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The zero-inated Poisson regression model is often used to analyse count data with an excess of zeros. This paper extends the model to randomly right-censored count data. Rightcensoring occurs when one only knows that the true count value is higher than the observed one. In this setting, maximum likelihood estimators (MLE) are constructed and their properties are investigated. In particular, MLE are shown to be consistent and asymptotically normal. A simulation study is conducted to assess nite-sample behaviour of the MLE. Finally, an application in health economics is described.

Introduction

Statistical modeling of count data is an important issue in various elds, including agriculture, econometrics, epidemiology, industrial applications, public health. . . Generalized linear models [START_REF] Mccullagh | Generalized linear models[END_REF]) provide a powerful framework for analysing such data.

In many applications however, count data show an excess of zeros, that is, a number of zeros that cannot be explained by models based on standard distributional assumptions. A large number of statistical tools have been developed to tackle this issue, such as zero-inated regression models which mix a degenerate distribution with point mass of one at zero with a standard count regression model.

For example, zero-inated Poisson (ZIP) regression model was proposed by [START_REF] Lambert | Zero-inated Poisson regression, with an application to defects in manufacturing[END_REF] and further developed by [START_REF] Dietz | On estimation of the Poisson parameter in zero-modied Poisson models[END_REF], Lim et al. (2014) and [START_REF] Monod | Random eects modeling and the zero-inated Poisson distribution[END_REF], among many others. Recent variants of ZIP regression include random-eects ZIP models [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF][START_REF] Min | Random eect models for repeated measures of zero-inated count data[END_REF] and semiparametric ZIP models [START_REF] Lam | Semiparametric analysis of zero-inated count data[END_REF][START_REF] Feng | Semiparametric analysis of longitudinal zero-inated count data[END_REF]. Zero-inated negative binomial (ZINB) regression model was proposed by [START_REF] Ridout | A score test for testing a zero-inated Poisson regression model against zero-inated negative binomial alternatives[END_REF], see also [START_REF] Moghimbeigi | Multilevel zeroinated negative binomial regression modeling for over-dispersed count data with extra zeros[END_REF] and [START_REF] Mwalili | The zero-inated negative binomial regression model with correction for misclassication: an example in caries research[END_REF]. When counts have an upper bound, ZIP and ZINB regression models are no longer appropriate. [START_REF] Hall | Zero-inated Poisson and binomial regression with random eects: a case study[END_REF] thus introduced the zero-inated binomial (ZIB) model, see also [START_REF] Hall | Score tests for heterogeneity and overdispersion in zero-inated Poisson and binomial regression models[END_REF], [START_REF] Diop | Maximum likelihood estimation in the logistic regression model with a cure fraction[END_REF], [START_REF] Diop | Simulation-based inference in a zero-inated Bernoulli regression model[END_REF] and [START_REF] Diallo | Asymptotic properties of the maximum likelihood estimator in zero-inated binomial regression[END_REF]. Statistical modeling of bounded count data containing both extra zeros and extra right-endpoints has recently where P(λ i ) denotes Poisson distribution with parameter λ i > 0. Obviously, the ZIP model reduces to a standard Poisson distribution if ω i = 0. In ZIP regression, the mixing probability ω i and parameter λ i are usually modeled by logistic and log-linear models respectively, that is:

logit(ω i (γ)) = γ W i ,
(2.2) and

log(λ i (β)) = β X i , (2.3) 
where X i = (1, X i2 , . . . , X ip ) and W i = (1, W i2 , . . . , W iq ) are random vectors of predictors or covariates (both categorical and continuous covariates are allowed), β ∈ R p and γ ∈ R q are unknown parameters and denotes the transpose operator.

Assume that we observe n independent vectors (Z 1 , X 1 , W 1 ), . . . , (Z n , X n , W n ) from the model (2.1)-(2.2)-(2.3), all dened on the probability space (Ω, C, P). The log-likelihood of (β, γ) based on these observations is (see [START_REF] Dupuy | Statistical methods for the analysis of overdispersed count data[END_REF]:

n i=1 1 {Z i =0} log e γ W i + e -exp(β X i ) + 1 {Z i >0} Z i β X i -e β X i -log(Z i !) -log 1 + e γ W i .
The maximum likelihood estimator of (β, γ) is obtained by maximizing this function. This estimator is consistent and asymptotically normally distributed (see [START_REF] Czado | Zero-inated generalized Poisson models with regression eects on the mean, dispersion and zero-ination level applied to patent outsourcing rates[END_REF]. Assume now that the count response Z i can be right-censored, that is, for some individuals, we only observe a lower bound on Z i . This can be modeled by introducing a censoring random variable C i and by dening the observation for the i-th individual as the vector

(Z * i , δ i , X i , W i ), where Z * i = min(Z i , C i ) and δ i = 1 {Z i <C i } (if Z i = C i , we let Z * i = C i and δ i = 0). Let J i = 1 {Z * i =0}
. The likelihood of ψ := (β , γ ) based on observations (Z * i , δ i , X i , W i ), i = 1, . . . , n is calculated as:

L n (ψ) = n i=1 P(Z i = Z * i |X i , W i ) δ i P(Z i ≥ Z * i |X i , W i ) 1-δ i , = n i=1 P(Z i = Z * i |X i , W i ) 1-J i P(Z i = 0|X i , W i ) J i δ i P(Z i ≥ Z * i |X i , W i ) (1-δ i )(1-J i ) , = n i=1   e -λ i λ Z * i i Z * i ! (1 -ω i ) 1-J i ω i + (1 -ω i )e -λ i J i   δ i ×   1 - Z * i -1 k=0 e -λ i λ k i k! (1 -ω i ) -ω i   (1-δ i )(1-J i )
, from which we easily obtain the loglikelihood n (ψ) = log L n (ψ). If ω i and λ i are given by 3 (2.2) and (2.3), straightforward algebra yields:

n (ψ) = n i=1 δ i J i log e γ W i + e -exp(β X i ) + (1 -J i ) Z * i β X i -e β X i -log(Z * i !) +(1 -δ i )(1 -J i ) ln   1 - Z * i -1 k=0 e -exp(β X i )+kβ X i k!   -log 1 + e γ W i    .
Note that n (ψ) reduces to the log-likelihood given above when there is no censoring (that is, when δ i = 1 for all i = 1, . . . , n).

The maximum likelihood estimator ψn := ( β n , γ n ) of ψ is solution of the k-dimensional score equation

∂ n (ψ) ∂ψ = 0,
(2.4)

where k = p + q. In the next section, we establish existence, consistency and asymptotic normality of ψn . First, we need to introduce some further notations.

Some additional notations

In what follows, we note k i (γ) = e γ W i and L i (β) = e -exp(β X i ) , i = 1, . . . , n. Let also S λ i (β) (u) = P(P(λ i (β)) ≥ u), u = 0, 1, . . . denote the survival function of P(λ i (β)) distribution. We have:

∂ n (ψ) ∂β = n i=1 X i -δ i J i λ i (β)L i (β) k i (γ) + L i (β) + δ i (1 -J i ) (Z * i -λ i (β))
(2.5)

-(1 -δ i )(1 -J i ) Z * i -1 k=0 L i (β)λ k i (β)(k -λ i (β)) k! S λ i (β) (Z * i )   , = 1, . . . , p,
and

∂ n (ψ) ∂γ = n i=1 W i δ i J i k i (γ) k i (γ) + L i (β) - k i (γ) k i (γ) + 1 , = 1 
, . . . , q.

(2.6)

Let u i (ψ) = λ i (β)L i (β) (k i (γ) + L i (β)) 2 [k i (γ) + L i (β) -λ i (β)k i (γ)] , i = 1, . . . , n,
and for

Z * i ≥ 1, let v i (ψ) = Z * i -1 k=0 L i (β)λ k i (β) k! S 2 λ i (β) (Z * i ) S λ i (β) (Z * i ) (λ i (β) -k) 2 -λ i (β)
-λ i (β)(k -λ i (β))P(P(λ i (β)) = Z * i -1)} , i = 1, . . . , n.

Then, some tedious albeit not dicult algebra shows that

∂ 2 n (ψ) ∂β ∂β m = n i=1 X i X im {-δ i J i u i (ψ) -δ i (1 -J i )λ i (β) -(1 -δ i )(1 -J i )v i (ψ)} , , m = 1, . . . , p ∂ 2 n (ψ) ∂β ∂γ m = n i=1 X i W im δ i J i k i (γ)λ i (β)L i (β) (k i (γ) + L i (β)) 2 ,
= 1, . . . , p and m = 1, . . . , q

∂ 2 n (ψ) ∂γ ∂γ m = n i=1 W i W im k i (γ) δ i J i L i (β) (k i (γ) + L i (β)) 2 - 1 (k i (γ) + 1) 2 ,
, m = 1, . . . , q.

We note S n (ψ) = ∂ n (ψ)/∂ψ, H n (ψ) = -∂ 2 n (ψ)/∂ψ∂ψ , F n (ψ) = E(H n (ψ)) and I k the identity matrix of order k. H n (ψ) is assumed positive denite.

Asymptotic results

In this section, we establish consistency and asymptotic normality of ψn . In what follows, the space R k of k-dimensional vectors is provided with the Euclidean norm • 2 and the space of (k × k) real matrices is provided with the norm |||A||| 2 := sup x 2 =1 Ax 2 (for notations simplicity, we use • for both norms). Recall that for a symmetric real (k × k)-matrix A with eigenvalues λ 1 , . . . , λ k , A = max i |λ i | (from now on, λ min (A) and λ max (A) will denote the smallest and largest eigenvalues of A respectively).

We rst state some regularity conditions:

C1 Covariates are bounded, that is, there exist compact sets X ⊂ R p and W ⊂ R q such that X i ∈ X and W i ∈ W for every i = 1, 2, . . .

C2

The true parameter value ψ 0 = (β 0 , γ 0 ) lies in the interior of some known compact and convex set C = B × G ⊂ R k (where B ⊂ R p and G ⊂ R q are the parameter spaces of β and γ respectively).

C3 There exists a positive constant c 1 such that n/λ min (F n (ψ 0 )) ≤ c 1 for every n = 1, 2, . . .

C4

Censoring random variables C i , i = 1, 2, . . . are strictly positive and bounded by some constant M < ∞ (for example, M can be the end of the study period, at which every individual still under study is censored).

Conditions C1-C3 are classical in generalized linear regression and zero-inated regression models (see [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF][START_REF] Czado | Zero-inated generalized Poisson models with regression eects on the mean, dispersion and zero-ination level applied to patent outsourcing rates[END_REF]. Condition C4 is required in the censored setting.

For each n = 1, 2, . . . and ε > 0, dene the neighbourhood

N n (ε) = {ψ ∈ C : (ψ - ψ 0 ) F n (ψ -ψ 0 ) ≤ ε 2 } of ψ 0 ,
where F n is a short notation for F n (ψ 0 ). Our rst result states that the solution of (2.4) exists, lies in the neighbourhood N n (ε) of ψ 0 when n is suciently large and is consistent for ψ 0 .

Theorem 3.1 (Existence and consistency). Assume conditions C1-C4 hold. Then the probability that ψn exists and lies in N n (ε) for some ε tends to 1 as n → ∞. Furthermore, ψn converges in probability to ψ 0 as n → ∞.

Proof of Theorem 3.1. Our proof follows the lines of [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF] but technical details are dierent. Moreover, we rely on dierent arguments in several parts, leading to more direct proofs. A technical lemma is proved in an Appendix.

i) We rst prove asymptotic existence of ψn . We show that for every η > 0, there exists ε > 0 and n 1 ∈ N such that

P ( n (ψ) -n (ψ 0 ) < 0 for all ψ ∈ ∂N n (ε)) ≥ 1 -η, for n ≥ n 1 , (3.7)
where

∂N n (ε) is the boundary {ψ ∈ C : (ψ -ψ 0 ) F n (ψ -ψ 0 ) = ε 2 } of N n (ε).
This will imply the existence of a local maximum of n in N n (ε). Positive-deniteness of H n and convexity of C will ensure that this maximum is global and unique.

In fact, equivalently to (3.7), we show that for every η > 0, there exists ε > 0 and n 1 ∈ N such that

P ( n (ψ) -n (ψ 0 ) ≥ 0 for some ψ ∈ ∂N n (ε)) ≤ η, for n ≥ n 1 .
To see this, we use Taylor's expansion to write

n (ψ) -n (ψ 0 ) = (ψ -ψ 0 ) T S n (ψ 0 ) - 1 2 (ψ -ψ 0 ) T H n ( ψ)(ψ -ψ 0 ), := (ψ -ψ 0 ) T S n (ψ 0 ) -Q n (ψ),
where ψ = aψ + (1 -a)ψ 0 (for some 0 ≤ a ≤ 1) lies between ψ and ψ 0 . Let 0 < c < 1 2 and write f.s. for "for some". Then we have:

P ( n (ψ) -n (ψ 0 ) ≥ 0, f.s. ψ ∈ ∂N n (ε)) = P (ψ -ψ 0 ) T S n (ψ 0 ) ≥ Q n (ψ) and Q n (ψ) > cε 2 , f.s. ψ ∈ ∂N n (ε) +P (ψ -ψ 0 ) T S n (ψ 0 ) ≥ Q n (ψ) and Q n (ψ) ≤ cε 2 , f.s. ψ ∈ ∂N n (ε) , ≤ P (A) + P (B) ,
where A and B denote events

A = {(ψ -ψ 0 ) T S n (ψ 0 ) > cε 2 , f.s. ψ ∈ ∂N n (ε)} and B = {Q n (ψ) ≤ cε 2 , f.s. ψ ∈ ∂N n (ε)} respectively. Let u n (ψ) = 1 ε F 1 2 n (ψ -ψ 0 ). Then A = {u n (ψ) F -1 2 n S n (ψ 0 ) > cε, f.s. ψ ∈ ∂N n (ε)}, ⊆ { sup ψ∈∂Nn(ε) |u n (ψ) F -1 2 n S n (ψ 0 )| > cε}, ⊆ { sup un(ψ) =1 |u n (ψ) F -1 2 n S n (ψ 0 )| > cε}, = { F -1 2 n S n (ψ 0 ) > cε}.
where the second to third line comes from the fact that ψ ∈ ∂N n (ε) implies u n (ψ) = 1.

It follows that

P(A) ≤ P( F -1 2 n S n (ψ 0 ) > cε)
. By Theorem 1.5 of [START_REF] Seber | Linear Regression Analysis[END_REF],

E F -1 2 n S n (ψ 0 ) 2 = k
and Chebyshev's inequality implies

P(A) ≤ k c 2 ε 2 .
Finally, letting ε = 2k ηc 2 implies that P(A) ≤ η/2. Now,

B = 1 2 (ψ -ψ 0 ) T H n ( ψ)(ψ -ψ 0 ) ≤ cε 2 , f.s. ψ ∈ ∂N n (ε) , = 1 2 u n (ψ) F -1 2 n H n ( ψ)F -1 2 n u n (ψ) ≤ c, f.s. ψ ∈ ∂N n (ε) , ⊆ 1 2 λ min F -1 2 n H n ( ψ)F -1 2 n u n (ψ) u n (ψ) ≤ c, f.s. ψ ∈ ∂N n (ε) , = 1 2 λ min F -1 2 n H n ( ψ)F -1 2 n ≤ c, f.s. ψ ∈ ∂N n (ε) .
Thus, P(B) ≤ P(there exists ψ ∈ ∂N n (ε) such that λ min (F

-1 2 n H n ( ψ)F -1 2 n ) ≤ 2c). By Lemma 6.1 in Appendix, F -1 2 n H n (ψ)F -1 2 n converges in probability to I k uniformly in ψ ∈ N n (ε),
as n → ∞. Thus, by [START_REF] Maller | Asymptotics of regressions with stationary and nonstationary residuals[END_REF], λ min (F

-1 2 n H n (ψ)F -1 2 n ) converges in probability to 1 uniformly in ψ ∈ N n (ε), as n → ∞. If ψ = aψ + (1 -a)ψ 0 for some 0 ≤ a ≤ 1 and ψ ∈ N n (ε), then F 1 2 n ( ψ -ψ 0 ) = F 1 2 n (aψ + (1 -a)ψ 0 -ψ 0 ) , = a F 1 2 n (ψ -ψ 0 ) , ≤ F 1 2 n (ψ -ψ 0 ) , ≤ , and thus ψ ∈ N n (ε). If follows that λ min (F -1 2 n H n ( ψ)F -1 2 n ) converges in probability to 1 as n → ∞, since |λ min (F -1 2 n H n ( ψ)F -1 2 n )-1| ≤ sup ψ∈Nn(ε) |λ min (F -1 2 n H n (ψ)F -1 2 n )-1|. Therefore, for n suciently large (say, n ≥ n 1 ), P(there exists ψ ∈ ∂N n (ε) such that λ min (F -1 2 n H n ( ψ)F -1 2 n ) ≤ 2c) ≤ η/2, since 2c < 1. This implies that P(B) ≤ η/2. Finally, P ( n (ψ) -n (ψ 0 ) ≥ 0, f.s. ψ ∈ ∂N n (ε)) ≤ P (A) + P (B) ≤ η,
which proves (3.7) and in turn, the existence of a unique global maximum of n on N n (ε), which coincides with ψn .

ii) We turn to the consistency of ψn . We have:

λ min (F n ) ψn -ψ 0 2 = ( ψn -ψ 0 ) λ min (F n )I k ( ψn -ψ 0 ), ≤ ( ψn -ψ 0 ) F n ( ψn -ψ 0 ), = F 1 2 n ( ψn -ψ 0 ) 2 , ≤ ε 2 ,
with probability tending to 1 as n → ∞, by i). By condition C3, λ min (F n ) tends to ∞ as n → ∞. Therefore ψn -ψ 0 converges to 0 with probability tending to 1 as n → ∞, which concludes the proof.

Our second result is:

Theorem 3.2 (Asymptotic normality). Assume conditions C1-C4 hold. Then F 1 2
n ( ψnψ 0 ) converges in distribution to the Gaussian vector N (0, I k ), as n → ∞.

Proof of Theorem 3.2. Our proof proceeds along the same lines as the proof of asymptotic normality of MLE in uncensored zero-inated generalized Poisson regression [START_REF] Czado | Consistency and asymptotic normality of the maximum likelihood estimator in a zero-inated generalized Poisson regression[END_REF]. However, [START_REF] Czado | Consistency and asymptotic normality of the maximum likelihood estimator in a zero-inated generalized Poisson regression[END_REF] use a central limit theorem with Lyapunov condition. Here, we rely on the weaker Lindeberg condition, which yields a much shorter proof.

We rst prove asymptotic normality of the normalized score vector

F -1 2 n S n
, where S n is a short notation for S n (ψ 0 ). Let u be any vector in R k . We show that u F -1 2 n S n converges in distribution to N (0, u u) (without loss of generality, we set u = 1). From (2.5) and (2.6), we remark that S n can be written as a sum S n = n i=1 S n,i of independent k-dimensional random vectors S n,i = (S n,i,1 , . . . , S n,i,k ) . It is not dicult to see that under conditions C1, C2 and C4, components of S n,i are bounded by some nite positive constant c 2 that is,

|S n,i, | < c 2 , = 1, . . . , k. Therefore, S n,i 2 < c 3 := kc 2 2 . Let u F -1 2 n S n = u F -1 2 n n i=1 S n,i := n i=1 S * n,i .
Then E(S * n,i ) = 0 and var( n i=1 S * n,i ) = 1. We now verify Lindeberg condition, namely:

for every ε > 0, n i=1 E S * 2 n,i 1 {|S * n,i |>ε} → 0 as n → ∞.
Let ε > 0. We have:

n i=1 E S * 2 n,i 1 {|S * n,i |>ε} ≤ n i=1 E u 2 F -1 2 n 2 S n,i 2 1 {|S * n,i |>ε} , ≤ c 1 c 3 n n i=1 E(1 {|S * n,i |>ε} ), by condition C3. Now, {|S * n,i | > ε} implies that {λ min (F n ) < c 3 /ε 2 }, therefore, 1 {|S * n,i |>ε} ≤ 1 {λ min (Fn)<c 3 /ε 2 } and thus, n i=1 E S * 2 n,i 1 {|S * n,i |>ε} ≤ c 1 c 3 n n i=1 1 {λ min (Fn)<c 3 /ε 2 } = c 1 c 3 1 {λ min (Fn)<c 3 /ε 2 } . Under C3, λ min (F n ) → ∞ as n → ∞. Therefore, n i=1 E(S * 2 n,i 1 {|S * n,i |>ε} ) → 0 as n → ∞. It follows that for every u ∈ R k , u F -1 2 n S n converges in distribution to N (0, 1) and by Cramer-Wold device, F -1 2 n S n converges in distribution to N (0, I k ). Weak convergence of F 1 2
n ( ψn -ψ 0 ) is now obtained as usual, by expanding S n := S n (ψ 0 ) about ψn . The rest of the proof is similar to proof of Theorem 3 of [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF] and is thus omitted.

In order to construct asymptotic condence intervals and tests of hypothesis for the components of ψ, one needs to estimate F 1/2 n (by F 1/2 n ( ψn ) for example). Asymptotic normality of F 1/2 n ( ψn )( ψn -ψ 0 ) still holds if one assumes that there exists a nite constant c 4 such that λ max (F n )/λ min (F n ) ≤ c 4 for n suciently large. This can be proved as in [START_REF] Fahrmeir | Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models[END_REF] and is omitted.

Simulation study

In this section, we investigate nite-samples properties of the MLE under various scenarios obtained by varying the censoring and zero-ination proportions and the sample size.

Simulation design

We simulate the data according to the ZIP model (2.1)-(2.2)-(2.3) dened by:

log(λ i (β)) = β 1 X i1 + β 2 X i2 + β 3 X i3 + β 4 X i4 + β 5 X i5 + β 6 X i6 , and logit(ω i (γ)) = γ 1 W i1 + γ 2 W i2 + γ 3 W i3 + γ 4 W i4 , +γ 5 W i5 ,
where X i1 = W i1 = 1 and the X i2 , . . . , X i6 , W i4 , W i5 are independently drawn from normal N (0, 1), Bernoulli B(0.3), normal N (1, 2.25), exponential E(1), uniform U(2, 5), normal N (-1, 1) and Bernoulli B(0.5) distributions respectively. Linear predictors in log(λ i (β)) and logit(ω i (γ)) are allowed to share common terms by letting W i2 = X i2 and W i3 = X i3 . We consider the following sample sizes: n = 500, 1000, 2500. The regression parameter β is chosen as β = (0.7, 0.1, 0.4, 0.85, -0.5, 0) . The regression parameter γ is chosen as: case 1: γ = (-0.9, -0.65, -0.2, 0.65, 0) , case 2: γ = (0.25, -0.7, -0.2, 0.65, 0) . Using these values, in case 1 (respectively case 2), the average percentage of zero-ination in the simulated data sets is 20% (respectively 40%). Censoring values are simulated from a zero-truncated Poisson model with parameter µ, where µ is chosen to yield various average censoring proportions c in the simulated samples, namely c = 0.1, 0.2, 0.4. For purpose of comparison, we also provide results that would be obtained if there were no censoring (that is, when c = 0) since these results will constitute a benchmark for assessing performance of the MLE when censoring is present.

For each combination of the simulation design parameters (sample size, proportions of censoring and zero-ination), we simulate N = 1000 samples and we calculate the MLE ψn . Simulations are carried out using the statistical software R. To solve the likelihood equation, we use the package maxLik [START_REF] Henningsen | maxLik: A package for maximum likelihood estimation in R[END_REF] which implements various Newton-Raphson-like algorithms. We obtain starting values by estimating a ZIP model without taking censoring into account (this step is carried out using the function zeroinfl of the R package pscl, see [START_REF] Zeileis | Regression models for count data in R[END_REF] and Jackman (2017)).

Results

For each conguration [sample size × censoring proportion × zero-inflation proportion] of the simulation parameters, we calculate the average bias and average relative bias (expressed as a percentage) of the estimates βj,n and γk,n over the N simulated samples. For example, the relative bias of βj,n is obtained as

1 N N t=1 β(t) j,n -β j β j × 100,
where β(t) j,n denotes the MLE of β j in the t-th simulated sample. We also obtain the average standard error (SE), empirical standard deviation (SD) and root mean square error (RMSE) for each βj,n (j = 1, . . . , 6) and γk,n (k = 1, . . . , 5). Finally, we provide the empirical coverage probability (CP) and average length of 95%-level condence intervals for the β j and γ k . Results are given in Table 1 (case 1, n = 500), Table 2 (case 2, n = 500), Table 3 (case 1, n = 1000), Table 4 (case 2, n = 1000), Table 5 (case 1, n = 2500) and Table 6 (case 2, n = 2500).

From these results, we observe, as expected, that accuracy of MLEs of both β j and γ k decreases as sample size decreases. Accuracy of β j s estimates also decreases as censoring increases (note that the relative bias stays moderate though, even when censoring is high). On the contrary, estimates of the γ k are rather insensitive to censoring, which can be explained by the fact that censoring does not aect zero counts. For both β j and γ k , empirical coverage probabilities are close to the nominal condence level in every case. As may also be expected, for a given censoring proportion, we observe that MLEs of the β j (respectively γ k ) perform better when the zero-ination proportion decreases (respectively increases).

Finally, in order to assess quality of the Gaussian approximation stated in Theorem 3.2, we obtain normal Q-Q plots of the estimates and histograms of the normalized estimates ( β j,n -β j )/standard error( β j,n ), j = 1, . . . , 6 and ( γ k,n -γ k )/standard error( γ k,n ), j = 1, . . . , 5.
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Figure 1: Normal Q-Q plots for β1,n , . . . , β6,n with n = 500, c = 0.4 and a proportion of zero-ination equal to 0.4.

5. An application in health economics: demand for physician service

We illustrate maximum likelihood estimation in a censored ZIP regression model on a dataset coming from the National Medical Expenditure Survey 1987-1988 (a large crosssectional study carried out to assess the demand for medical care in USA, see [START_REF] Deb | Demand for medical care by the elderly: a nite mixture approach[END_REF]. Data are available in the R package AER [START_REF] Kleiber | Applied Econometrics with R[END_REF] under the name "NMES1988". They contain observations on 4,406 individuals aged 66 and over, all of whom are covered by Medicare (a federal health insurance program). The response variable is the number of visits to a physician in an oce setting (denoted by ofp in what follows). Explanatory variables include demographics: gender (1 for female, 0 for male), age (in years, divided by 10), socio-economic variables: marital status (1 if married, 0 otherwise), educational level (number of years of education, denoted by school), family income (in ten-thousands of dollars), two binary variables indicating whether individual is covered by Medicaid (a US health insurance for individuals with low resources) and by a supplemental private insurance (both are coded as 1 if yes and 0 otherwise), various measures of health status: number of chronic conditions (cancer, arthritis, diabete. . . denoted by chronic) and a variable indicating self-perceived health level (poor, average, excellent), which we recode as health1 (1 if health is perceived as poor, 0 otherwise) and health2 (1 health is perceived as excellent, 0 otherwise).

In the inital data, the response ofp is uncensored. But since NMES1988 has become a benchmark dataset for evaluating zero-inated models, we choose to use it and to censor ofp articially. We use a zero-truncated Poisson distribution to generate censoring values. Average sample censoring proportions of ofp are successively set to 0.2 and 0.4. The tted model is:

           log(λ i (β)) = β 1 + β 2 gender i + β 3 age i + β 4 marital_status i + β 5 school i + β 6 income i +β 7 medicaid i + β 8 insurance i + β 9 chronic i + β 10 health1 i + β 11 health2 i , logit(ω i (γ)) = γ 1 + γ 2 gender i + γ 3 age i + γ 4 marital_status i + γ 5 school i + γ 6 income i +γ 7 medicaid i + γ 8 insurance i + γ 9 chronic i + γ 10 health1 i + γ 11 health2 i .
Maximum likelihood estimates and standard errors for all model parameters are obtained in both censored and non-censored cases. Results are summarized in Table 7. The no-censoring case was already investigated using various models (e.g., [START_REF] Cameron | Regression Analysis of Count Data[END_REF][START_REF] Friendly | Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data[END_REF][START_REF] Diallo | Analysis of multinomial counts with joint zeroination, with an application to health economics[END_REF]. Consistent with these studies, we nd that both number of chronic conditions and self-perceived health are important determinants of ofp utilization. An increase in the number of chronic diseases increases both the probability of visiting a doctor and the average number of consultations. We nd that measures of self-perceived health do not aect the decision of visiting a doctor (the eect of health status on this decision is entirely captured by chronic) but aect the average number of visits (this number increases as health perception degradates). Individuals with higher educational level are less susceptible to waive ofp-type health-care. They also seek care more often. At the same time, income is non-signicant in both models for zero-ination and visits frquency (in [START_REF] Deb | Demand for medical care by the elderly: a nite mixture approach[END_REF], authors formulate the hypothesis that the overall generosity of Medicare make ofp utilization insensitive to changes in the income). Also consistent with previous analysis, in the censored case, Medicaid and supplementary private insurance coverage are signicant determinants of both decision of visiting a doctor and number of visits (as expected, covered individuals are less susceptible to waive ofp-type consultations, they also seek care more often).

As already observed in our simulations, parameters estimates and standard errors in ω i (γ) are only slightly aected by censoring. Therefore, Wald signicance tests agree whatever the censoring fraction. Parameters estimates and standard errors in the Poisson model part are more sensitive to censoring. Wald signicance tests agree for all regressors except age, gender and marital status, where both increasing bias and standard errors resulting from censoring yield misleading conclusions.

Overall, MLEs in censored ZIP regression seem to be rather robust to censoring. In particular, estimation and variable selection in the zero-ination model part are not aected by censoring (even when the censoring fraction is large).

Discussion
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Figure 2 :

 2 Figure 2: Normal Q-Q plots for γ1,n , . . . , γ5,n with n = 500, c = 0.4 and a proportion of zero-ination equal to 0.4.

  Now, several issues deserve attention, such as estimation in ZIP regression under various other censoring schemes (left-censoring, interval censoring). Investigating estimation in more general models (e.g., semi-parametric zero-inated Poisson model, zero-inated generalized Poisson regression model,. . . ) with censoring is also desirable. All these issues constitute topics for our future work.

		no censoring	censoring = 20%	censoring = 40%
	variable	estimate (s.e.) signif. estimate (s.e.) signif. estimate (s.e.) signif.
		Poisson model coecients		
	intercept	1.7596 (0.0878) *** 1.3491 (0.2057) *** 1.1464 (0.1246) ***
	gender	0.0066 (0.0144)	0.0487 (0.0165) **	0.0377 (0.0201)	.
	age	-0.0593 (0.0107) *** -0.0148 (0.0248)	-0.0102 (0.0152)	
	marital status -0.0796 (0.0148) *** -0.0269 (0.0140) .	-0.0072 (0.0209)	
	school	0.0209 (0.0020) *** 0.0130 (0.0015) *** 0.0144 (0.0027) ***
	income	-0.0014 (0.0023)	-0.0008 (0.0026)	-0.0038 (0.0032)	
	medicaid	0.2256 (0.0254) *** 0.1799 (0.0297) *** 0.1681 (0.0369) ***
	insurance	0.1892 (0.0200) *** 0.1387 (0.0228) *** 0.1638 (0.0274) ***
	chronic	0.1198 (0.0046) *** 0.1150 (0.0056) *** 0.1191 (0.0070) ***
	health1	0.3081 (0.0175) *** 0.2285 (0.0212) *** 0.1971 (0.0272) ***
	health2	-0.3224 (0.0312) *** -0.2532 (0.0338) *** -0.2018 (0.0383) ***
		Zero-ination model coecients		
	intercept	1.9786 (0.5917) *** 1.9597 (0.6870) **	1.9709 (0.7531) **
	gender	-0.4721 (0.0974) *** -0.4716 (0.0997) *** -0.4840 (0.1020) ***
	age	-0.1829 (0.0741) *	-0.1818 (0.0862) *	-0.1876 (0.0947) *
	marital status -0.2843 (0.1033) **	-0.2862 (0.1060) **	-0.2921 (0.1087) **
	school	-0.0607 (0.0128) *** -0.0614 (0.0131) *** -0.0611 (0.0136) ***
	income	-0.0104 (0.0188)	-0.0104 (0.0193)	-0.0120 (0.0201)	
	medicaid	-0.4921 (0.1713) **	-0.4928 (0.1718) **	-0.4875 (0.1767) **
	insurance	-0.8227 (0.1102) *** -0.8299 (0.1099) *** -0.8272 (0.1145) ***
	chronic	-0.5414 (0.0458) *** -0.5393 (0.0464) *** -0.5360 (0.0479) ***
	health1	0.0124 (0.1615)	0.0212 (0.1605)	0.0380 (0.1669)	
	health2	0.2447 (0.1505)	0.2398 (0.1594)	0.2410 (0.1575)	

Table 7 :

 7 Health-care data analysis: estimates (standard errors) and signicance codes: *** signicant at the 0.1% level, ** signicant at the 1% level, * signicant at the 5% level, . signicant at the 10% level.
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Appendix

Lemma 6.1. Assume conditions C1-C4 hold. Then sup ψ∈Nn(ε) F

-I k converges in probability to 0 as n → ∞.

Proof of Lemma 6.1. We have

by C3. Thus, the lemma is proved if we can show that both terms in the right-hand side of the last inequality converge to 0 uniformly in ψ ∈ N n (ε) as n → ∞. For illustration purposes, we show that sup ψ∈Nn(ε) 

We prove that sup ψ∈Nn(ε

converges in probability to 0 as n → ∞ (the other two terms can be treated similarly). For this, we prove that the class {X i X im δ i J i u i (ψ) : ψ ∈ C} is Donsker (and thus Glivenko-Cantelli, which will ensure the required uniform (over ψ) convergence). We refer to van der [START_REF] Van Der Vaart | Weak convergence and empirical processes: with applications to statistics[END_REF] for denitions and properties of this classes. The class {X i X im δ i J i } is obviously Donsker. Under C1 and C2, classes {β X i : β ∈ B} and {γ W i : γ ∈ G} are Donsker. The exponential function is Lipschitz on compact sets therefore classes {e β X i : β ∈ B}, {e -exp(β X i ) : β ∈ B} and {e γ W i : γ ∈ G} are also Donsker. Now, products and sums of bounded Donsker classes are Donsker (van der Vaart and Wellner, 1996), therefore, the class {X i X im δ i J i u i (ψ) : ψ ∈ C} is Donsker. Hence,

also converges to 0 as n → ∞, which concludes the proof.