description of the multirotor vehicles considered

in this paper.

The multirotor vehicles have almost the same principle

of flight. They are differentiated by the placement and the

size of arms as well as the number of rotors. Let ℜO =
{roi, i = 1, ..., 2Nr} be the set of rotors where Nr ∈ N is

the number of pairs of rotors (propellers) with 2Nr ≥ 4 i.e.

the considered multirotors are those with even number of

rotors. Each rotor roi|i=1,...,2Nr located at oi|i=1,...,2Nr at

the same plane as the CoG, is supported by an arm of length

li|i=1,...,2Nr and rotates around an axis, which is parallel to

the axis ZB (the rotors are not tilted). Thus, a rotor roi is

defined by polar coordinates oi(li, αi) ∈ R×[0, 2π] where αi
denotes the angle between its arm and the axis XB , rotation

speed Ωi and a sense of spinning where Nr rotors spin in

the clockwise direction (Sp = 1) whilst the others spin in

the anticlockwise direction (Sp = −1) (see in Figure 4 the

representation of one rotor). For the sake of symmetry, each

pair of rotors are placed in two opposite sides of the airframe

(αi+Nr = αi + π, i = 1, ..., Nr) with the same arms length

(li = lNr+i, i = 1, ..., Nr). This description is valid for a

large class of multirotor vehicles that allows us, later, to

provide a global expression of the aerodynamic forces and

moments in function of the rotors speeds.

C. Applied Forces and moments to the multirotor

1) Forces: Neglecting the ground effects, we list three

main forces acting on the mulirotor. The first one is the

gravity force G = −mg. It is along the axis ZE in the

negative direction where g is the gravity coefficient. Besides,

each rotor roi produces thrust & hub forces, which depend

on its angular velocity Ωi. The thrust force Ti is along

the ZB−axis in the positive direction whilst the hub force

Hi is in the plane XBYB on the negative direction of the

𝑙𝑖

𝑌1

𝑋1
𝑍1

𝑆𝑝 = 1

𝑟𝑜𝑖

𝛼𝑖

𝑜𝑖

Fig. 4: Rotor description.

𝑋𝐵

𝑌𝐵
𝑍𝐵

𝑇𝑖 𝐻𝑖

𝒱𝑓

𝒱ℎ

𝑟𝑜𝑖

𝑜𝑖

Fig. 5: Forces induced by rotor.

horizontal velocity Vh (the projection of the forwarding

velocity Vf in the XBYB plane). Thus, the hub force can

be decomposed into two components Hxi along XB−axis

and Hyi along YB−axis in the Body-fixed frame. Graphical

representation of these forces is displayed for one rotor in

Figure 5. Obviously, the total thrust and hub are the sum of

forces generated by each rotor. As the multirotor has 2Nr
rotors, forces on a multirotor are:

T =

2Nr∑

i=1

Ti, Hx = −

2Nr∑

i=1

Hxi, Hy = −

2Nr∑

i=1

Hyi (5)

Once the main forces have been reviewed, the total ex-

ternal force vector acting on the vehicle is expressed in the

Body-fixed frame, using the rotation matrix (1) as:

FB =



Hx

Hy

T


+RT



0
0
G




=



−
∑2Nr
i=1 Hxi

−
∑2Nr
i=1 Hyi∑2Nr
i=1 Ti


+RT




0
0

−mg


 (6)

where R−1 = RT .

2) Moments: Herein, we present the main external mo-

ments that are expressed in the Body-fixed frame and their

directions. Roll and pitch moments, Mϕ and Mθ, around

XB and YB−axes respectively, are achieved by the difference

in combined thrusts in the opposite sides of the vehicle. The

moments about the shaf, Q, makes the multirotor turns about
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the ZB−axis. There are 2Nr rotors that are separated with

different rotational directions (clockwise and anti-clockwise

directions) inducing moments in the different direction. The

direction of the moments is decided according to the right

hand rule. The total moments are given by:

Mϕ =

2Nr∑

i=1

lisαiTi, Mθ = −

2Nr∑

i=1

licαiTi, Q =

2Nr∑

i=1

SpiQi

(7)

where Spi = 1 if roi rotates in the clockwise direction and

Spi = −1 if roi rotates in the anti-clockwise direction.

As presented previously, the hub forces have two com-

ponents along the XB−axis and YB−axis. These hub forces

exercise moments on the vehicle around the ZB−axis. These

two components contribute on the moment according to their

locations oi|i=1,...,2Nr . Therefore, the total hub moment is

given by

H =

2Nr∑

i=1

lisαiHxi −

2Nr∑

i=1

licαiHyi

Rotations around two axes bring into a third rotation

around an axis, which is perpendicular to the plane formed

by the two former axes. This effect is called the gyroscopic

effect. Therefore, when a multirotor rotates along the axis

XB in the body frame, a moment along the YB−axis is cre-

ated on each rotating rotor. When a multirotor rotates along

YB−axis in the body frame, each rotor also has a moment

along XB . The direction of moments is set according to

right-hand rule. The total gyroscopic components are:

Gx = Jrq

2Nr∑

i=1

SpiΩi, Gy = −Jrp

2Nr∑

i=1

SpiΩi (8)

where Jr is the inertia of a rotor.

During the translational flight, there is a difference in blade

lift between the advancing and retreating blades. This effect

is called the blade flapping. The difference of the lifts applies

a moment to the rotor disk. The flapping moment Bi is

perpendicular to the rotor shaft and the forward velocity of

the multirotor. The flapping moments of each rotor Bi can be

separated into moments Bxi and Byi. The total blade flapping

moment of a multirotor is:

Bx =

2Nr∑

i=1

SpiBxi, By =

2Nr∑

i=1

SpiByi (9)

Once, the various moments affecting the multirotor are

presented, the total moment vector is presented in the Body-

fixed frame as:

MB =



Mϕ + Gx + Bx
Mθ + Gy + By

Q+H




=




∑2Nr
i=1 lisαiTi + Jrq

∑2Nr
i=1 SpiΩi +

∑2Nr
i=1 SpiBxi

−
∑2Nr
i=1 licαiTi − Jrp

∑2Nr
i=1 SpiΩi +

∑2Nr
i=1 SpiBxi∑2Nr

i=1 SpiQi +
∑2Nr
i=1 lisαiHxi −

∑2Nr
i=1 licαiHyi




(10)

Usually, the control problems are studies considering the

motion of the vehicle around its CoG and the relative motion

of the CoG with respect to the inertial frame RE . Therefore,

the translational velocities and accelerations are defined in

the Earth-fixed frame RE while the angular velocities and

accelerations are defined in the Body-fixed frame RB . This

simplifies the dynamics equations.

The different forces and moments, presented in the pre-

vious paragraphs, are expressed in the Body-fixed frame.

Therefore, just the forces are rotated into the Earth-fixed

frame using rotation matrix (1).

D. Control oriented model

Usually, for many scenarios and applications, hovering

over a point or flying with moderate speeds are considered

where the tilt angles are not excessive. There is no need

of aggressive maneuvers or violent displacement. In this

context, we are allowed to approximate the Euler angular

velocities by the vehicle angular velocities:

ϕ̇ ≈ p, θ̇ ≈ q, ψ̇ ≈ r (11)

Physically, the multirotor vehicle is controlled through the

rotational speeds Ωi|i=1,...,2Nr of the 2Nr rotors where the

thrust forces and the yawing moments are the main elements

of control. As claimed by Bangura & Mahony [17], in condi-

tions of flight as stated above, the aerodynamic coefficients

can be considered as constants, which are identified from

static tests. Therefore, it is often considered that the main

thrust and yawing moment are proportional to the square of

the propeller’s speeds (see as for instance [18]):

Ti = bΩ2
i , Qi = dΩ2

i (12)

where b and d are static aerodynamic coefficients.

As known, the multirotor vehicles have four control inputs

u = (uz, uϕ, uθ, uψ)
T that are the total thrust, the rolling

moment, the pitching moment and the yawing moment:

uz = T, uϕ = Mϕ, uθ = Mθ, uψ = Q (13)

Considering the new formulations of Ti and Qi given by

(12), the control inputs become

uz = b

2Nr∑

i=1

Ω2
i , uϕ = b

2Nr∑

i=1

lisαiΩ
2
i , (14)

uθ = −b

2Nr∑

i=1

licαiΩ
2
i , uψ = d

2Nr∑

i=1

SpiΩ
2
i (15)

In matrix notation

u = ΘΣ (16)

where Σ ∈ R
2Nr is the vector containing the squared rotor

speeds:

Σ =
[
Ω2

1, ...,Ω
2
2Nr

]T
(17)

and Θ ∈ R
4×2Nr is the control allocation matrix:

Θ =




b . . . b . . . b
bl1sα1

. . . blisαi . . . bl2Nr sα2Nr

� bl1cα1
. . . � blicαi . . . � bl2Nrcα2Nr

dSp1 . . . dSpi . . . dSp2Nr


 (18)
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The next step is to deduce the rotational speeds Ωi from

the four desired control inputs that are delivered by the

controller. This mapping between the desired inputs u and

the speeds of the rotors is denoted usually by a mixer matrix

Θ.

The fact that the mixer matrix is preprogrammed on the

multirotor and for implementation purposes, the desired input

vector u can be considered directly in the simulation model

instead of the rotors speeds avoiding the use of the mixer

matrix. u will be provided by the controller.

Usually, simplified version of the complete dynamic model

is considered as oriented control model for the sake of

simpler control laws that could be implemented without

difficulty in real time. Moreover, via the simplified model, we

show the efficiency of the control strategies that can deal with

the unmodeled and neglected dynamics and the disturbances.

Hereafter, we simplify the multirotor model, neglecting some

effects that have a minor impact in conditions of flying

with low speed such as hub forces, blade-flapping moments,

the gyroscopic moments, etc. Therefore, we keep just the

forces and the moments stemming from the rotors. Moreover,

accepting approximation (11), dynamic model (4), in terms

of position χ, rotation η and input vector u, can be simplified

as: 



ẍ = uz
cψsθcϕ+sψsϕ

m
+ Fδx

ÿ = uz
sψsθcϕ−cψsϕ

m
+ Fδy

z̈ = −g + uz
cθcϕ
m

+ Fδz

ϕ̈ =
(Iy − Iz)

Ix
θ̇ψ̇ +

uϕ
Ix

+ Fδϕ

θ̈ =
(Iz − Ix)

Iy
ϕ̇ψ̇ +

uθ
Iy

+ Fδθ

ψ̈ =
(Ix − Iy)

Iz
ϕ̇θ̇ +

uψ
Iz

+ Fδψ

(19)

where Fδi |i=x,y,z,ϕ,θ,ψ ∈ R denotes the neglected dynamics,

uncertainties and external disturbances.

E. Control architecture

Our control is designed to ensure the tracking of the

desired trajectory along the three axes (xr, yr, zr) and the

yaw angle ψr (3D autonomous flight). These reference

trajectories are provided on-line by a Trajectory Generator

Block (TGB) located in the guidance module. In fact, having

two sub-systems (translational and rotational) in cascade with

different dynamics is not an easy control problem especially

in conditions of under-actuation. Therefore, we consider that

x and y are controlled through two virtual inputs ux and

uy that drive the system to reach xr and yr. The control

structure scheme is shown in Figure 6. From model (19),

the two virtual inputs are selected to be

ux = cψsθcϕ + sψsϕ
uy = sψsθcϕ − cψsϕ

(20)

Multirotor

Roll

Control

Trajectory

Generation

Block

Altitude

Control

AG
Position 

Control

Yaw

Control

Pitch 

Control

𝑥𝑟
𝑦𝑟 𝑢𝑥

𝑢𝑦

𝜃𝑟

𝜑𝑟

𝜓𝑟

𝑧𝑟

𝑢1

𝜏

Rotation sub-

system

𝑢1

Translational 

sub-system

Fig. 6: Control architecture.

From these virtual inputs (20), we compute the desired

angles: ϕr 6= ± π
2 and θr 6= ± π

2 . They are considered as

inputs for the rotation subsystem and given by

ϕr = arcsin (sat (uxsψr − uycψr ))

θr = arcsin

(
sat

(
uxcψr + uysψr

cϕr

))
(21)

These reference trajectories ϕr and θr are controlled using

uϕ and uθ respectively. The altitude is controlled by uz
and the yaw angle is controlled by uψ . Saturation function

sat(.) is used to avoid the numerical problems, may occur

during the implementation of the function arcsin(.) that has

a domain [−1, 1] and a range [−π
2 ,+

π
2 ].

Adopting this control architecture, we are able to imitate

a full-actuated system1 and to simplify the design of the

controller. Therefore, the system (19) can be divided into

six independent second order SISO systems with similar

structure, in which, the external disturbances, unmodeled

dynamics, and coupling terms are merged into a generalized

disturbance.

q̈(t) = F̄q(t) + Fδq (t) + βq(t)ui(t) (22)

with q = x, y, z, ϕ, θ, ψ where F̄q(t), Fδq (t) and βq(t) can

be identified from system (19).

For each SISO system, a robust sliding mode based MFC

is developed (SMC-MFC). This controller is discussed in the

following section.

IV. CONTROLLER DESIGN

A. Review on Model-Free Control

According to the literature, the whole dynamics even

the external disturbances are approximated by an ultra-local

differential relation of order ν > 0 valid only on a very short

time period δt written usually under the following form:

y(ν)(t) = F (t) + βu(t) (23)

where y is the system output, F represents the system

dynamic, u is the control input, and β is a scale parameter.

1It is just a mathematical formulation. The multirotor remains under-
actuated with four inputs and six degrees of freedom.
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Usually, order ν can be 1 or 2. β and ν are chosen by the

practitioner.

Many strategies are developed to estimate the unknown

dynamic F (t) at instant t such as the sliding mode based

observer proposed in [19]. Using directly the experimentally

available data, without any modeling step based on the past

captured output y(t − δt) and the last applied control input

u(t− δt), F (t) ≈ F̂ (t) can be estimated as

F̂ (t) = F (t− δt)

= y(ν)(t− δt)− βu(t− δt) (24)

where δt is sufficiently small.

Several strategies can be used to differentiate y (see [20]).

The next applied control input u(t) at instant t is computed

using a simple feedback principle on anticipated model (23)

employing the estimated dynamics F̂ (t).

u(t) = −
F̂ (t)− y

(ν)
r (t)− υ(t)

β
(25)

where yr(t) is the output reference trajectory and υ(t)
denotes the auxiliary input that ensures the stability of the

controlled system.

In the literature, the use of MFC has been linked to the

linear PID or PD controllers under the name intelligent-PID

(iPID) and iPD for second or first order systems respectively.

For more details, the reader may refer to [21].

For the rest of paper, we are interested by the second order,

ν = 2, systems. Therefore, the auxiliary input is written as

υ(t) = KP e(t) +KI

∫ t

0

e(τ)dτ +KD ė(t) (26)

where e(t) = yr(t)− y(t) is the tracking error. KP ,KI and

KD denote the usual proportional integral derivative tuning

gains. They are positive constants.

The intelligent-PID is written then as

u(t) = �
F̂ (t) � ÿr(t) � KP e(t) � KI

∫ t
0
e(τ)dτ � KD ė(t)

β
(27)

From equation (27), we quickly recognize that the control

of a system, based on the model-free, looks like the solution

minimizing the tracking errors at each sample through the

estimation of some quantities. It is related to the lineariza-

tion by feedback principle and the calculation of the PID

controllers.

B. Analysis and discussion

To analyze the iPID performances, controller (27) is

applied to system (23) for ν = 2. The closed-loop system is

written as

ë(t) +KD ė(t) +KP e(t) +KI

∫ t

0

e(τ)dτ = F̃ (t) (28)

where F̃ (t) = F̂ (t) − F (t) is the estimation error between

the real dynamics of the system and the estimated one. The

gains KP , KD and KI are selected according to the Hurwitz

criterion2 to ensure the stability of the system, F̃ (t) is mostly

assumed bounded and should be small.

Obviously, from equation (28), we recognize that the

performance of MFC depends on the accuracy of the time-

delay estimation where the smaller δt, the better is the

estimation F̂ (t).

Because of the time delay δt, the tracking error e(t) will

never converge to zero but will remain in the neighborhood of

the zero. The size of this neighborhood depends obviously on

the boundedness of F̃ (t). In the following, we will combine

the above method with the sliding mode technique, which

makes possible to eliminate bounded disturbances, increase

the robustness level and improve the performance of the

control.

C. Revisited model free control

In one hand, implementing a model based nonlinear con-

trol technique requires a deep study of the system nonlin-

earities, where extracting the complete model is almost an

impossible task to be achieved. Usually, the provided models

are quite simplified with neglected and unmodeled dynamics.

In the other hand, assuming no available model is not totally

a correct assumption due to the fact that most of systems,

at least, may be approximated by mathematical models even

with poorly known dynamics where the available information

about the system will bring a notable benefit in the control

design. As results, we prefer to employ the model-free

principle to deal just with the unknown parts of the controlled

system (unmodeled dynamics and disturbances) and boosting

the capabilities of a nominal model-based control scheme

that deals with the known nonlinear modeled dynamics.

Therefore, the term F (t) in (23) can be divided into two

main components and can be written under a new form:

ÿ(t) = F̄ (t) + Fδ(t) + β(t)u(t) (29)

where F̄ ∈ R denotes the known nominal modeled dynamics,

β(t) ∈ R denotes the inputs function and Fδ ∈ R represents

an additive term gathering all the uncertainties, the neglected

and the unmodeled dynamics and the external disturbances.

To determine Fδ , we proceed by the MFC principle.

Similarly, using the experimentally available data, based on

the past captured output y(t−δt) and the last applied control

input u(t − δt) in the previous time interval, Fδ can be

estimated at each instant t as

F̂δ(t) = Fδ(t− δt)

= ÿ(t− δt)− βu(t− δt)− F̄ (t) (30)

where δt is sufficiently small. This estimation is valid for a

short period δt only and it should be continuously updated

at every iteration of the closed-loop controller. This updated

term F̂δ captures the unknown dynamics of the system as

well as the disturbances during each period δt.

2i.e. the roots of the polynomial P (s) = s3 +KDs2 +KP s+KI are
all on the open left-half side of the complex plane.
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From (29), the control input to be applied is derived from

a simple dynamic inversion and can be split into two parts:

u(t) =
1

β(t)
ū(t) +

βδ
β(t)

uδ(t) (31)

where βδ > 0 is fixed by the practitioner and ū(t) =
−F̄ (t) plays the role of compensator of the known part.

uδ(t) is considered as an auxiliary input that deals with the

disturbances and uncertainties and ensures the asymptotic

convergence of the tracking errors of the closed-loop into

the origin.

This strategy is not pure data-driven, i.e. the differential

equations associated to the mathematical physical laws are

used to design the controller and the input and output data

are used for accommodate the unknown parts.

Injecting input (31) in (29), leads to a new and fully

unknown model eliminating the known part.

ÿ(t) = Fδ(t) + βδuδ(t) (32)

Clearly, equation (32) is similar to ultra-local model

discussed in Sections IV-A-IV-B. Therefore, motivated by

equation (27), the control law for system (32) can be written

as

uδ(t) = �
F̂δ(t) � ÿr(t) � KP e(t) � KI

∫ t
0
e(τ)dτ � KD ė(t)

βδ
(33)

However, this formulation is highly related to precision

of the estimated unknown term where a steady-state error

persists (see equation (28)). Therefore, an extra effort v(t) ∈
R is required where (33) becomes

uδ(t) =−
βδv(t) + F̂δ(t)− ÿr(t)

βδ

+
KP e(t) +KI

∫ t
0
e(τ)dτ +KD ė(t)

βδ
(34)

Substituting (34) in (32), we get

ë(t) +KP e(t) +KI

∫ t

0

e(τ)dτ +KD ė(t) = F̃δ(t) + βδv(t)

(35)

We stress that F̃δ(t) is totally unknown but assumed to be

bounded (|F̃δ(t)| ≤ ∆max).

The additional input v(t) is designed to compensate the

disturbance. Thus, we investigate the sliding mode frame-

work where the sliding surface is defined in state space as:

S(t) = ė(t) + λe(t) (36)

where λ is a positive gain to adjust the rate of convergence.

The first time derivative of S(t) is

Ṡ(t) = ë(t) + λė(t) (37)

Substituting ë from (35) to equation (37), we get

Ṡ(t) = F̃δ(t)+βδv(t)+λė(t)� KP e(t)� KI

∫ t

0

e(τ)dτ� KD ė(t)

(38)

Usually, the sliding mode controller contains an equivalent

term veq occurs on the sliding surface S = 0 and a switching

term vsw, which drives the system states toward the sliding

mode. A possible choice of the sliding-mode controller is

the following

v = veq + vsw

= veq − γ1S − γ2sgn(S) (39)

By making S(t) = 0, we determine the equivalent control

term by injecting control law (39) into (38). Doing some

computations, we obtain the following controller.

v(t) =
1

βδ
(−λė(t) +KP e(t) +KI

∫ t

0

e(τ)dτ +KD ė(t)

−∆max)− γ1S − γ2sgn(S) (40)

The overall control to be applied is then

u(t) =
1

β(t)
(−F̄ (t) + λė(t) + ∆max + βδγ1S + βδγ2sgn(S)

− F̂δ(t) + ÿr(t)) (41)

This controller has several benefits such as the simplicity

of its structure. Moreover, it presents a very good level of

robustness with self-adaption in the case of disturbances.

This new formulation that combines the MFC and the sliding

mode and takes into consideration the system information has

potential advantages in control performance compared to the

classical controllers.

D. Stability analysis

The stability of controller system (41) is summarized by

the flowing theorem.

Theorem: Closed-loop of disturbed system (29) using

controller (41) is asymptotically stable provided that

βδγ2 > 2∆max where βδ and γ2 are positive parameters.

Proof: Substituting controller (41) into system dynamics (29)

yields

ë(t) = F̃δ(t)−∆max−λė(t)−βδγ1S −βδγ2sgn(S) (42)

Let V (t) a Lyapunov candidate function. It equals

V (t) =
1

2
S(t)2 (43)

The first time derivative of V yields

V̇ (t) = S(t)Ṡ(t) (44)

Using equation (38) and (42), yields

V̇ (t) = S(t)Ṡ(t)

= S(t)(ë(t) + λė(t))

= S(t)(F̃δ(t)−∆max − βδγ1S − βδγ2sgn(S)) (45)
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V̇ (t) in equation (45) can be rewritten under the following

form

V̇ (t) = −βδγ1S
2 − βδγ2|S| − S(t)(∆max − F̃δ(t))

Therefore, according to the boundedness of F̃δ , it is

ensured that V̇ < 0 if one has βδγ2 > 2∆max. This

implies that the right-side term is negative which achieves

the asymptotic stability condition.

V. RESULTS AND DISCUSSION

In this section, we investigate the efficiency of the pro-

posed controller through and application for an X-shaped

quadrotor where its parameters are depicted in Table I.

TABLE I: Quadrotor parameters [22].

m(kg) 0.429 Iy(kg.m2) 0.0029
Ix(kg.m2) 0.0022 Iz(kg.m2) 0.0048

The controller is designed considering the simplified

model (19) and applied to complete system (4). Its effec-

tiveness is investigated in the presence, at the same time, of

different disturbances namely: model parameters uncertain-

ties supposing the inertia matrix elements are underrated 50%

of the nominal values, sensors noise by adding random noise

on the states of the quadrotor and gust of wind. Here, we

accept that the wind causes the same acceleration intensity

ax, ay and az on all XE , YE , ZE-axes expressed in the

Earth-fixed frame RE . These accelerations are considered

as disturbances added to the equations related to the forces

in the quadrotor model. Therefore, the disturbed model is

expressed as follows




¨̃x = ẍ+ ax (t)
¨̃y = ÿ + ay (t)
¨̃z = z̈ + az (t)

(46)

The profile of this accelerations is depicted in Figure 7.

After the take-off, the quadrotor tracks a square reference

trajectory of width Lr = 2m (see Figure 8). When it arrives

at each corner, the quadrotor hovers for five seconds then it

flies to the next corner where the flight duration between two

corners is fixed at T = 5 seconds. Therefore, this trajectory

may be described as

σ(t) =





0 when 0 ≤ t ≤ t1

Lr
(t−t1)

5

(t−t1)
5+(T−t+t1)

when t1 < t ≤ t2

Lr when t2 < t ≤ t3

Lr − Lr
(t−t3)

5

(t−t3)
5+(T−t+t3)

when t3 < t ≤ t4

0 when t4 < t ≤ tf
(47)

with T = 5 seconds, tf = 80 seconds and Lr = 2 meters.

xr = σ(t) with t1 = 5, t2 = t1 + T, t3 = 25, t4 = t3 + T
yr = σ(t) with t1 = 10, t2 = t1 + T, t3 = 30, t4 = t3 + T
zr = σ(t) with t1 = 0, t2 = t1 + T, t3 = 35, t4 = t3 + T
ψr = 0

The control parameters used for the sumulations are given

by KP = 19.414, KI = 8.632, KD = 0.691, βδ = 2.1,

γ1 = 5, γ2 = 0.1 and λ = 5.2.

Fig. 7: Wind disturbance pro-

file.

Fig. 8: 3D square reference

trajectory.

TABLE II: Metric comparison

MFC SMC-MFC

ISE 0.0037 0.0018

ISCI 1.4033e+03 1.4204e+03

We have developed a Matlab simulation environment to

evaluate the effectiveness of the proposed control strategy

applied to the quadrotor. The results are depicted in Figures

9-10. In each figure, we plot separately, the tracking errors of

the translations along XE , YE , ZE-axes, the attitude angles

ϕ, θ and ψ and the control inputs (global thrust and torques).

From the curves displayed in Figures 9-10, the quadrotor

follows its reference trajectory in a good manner and satis-

factory accuracy. Clearly, the SMC-MFC exhibits a damped

response for which the overshoot is the smallest (see Figure

9). Moreover, the control, using SMC-MFC, is more accurate

compared to the classic MFC. However, it consumes more

energy. We stress that SMC-MFC is sensitive to noise as

shown in Figure 10 due to the discontinuous functions used

by this controller namely sgn function.

The previous observations are confirmed by some statis-

tical analysis metrics, which are the Integral Square Error

(ISE) for the accuracy and the Integral square input control

(ISCI) for the consumed energy. The obtained values are

depicted in Table II.

VI. CONCLUSION

Within this paper, a robust control strategy is developed

and applied to generic model of multirotors. The strategy

is an alternative to the popular model-free control as a

revisited form. The basic MFC was investigated to deal with

the uncertain part of the system. Moreover, the proposed

control approach used the sliding mode controller in order

to raise the performance of the control even in presence of

disturbances. Satisfactory results were obtained in numerical

simulations that will serve as a first step to pursue by

experimental tests in the near future.
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