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Alzheimer's disease gradually affects several components including the cerebral dimension with brain atrophies, the cognitive dimension with a decline in various functions and the functional dimension with impairment in the daily living activities. Understanding how such dimensions interconnect is crucial for AD research. However it requires to simultaneously capture the dynamic and multidimensional aspects, and to explore temporal relationships between dimensions. We propose an original dynamic model that accounts for all these features. The model defines dimensions as latent processes and combines a multivariate linear mixed model and a system of difference equations to model trajectories and temporal relationships between latent processes in finely discrete time. Parameters are estimated in the maximum likelihood framework enjoying a closed form for the likelihood. We demonstrate in a simulation study that this dynamic model in discrete time benefits the same causal interpretation of temporal relationships as mechanistic models defined in continuous time. The model is then applied to the data of the Alzheimer's Disease Neuroimaging Initiative. Three longitudinal dimensions (cerebral anatomy, cognitive ability and functional autonomy) are analyzed and their temporal structure is contrasted between different clinical stages of Alzheimer's disease.

Introduction

Dementia is a general syndrome characterized by a long term and gradual decrease in the ability to think and remember with consequences on the person's daily functioning. It represents a pressing public health problem and major research priority. Alzheimer disease (AD) is the most common form of dementia, representing 60% to 80% of the cases [START_REF] Reitz | Alzheimer's disease: epidemiology, diagnostic criteria, risk factors and biomarkers[END_REF]. AD gradually affects multiple components long before any clinical diagnosis including brain atrophies, cognitive decline in various functions (memory, language, orientation in space and time, etc.) and loss of autonomy in the daily living activities. There is currently no cure for AD although many novel compounds are under development. Natural history of AD and its progression are still misunderstood; yet their understanding constitutes a crucial step for the assessment of compounds, and more generally AD research. Theoretical schemes have been proposed to understand the disease taken as a whole, highlighting the expected dynamic and multidimensional aspects [START_REF] Jack | Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers[END_REF]). Jack's scheme, which is now central in AD research, hypothesizes a sequence of alterations: mainly the accumulation of proteins in the brain (amyloid-β and tau proteins), the atrophy of brain regions (e.g., hippocampus) and finally clinical manifestations with cognitive and functional declines on which the diagnosis of dementia currently relies. However, because of its complexity, such theoretical scheme is very difficult to translate into a statistical model as it necessitates to combine the dynamic and multidimensional aspects, and to properly explore the temporal relationships between dimensions.

The dynamic aspect of AD has been apprehended mostly using the linear mixed model theory with models that analyzed one dimension according to time and covariates [START_REF] Hall | A change point model for estimating the onset of cognitive decline in preclinical Alzheimer's disease[END_REF][START_REF] Amieva | Prodromal Alzheimer's disease: successive emergence of the clinical symptoms[END_REF][START_REF] Donohue | Estimating long-term multivariate progression from short-term data[END_REF]. One difficulty is that the dimension of interest is usually not directly observed but measured by a series of outcomes; for instance, cognition is usually measured by a battery of neuropsychological tests. [START_REF] Proust-Lima | A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data[END_REF], 2013) considered latent process models which distinguish a structural model for analyzing the unobserved quantity over time and equations of observations for linking the unobserved quantity to the observed outcomes.

To account for the multidimensional aspect of AD and understand how dimensions are inter-related, many contributions explored pre-determined relationships by examining change over time of one biomarker (e.g., cognitive measure) according to another observed biomarker (e.g., hippocampal initial volume or change) and assumed the latter was ob-served without measurement error (e.g. [START_REF] Landau | Associations between cognitive, functional, and fdg-pet measures of decline in AD and MCI[END_REF]; [START_REF] Han | Beta amyloid, tau, neuroimaging, and cognition: sequence modeling of biomarkers for alzheimer's disease[END_REF]). This approach quantifies temporal relationships but it relies on a specific a priori determined sequence and does not consider all biomarkers as stochastic processes, which limits the interpretation and may induce biases. Some authors also proposed to use bivariate mixed models to dynamically model two dimensions and account for their correlation through correlated random effects (e.g., [START_REF] Mungas | Longitudinal volumetric MRI change and rate of cognitive decline[END_REF][START_REF] Robitaille | Multivariate longitudinal modeling of cognitive aging: Associations among change and variation in processing speed and visuospatial ability[END_REF]). However such models remain descriptive; they do not rely on asymmetric temporal relationships between processes and thus do no allow causal interpretations.

Temporal asymmetric relationships between processes have usually been apprehended with Dynamic Bayesian Networks (DBN) [START_REF] Song | Time-varying dynamic bayesian networks[END_REF]. This approach extends the concept of Directed Acyclic Graphs (DAG) [START_REF] Greenland | Causal Analysis in the Health Sciences[END_REF] to the dynamic case by modelling constant or time-varying temporal relationships between successive states of a network of processes. However, firstly time is usually too grossly discretized so that spurious temporal associations might appear as showed by [START_REF] Aalen | Can we believe the dags? a comment on the relationship between causal dags and mechanisms[END_REF]. Second, the trajectories of processes are not modelled over time. Finally, DBN quantify the association between successive levels of processes while a dynamic view of causality would seek local dependence structures linking the network of processes to its infinitesimal change over time [START_REF] Aalen | What can statistics contribute to a causal understanding[END_REF].

Local dependence structures can be naturally investigated with mechanistic models which are dynamic models relating a system of processes over time using differential equations. Proposed in HIV studies [START_REF] Prague | Dynamic models for estimating the effect of HAART on CD4 in observational studies: application to the Aquitaine Cohort and the Swiss HIV Cohort Study[END_REF] or cancer studies [START_REF] Desmée | Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer[END_REF], they allowed retrieving causal associations between disease components. Yet mechanistic models are numerically very demanding so that their application to complex diseases such as AD is compromised. In addition they require precise biological knowledge which lacks for AD.

The objective of this work is to propose a statistical model that simultaneously describes the dynamics of multiple dimensions involved in Alzheimer's disease and assess their temporal relationships similarly as in a mechanistic model but with much less numerical complexity. We consider a system of latent processes, each one representing a latent dimension possibly observed through one or several longitudinal markers. In contrast with mechanistic models, we rely on a discrete-time framework and define a set of difference equations to model the change over time of the system according to the previous state of the system. In addition, we account for individual differences through subject-specific covariates and random effects. As discretization can distort the causal interpretations of temporal relationships compared to a model in continuous time, we specifically evaluate the impact of discretization on the temporal influence structure in a simulation study. The methodology is applied to the Alzheimer's Disease Neuroimaging Initiative database to explore the temporal structure between cerebral, cognitive and functional dimensions at different stages of AD.

Motivating Data

Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information, see www.adni-info.org. We focused in this work on the ADNI 1 phase which is a longitudinal multisite observational study that included approximately 800 individuals aged between 55-90 enrolled in three different stages of progression to AD: normal aging (CN, N ≈ 200), mild cognitive impairment (MCI, N ≈ 400), and diagnosed Alzheimer's Disease (dAD, N ≈ 200). The individuals were followed-up every 6 months up to 3 years for CN and MCI groups and up to 2 years for the dAD group. At each visit, a lot of information was collected, including for the present work, volumes of brain regions measured by MRI, a battery of 19 cognitive tests and a functional assessment with the Functional Activities Questionnaire(FAQ) [START_REF] Pfeffer | Measurement of functional activities in older adults in the community[END_REF]. Further details on the ADNI 1 study can be found in [START_REF] Mueller | The Alzheimer's disease Neuroimaging Initiative[END_REF].

Methodology

3.1 Structural model for the system of latent processes

Consider D latent processes Λ i (t) t≥0 (with Λ i (t) = (Λ d i (t)) d=1,.
..,D ) representing a system of D dimensions (e.g. cerebral anatomy, cognitive ability and functional autonomy dimensions for Alzheimer's disease) for individual i with i = 1, . . . , N . We assume Λ i (t) t≥0 is defined at discrete times t = j × δ with j = 0, 1, . . . , J, and δ a constant discretization step. Let us denote ∆Λ i (t + δ) = Λ i (t + δ) -Λ i (t) the change of the system between two successive times and ∆Λ i (t+δ) δ the rate of change of the system. The model for the trajectories of the processes is split in two parts: (i) the level of the processes at baseline Λ i (0) is modelled with a multivariate linear mixed model, and (ii) the rate of change of the system over time ∆Λ i (t+δ) δ is modelled by difference equations combined with a multivariate linear mixed model:

Λ i (0) = X 0 i β + u i ∆Λ i (t+δ) δ = X i (t + δ)γ + Z i (t + δ)v i + A i,δ (t)Λ i (t), ∀t > 0, (1) 
where X 0 i is the D × p 0 -matrix of covariates associated with the p 0 -vector of fixed effects β, and u i is the D-vector of individual random intercepts u d i in the initial system Λ i (0). The (D × p)-matrix X i and the (D × q)-matrix Z i include time-dependent covariates associated with the p-vector of fixed effects γ and the q-vector (q

= D d=1 q d ) of individual random effects v i = (v d i ) d=1,...,D , respectively. A i,δ (t) is the D × D-matrix of transition intensities.
For each dimension d, the (q d + 1) vector of individual random effects (u d i , v d i ) is assumed to have a multivariate normal distribution with variance-covariance matrix

1 B d uv B d uv B d v
where B d uv and B d v are unstructured. The variances of the u d i s are constrained to 1 so that the D processes have the same magnitude at baseline. Random effects are assumed independent between dimensions so that the entire (D + q)-vector of individual random effects w i = (u i , v i ) has a multivariate normal distribution,

w i ∼ N 0 0 , B = I D B uv B uv B v .
with I D the D×D identity matrix, B v the D-block diagonal matrix with d th block B d v , and B uv the D ×q matrix with

d th row O d-1 l=1 q l , B d uv , O D l=d+1 q l
where O x is the x-row vector of zeros. In the estimation process, B is replaced by its Cholesky decomposition: B = LL , where L is a (D + q) × (D + q) lower triangular matrix. Independence between random effects across dimensions is handled by fixing corresponding parameters to zero in L, and unit-variances of random intercepts are handled by fixing the corresponding parameters to 1 in L. In addition to the variances of random intercepts fixed at one, and without loss of generality, the matrix of covariates X 0 i excludes intercepts for each process so that the D processes are standardized at baseline. These two constraints are compensated by parameters in the measurement models.

The temporal influences between processes are modelled through the D × D-matrix of time-dependent transition intensities A i,δ (t): 

A i,δ (t) =          a i,
        
This matrix captures the directed temporal influences between latent processes at time t and subsequent rates of change of latent processes between times t and t + δ. Specifically, coefficient a i,dd (t) quantifies the temporal effect of process d at time t on process d. Each effect can be modelled according to time/covariates through a linear regression a i,dd (t) = R i (t)α dd where R i (t) is a r-vector of time-dependent covariates associated with the r-vector of regression coefficients α dd = (α m dd ) m=0,(r-1) . When the discretization step is not too large, the temporal influences intend to have the same causal interpretations as those of a model in continuous time (see Simulation Study 2 for the demonstration).

Measurement Models of the longitudinal markers

Consider K (K ≥ D) continuous longitudinal markers Y ij = (Y ijk ) k=1,...,K that have been measured for subject i at (n i + 1) successive discrete times t ij = j × δ with j ∈ τ i = {j 0i , . . . , (j 0i + n i )}. Following [START_REF] Proust-Lima | A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data[END_REF], 2013), we assume that each latent process Λ d i is the underlying common factor of K d markers (K = D d=1 K d ) and we note K d the set of marker subscripts associated with latent process d. We assume that a marker measures only one latent process.

The link between a marker and its underlying latent process is defined by a markerspecific measurement model. If marker k is Gaussian, the measurement model is a linear equation:

Y ijk -η 0k η 1k = Ỹijk = Λ d i (t ij ) + ˜ ijk , ∀k ∈ K d & ∀j ∈ τ i (2)
where the vector of transformation parameters η k = (η 0k , η 1k ) is used to get the standardized form Ỹijk of the marker and ˜ ijk are independent Gaussian errors with variance σ 2 k . In the more general case of a continuous marker (possibly non Gaussian), one may consider a nonlinear equation of observation:

H k (Y ijk ; η k ) = Ỹijk = Λ d i (t ij ) + ˜ ijk , ∀k ∈ K d & ∀j ∈ τ i (3)
where the link transformation H k comes from a family of monotonic increasing and continuous functions parameterized with η k . Again Ỹijk is the transformed marker and ˜ ijk are independent Gaussian errors with variance σ 2 k . Following Proust-Lima et al. ( 2013), the link transformation H k can be defined from a basis of I-splines (which are integrated M-splines [START_REF] Ramsay | Monotone regression splines in action[END_REF]) in association with positive coefficients, thus providing an increasing bijective flexible transformation. We used here a quadratic I-splines basis with p k internal knots, (I m ) m=1,p k +3 , so that

H k (Y ijk ; η k ) = Ỹijk = η 0k + p k +3 m=1 η 2 mk I m (Y ijk ),
with (η mk ) m=0,p k +3 the vector of parameters of the transformation.

In the following, we denote Σ = diag((σ 2 k ) k=1,...,K ) the diagonal variance matrix of the vector of errors ˜ ij = (˜ ijk ) k=1,...,K and η = (η k ) {1,...,K} , the total vector of transformation parameters for the K markers. The vector of transformed markers Ỹij is mapped to the system of latent processes Λ i (t ij ) through a K × D matrix P with element (k, d) equal to 1 if marker k measures latent process d:

Ỹij = P Λ i (t ij ) + ij (4) 
In practice the observation process may include intermittent missing observations for a subset of markers or for all the markers at a given occasion j ∈ τ i , so that K * ij ≤ K markers are actually observed at occasion j for subject i. We assume that observations are missing at random and note Ỹ * ij the transformations of the actual K * ij -vector of observed markers Y * ij at occasion j. The model linking the system of processes Λ i (t ij ) to the transformed markers Ỹ * ij can be easily adapted to the presence of intermittent missing data by considering a K * ij × K observation matrix M ij (for j ∈ τ i ) where element (k * , k) equals 1 if marker k is the k * th observed marker at occasion j and 0 if not for k = 1, ..., K and k * = 1, ..., K * ij :

Ỹ * ij = M ij P Λ i (t ij ) + * ij (5)
with * ij the vector of independent Gaussian errors with covariance matrix M ij ΣM ij .

Estimation

The parameters are estimated in the maximum likelihood framework.

Distribution of the Latent Processes and transformed observations

We first derive the marginal distributions of the latent processes and of the transformed observations. By recurrence, the structural model ( 1) can be rewritten:

Λ i (t ij ) =                  X 0 i β + u i if j = 0 j-1 l=0 Ãi,δ (t il )(X 0 i β + u i ) if j > 0 +δ j s=1 j-1 l=s Ãi,δ (t il )(X i (t is )γ + Z i (t is )v i ) (6) 
where t ij = j × δ for j ∈ {0, ..., J} and Ãi,δ

(t ij ) = I D + δA i,δ (t ij ).
By introducing Ψ i,δ (t 0 , j, s) for t 0 ≥ 0 and s ≤ j so that

Ψ i,δ (t 0 , j, s) =      I D , if s = j j-1 l=s Ãi,δ (t 0 + t il ) if s < j (7) 
Equation ( 6) can be rewritten

Λ i (t ij ) = Ψ i,δ (0, j, 0)(X 0 i β +u i )+ δ j s=1 Ψ i,δ (0, j, s) (X i (t is )γ + Z i (t is )v i ) 1 {j>0} (8)
As a result, the vector Λ i (t ij ) has a multivariate normal distribution with expectation µ Λ ij and variance covariance matrix V Λ ijj = var (Λ i (t ij )) and the vector

Λ i = Λ i (t ij ) j∈τ i has a multivariate normal distribution with expectation µ Λ i = µ Λ ij j∈τ i and variance-covariance matrix V Λ i = V Λ ijj (j,j )∈τ 2 i where µ Λ ij = E[Λ i (t ij )] = Ψ i,δ (0, j, 0)X 0 i β + δ j s=1 Ψ i,δ (0, j, s)X i (t is )γ 1 {j>0} (9) 
and

V Λ ijj = cov(Λ i (t ij ); Λ i (t ij )) = Ψ i,δ (0, j, 0)Ψ i,δ (0, j , 0) +   Ψ i,δ (0, j, 0)B uv δ j s =1 Ψ i,δ (0, j , s )Z i (t is )   1 {j >0} + δ j s=1 Ψ i,δ (0, j, s)Z i (t is ) B uv Ψ i,δ (0, j , 0) 1 {j>0} +   δ j s=1 Ψ i,δ (0, j, s)Z i (t is ) B v δ j s =1 Ψ i,δ (0, j , s )Z i (t is )   1 {min(j,j )>0}
(10) It can be easily deduced that the vector of incomplete and transformed data

Ỹ * ij at occasion j is multivariate Gaussian with expectation µ Ỹ * ij = M ij P µ Λ ij and variance- covariance matrix V Ỹ * ij = M ij P V Λ ijj P + Σ M ij ,

and the total vector of incomplete and transformed data Ỹ

* i = Ỹ * ij j∈τ i is multivariate Gaussian with expectation µ Ỹ * i = µ Ỹ * ij j∈τ i and variance-covariance matrix V Ỹ * i , a block matrix with M ij P V Λ ijj P M ij + M ij ΣM ij 1 {j=j } the (j, j ) block.

Likelihood

As the N subjects of the sample are independent, the log-likelihood of the model is

L(Y * ; θ) = N i=1 log(L i (Y * i ; θ)) with L i (Y * i ; θ) the individual contribution to the likeli- hood. Here, θ = (β , γ , vec(B) , (α dd ) d,d ∈{1,...,D} 2 , (σ k ) k∈{1,.
..,K} , η ) is the whole vector of parameters. Using the Jacobian of the link functions H k (k = 1, ..., K), the individual contribution is:

L i (Y * i ; θ) = φ i ( Ỹ * i ; µ Ỹ * i , V Ỹ * i ) j∈τ i K * ij l=1 J κ(l) H κ(l) ( Y * ijκ(l) ; η κ(l) ) (11) 
where φ i (.; µ, V ) denotes the density function of a multivariate Gaussian vector with expectation µ and variance-covariance matrix V , and J κ(l) (H κ(l) ( Ỹ * ijκ(l) ; η κ(l) )) denotes the Jacobian of the link function H κ(l) used to transform Y * ijκ(l) , the l th observed marker at oc-casion j for subject i. For instance, with a linear link function,

J κ(l) H κ(l) ( Ỹ * ijκ(l) ; η κ(l) ) = 1 η 1κ(l) .

Optimisation Algorithm and Implementation

The maximum likelihood estimates are obtained using an extended Levenberg-Marquardt algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] because of its robustness and good convergence rate. At each iteration p, if necessary, the Hessian matrix H (p) is diagonal-inflated to obtain a positive definite matrix H * (p) which is used to update the parameters

θ (p+1) = θ (p) - ν[H * (p) ] -1 U (θ (p) ), with U (θ (p)
) the gradient at iteration p and ν the improvement control parameter. Convergence is reached when

||θ (p+1) -θ (p) || 2 < 10 -3 , |L(Y * ; θ (p+1) ) - L(Y * ; θ (p) )| < 10 -3 and U (θ (p) ) [H (p) ] -1 U (θ (p) )
npara < 10 -2 , with n para the total number of parameters. The latter criterion is by far the most stringent one and specifically targets maximum search. The variances of the estimators are obtained from the inverse of H (p) .

Given the possibly high number of parameters, we first estimate the parameters for each process taken separately, then we start the maximization of the likelihood of the multivariate model from these simple estimates, setting initial values of the inter-dimension parameters to zero. The model estimation is implemented in R (program available on request); it combines R and C ++ languages, and includes parallel computations.

Marginal and subject-specific predictions

The goodness-of-fit of the model can be assessed by comparing predictions with observations of the markers in their transformed scales. From notations defined in section 3.3.1, marginal and conditional distributions of the markers are:

Ỹi ∼ N P µ Λ i , P V Λ i P + Σ i . ( 12 
)
Ỹi Λ i ∼ N (P Λ i , Σ i ) (13)
where Σ i is the block-diagonal matrix constituted of n i Σ blocks.

The marginal (Y (M ) i

) and subject-specific (Y

(SS) i
) predictions in the transformed scales are then respectively obtained by taking the expectations of the marginal and conditional distributions of the transformed markers at the parameter estimates θ and at the predicted latent processes Λi of Λ i given the observations

Ỹ * i : Λi = E Λ i | Ỹ * i = µ Λ i +C Λ i Ỹ * i V -1 Ỹ * i Ỹ * i -µ Ỹ * i , where C Λ i Ỹ * i = V Λ ijj P M ij (j,j )∈τ i 2
is the covariance matrix between Λ i and Ỹ * i . Using these individual predictions, one can graphically compare either the marginal predictions Y (M ) or subject-specific predictions Y (SS) averaged within time intervals to the observations averaged within the same time intervals. Marginal and subject-specific predictions in the natural scale of the markers can also be derived from the marginal and conditional distributions by using a Monte-Carlo approximation [START_REF] Proust-Lima | Analysis of multivariate mixed longitudinal data: a flexible latent process approach[END_REF].

Simulations

We performed two series of simulations to evaluate the estimation program and the impact of time discretization on the interpretation of A(t) matrix.

Simulation Study 1: Validation of the estimation program

Design

To evaluate the estimation program, we generated a system of two Gaussian processes ((Λ 1 (t)) t≥0 and (Λ 2 (t)) t≥0 ), each one measured by one longitudinal marker (Y 1 and Y 2 ) and two covariates, one binary C 1 and one continuous C 2 . We considered two scenarios: a covariate-specific temporal influence structure (Scenario 1) and a time-dependent temporal influence structure (Scenario 2). In Scenario 1, we assumed linear trajectories over time for the system of latent processes (random intercepts and simple effects of both covariates in the sub-models for the initial level and the change over time) and a temporal influence structure

A(t) different in each level of C 1 :            Λ 1 i (0) = β 1 0 + β 1 1 C 1,i + β 1 2 C 2,i + u 1 i Λ 2 i (0) = β 2 0 + β 2 1 C 1,i + β 2 2 C 2,i + u 2 i ∆Λ 1 i (t+δ) δ = γ 1 0 + γ 1 1 C 1,i + γ 1 2 C 2,i + v 1 i + (α 0 i,11 + α 1 i,11 C 1,i )Λ 1 i (t) + (α 0 i,12 + α 1 i,12 C 1,i )Λ 2 i (t) ∆Λ 2 i (t+δ) δ = γ 2 0 + γ 2 1 C 1,i + γ 2 2 C 2,i + v 2 i + (α 0 i,21 + α 1 i,21 C 1,i )Λ 1 i (t) + (α 0 i,22 + α 1 i,22 C 1,i )Λ 2 i (t) Y ijk -η 0k η 1k = Λ k ij + ˜ ijk , k = 1, 2 (14) where u i = (u 1 i , u 2 i ) , v i = (v 1 i , v 2 i
) and (u i , v i ) ∼ N (0, LL ) with L such that the random effects are independent between dimensions, and ˜ ijk ∼ N (0, σ 2 k ), ∀k ∈ {1, 2}.

In scenario 2, we assumed linear trajectories for the latent processes adjusted for C 2 and a transition matrix that evolved with time:

           Λ 1 i (0) = β 1 0 + β 1 1 C 2,i + u 1 i Λ 2 i (0) = β 2 0 + β 2 1 C 2,i + u 2 i ∆Λ 1 i (t+δ) δ = γ 1 0 + v 1 i + a 11 (t)Λ 1 i (t) + a 12 (t)Λ 2 i (t) ∆Λ 2 i (t+δ) δ = γ 2 0 + v 2 i + a 21 (t)Λ 1 i (t) + a 22 (t)Λ 2 i (t) Y ijk -η 0k η 1k = Λ k ij + ˜ ijk , k = 1, 2, ( 15 
)
where

u i = (u 1 i , u 2 i ) , v i = (v 1 i , v 2 i ) and (u i , v i ) ∼ N (0, LL
) with L such that the random effects are independent between dimensions, and ˜ ijk ∼ N (0, σ 2 k ), ∀k ∈ {1, 2}. Each element of the transition matrix a kk (t) is defined from a basis of quadratic B-splines with one internal knot at the median (S m ) {m=1,3} so that a kk (t

) = α 0 kk + α 1 kk S 1 (t) + α 2 kk S 2 (t) + α 3 kk S 3 (t), ∀k, k ∈ {1, 2} 2 .
The design of the simulations and the parameters were chosen to mimic the ADNI data. Dimensions 1 and 2 were cerebral anatomy and cognitive ability, respectively measured by a specific composite score. Covariate C 1 corresponded to the two groups CN (for normal elderly, in reference) and MCI (for Mild Cognitive Impairment). It was generated according to a Bernoulli distribution with probability P (C 1 = 1) = 0.64. Covariate C 2 corresponded to the standardized age at baseline and was generated according to a standard Gaussian distribution. We considered a discretization step δ of 6 months. Markers observations were generated every 6 months up to 3 years. Thus a subject had 7 repeated measures at occasions j ∈ {0, 1, . . . , 6}. We also considered a design in which scheduled visits could be missed completely at random with a probability of 0.15, and when a visit was not missed, a marker could be missing with a probability of 0.07. For each design and scenario, we generated 100 samples of 512 subjects.

Results

Table 4 and Table 1 provide the results of the simulations for scenarios 1 and 2 respectively. In both settings, all the parameters were correctly estimated with satisfying coverage rates in the absence of missing data (left part) and in the presence of missing data (right part). 

Design

To formally assess whether the interpretation under the discretized time was the same as the one obtained under continuous time, we assessed the type-I error rate associated with each non diagonal element of the transition matrix A under three discretization steps δ = 1/3, 1/2 and 1 when data were actually generated under continuous time (approximated by a step δ=0.001). We considered for this a system of three latent processes ((Λ 1 (t)) t≥0 , (Λ 2 (t)) t≥0 , and (Λ 3 (t)) t≥0 ), each one measured by one Gaussian repeated marker (Y 1 , Y 2 , Y 3 ). The trajectories were linear, with no adjustment for covariates and a transition matrix A constant over time:

                     Λ 1 i (0) = β 1 0 + u 1 i Λ 2 i (0) = β 2 0 + u 2 i Λ 3 i (0) = β 3 0 + u 3 i ∆Λ 1 i (t+δ) δ = γ 1 0 + v 1 i + a 11 Λ 1 i (t) + a 12 Λ 2 i (t) + a 13 Λ 3 i (t) ∆Λ 2 i (t+δ) δ = γ 2 0 + v 2 i + a 21 Λ 1 i (t) + a 22 Λ 2 i (t) + a 23 Λ 3 i (t) ∆Λ 3 i (t+δ) δ = γ 3 0 + v 3 i + a 31 Λ 1 i (t) + a 32 Λ 2 i (t) + a 33 Λ 3 i (t) Y ijk -η 0k η 1k = Λ k ij + ˜ ijk , k = 1, 2, 3 (16) 
The simulation model mimicked the ADNI data with cerebral anatomy, cognitive ability and functional autonomy as dimensions, respectively measured by a specific composite score. We estimated the model on the ADNI data with δ=1 (6 months) and transformed the parameters to the scale δ=0.001 to generate the data in almost continuous time. We provide in the Appendix A: the formulas that we used to relate model components defined under δ=1 and δ=0.001. Elements of the transition matrix were set one by one to 0 in δ = 0.001 scale to evaluate the associated type-I error rate. Latent processes were generated with solver from dsolve package [START_REF] Soetaert | Solving differential equations in r: Package desolve[END_REF] and observations were derived every 6 months up to 3 years. For each design, we considered 200 samples of 512 subjects.

Results

Table 2 displays the type-I error rates (in percentage) associated with each non diagonal element of the transition matrix A when estimated with discretization steps δ=1/3, δ=1/2 and δ=1. All the type-I error rates are close to the nominal 5% rate (expected rates in the 95% interval [1.98 , 8.02] with 200 replicates). This shows that with such discretization steps, the causal interpretation expected in continuous time is not altered.

Table 2: type-I error rates (in %) associated with each non diagonal element of the transition matrix A when the transition matrix is generated approximately in continuous time (δ=0.001) and estimated with discretization steps: δ=1/3, δ=1/2, δ=1 (expected 95% interval [1.98 , 8.02] for the nominal type-I error of 5%).

Parameter δ = 1/3 δ = 1/2 δ = 1 a 12 5.5 4.5 6.5 a 13

3.5 5.5 5.0 a 21 7.0 7.5 8.0 a 23 5.0 4.5 5.0 a 31 4.0 3.5 5.5 a 32 7.0 7.5 5.5

Application

The application aimed to describe the decline over time of cerebral anatomy, cognitive ability and functional autonomy in three clinical stages of AD (normal aging (CN), Mild Cognitive Impairment (MCI) and diagnosed with Alzheimer's Disease (dAD)) and to quantify the temporal influences between these dimensions by assessing especially whether the relationships differed according to the clinical stage.

The sample

We considered the nineteen available cognitive tests as outcomes of global cognitive ability [START_REF] Crane | Development and assessment of a composite score for memory in the alzheimer's disease neuroimaging initiative (ADNI)[END_REF], the volume of hippocampus relative to total intracranial volume and the cortical thickness of nine regions (Freesurfer version 4.4.0 for longitudinal data) as outcomes for cerebral anatomy following regions of interest identified by [START_REF] Dickerson | The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild ad dementia and is detectable in asymptomatic amyloidpositive individuals[END_REF], and the sumscore of the FAQ composed of 30 items [START_REF] Pfeffer | Measurement of functional activities in older adults in the community[END_REF] to assess functional autonomy. For numerical simplicity, we considered a unique marker for each dimension by summarizing the cerebral and cognitive markers into two composite scores [START_REF] Proust-Lima | Are latent variable models preferable to composite score approaches when assessing risk factors of change? Evaluation of type-I error and statistical power in longitudinal cognitive studies[END_REF] 

The dynamic multivariate model

The dynamic model applied to ADNI is summarized in Figure 1. The three latent processes (cerebral anatomy (Λ A ), cognitive ability (Λ C ), functional autonomy (Λ F )) were repeatedly measured by the three composite scores Y A , Y C and Y F . We assumed that changes of the processes were linear in time; thus, the processes had quadratic trajectories over time, adjusted for gender, education, APOE genotype, clinical stage, and age at baseline. In order to account for the correlation between individual repeated measures, we included random intercepts on the initial level of the processes and random intercepts and slopes on the change of the processes over time. Note that random effects on initial levels and on changes are correlated within each dimension but not between dimensions. The transition matrix that captured the interrelations between processes was constant over time and adjusted for clinical stage. To correct the possible departure from normality of the composite scores, we transformed them using a link function approximated by quadratic I-splines with 2 internal knots chosen at the terciles for cerebral and cognitive composite scores and by quadratic I-splines with one internal knot chosen at the median for the functional composite score.

In the main analysis, we took a 6 months discretization step. The strategy of analysis consisted in finding first the best adjustment for each process taken separately (assuming independency between processes ie., a dd {d =d } = 0 in Figure 1) with a significance threshold for covariate effects at 25%. Then, the whole multivariate model including all elements of the transition matrix was estimated. In secondary analyses, we re-estimated the final model by considering discretization steps of 3 months and of 2 months in order to evaluate whether the interpretations varied with smaller steps. 

Results

Latent process-specific trajectories

Estimates of fixed effects, Cholesky's decomposition parameters (for the random effects covariance matrix) and measurement model parameters are provided in Tables 5, 6 and7. In summary, older age, male gender, APOE 4 carrying, and clinical stages MCI and dAD were associated with lower cerebral anatomy and lower cognitive ability levels at baseline. Higher education was associated with lower cerebral anatomy level but associated with higher cognitive ability level at baseline. Only clinical stages MCI and dAD were associated with lower functional autonomy level at baseline. APOE 4 carrying was associated with steeper declines in cerebral anatomy and cognitive ability. Clinical stage dAD was associated with steeper cerebral anatomy decline and both clinical stages MCI and dAD were associated with steeper declines in cognitive ability and functional autonomy. Higher education was associated with smaller cognitive ability decline. Figure 4 depicts the expected trajectories of each dimension according to stage for two profiles of individuals (women noncarrier of APOE 4 and with lower educational level; men carrier of APOE 4 and with higher educational level).

Temporal influence structure between processes

Estimates of the transition intensity matrix are given in Table 3 andsummarized in Figure 2. Figure 2 shows that the temporal influences between cerebral anatomy (Λ A ), cognitive ability (Λ C ), and functional autonomy (Λ F ) slightly evolve from healthy stage to Alzheimer's disease stage. At all stages, cerebral dimension affects significantly the dynamics of both cognitive and functional dimensions. Moreover, the cognitive and functional dimensions are interrelated, each one affecting the change over time of the other. However from MCI stage, the cognitive dimension becomes central by affecting significantly both the dynamics of cerebral and functional dimensions. When considering a discretization step of 3 or 2 months instead of 6 months, the Akaike Information criterion was slightly improved (AIC=1386.68 with 6 months, AIC= 1370.45 with 3 months and AIC=1367.21 with 2 months) but the results regarding the temporal influence relationships between dimensions remained the same (see Table 8). mean transformed observations at each visit (every 6 months). As shown in Figure 3, the mean predictions are very close to the mean observations showing the good fit of the model to the data. These trajectories also illustrate the differences in trajectories according to clinical stage with each dimension more and more impaired and decline steeper and steeper with disease progression.

Discussion

We proposed an original dynamic model which aims to simultaneously describe multivariate processes over time and retrieve temporal relationships between the processes involved. Our model aims to be a dynamic causal model in the spirit of mechanistic models. We relied on discrete time with difference equations rather than continuous time with differential equations to largely reduce the numerical problems, notably with a closed-form likelihood.

We fundamentally explored in this work temporal influences between dynamic processes and the causal interpretation of these influences has to be done with caution. We relied on the dynamic approach to causality notably developed by [START_REF] Aalen | What can statistics contribute to a causal understanding[END_REF], [START_REF] Arjas | Causal reasoning from longitudinal data[END_REF], [START_REF] Didelez | Graphical models for marked point processes based on local independence[END_REF], [START_REF] Commenges | A General Dynamical Statistical Model with Causal Interpretation[END_REF]. There is also a large literature in statistics on the potential outcomes formalism introduced by [START_REF] Rubin | Causal inference using potential outcomes[END_REF]; it is however not adapted for modeling dynamic relationships between non-directly observed factors, which is the aim in this paper so we do not discuss this approach further.

Following the dynamic approach to causality, we chose to analyze the changes of processes (as seeking local dependence structures) and defined causal relationships in a structural model, that is at a latent process level rather than at an observation level. One major simplifying assumption in our approach was the time discretization. Fundamentally, causal relationships are to be explored at an infinitesimal level and thus, a causal model is to be defined in continuous time [START_REF] Commenges | A General Dynamical Statistical Model with Causal Interpretation[END_REF][START_REF] Aalen | Can we believe the dags? a comment on the relationship between causal dags and mechanisms[END_REF]. To assess whether we could claim the same type of interpretation as mechanistic models, we thus assessed in a simulation study the impact of the discretization of the underlying time-continuous causal structure; we found that the type-I error rates of the temporal influence parameters were not altered by the use of a model in discrete time, provided the discretization step remained small in regards with the dynamics of the disease under study. Indeed in our simulations and application on Alzheimer's disease, our discretization step was between 2 and 6 months while the disease progresses over decades [START_REF] Amieva | Prodromal Alzheimer's disease: successive emergence of the clinical symptoms[END_REF][START_REF] Jack | Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers[END_REF]. In addition to the assessment that the absence of causal associations could be retrieved in the discretized time, we also provided in supplementary material analytic approximate relationships between transition matrices defined in two discretization steps or in continuous time and discrete time. These relationships quantify the associations between temporal influence structures; they remain however approximate as they were found under the assumption that the model structure did not differ substantially between the two discretization steps. This assumption deserves more attention in future work.

We acknowledge that despite our intention to provide a dynamic causal model, causal interpretation still has too be made cautiously as in any causal model since it is always subject to a correct specification of the system and of the statistical model.

The estimation we proposed relies on the assumption that missing data, both intermittent and monotone, are missing at random. This assumption is realistic in ADNI 1 which had a very short follow-up (3 years max). However, in applications with a longer followup, and notably in population-based cohorts, such assumption might become restrictive and it will be probably necessary to account for the occurrence of informative clinical events, such as dementia and death in our context. This will be possible by extending our model to a joint analysis of times to event but probably at the price of additional numerical complexities. In addition, in studies on chronic diseases with a long follow-up, it is reasonable to assume that the temporal influence structure may evolve with time. Our model can handle this as shown in the simulations where the temporal influence structure was modelled according to time using regression splines. We did not consider however time-dependent temporal influence structures in the application due to the short follow up. In addition, our objective was to contrast the influence structures between clinical stages, and as such we rather included stage-specific intensities of transition.

The model was primarily motivated by the study of the multiple alterations involved in the dementia process in the elderly. Indeed, dementia is characterized by very long and progressive alterations in different cerebral and clinical dimensions. However, although there is a global agreement on the relevant dimensions in AD, their relationships are still poorly understood and a confusion persists between alterations due to normal aging and alterations due to pathological aging leading to dementia. Thanks to the ADNI data which included subjects at different clinical stages of dementia, we were able to exhibit the global structure of dependence between cerebral, cognitive and functional domains in normal aging characterized as expected by the cerebral structure which explains a part of the cognitive and functional changes, and the functional and cognitive changes which have bidirectional relationships. We also found out that the main evolution in this structure due to the pathological process towards dementia (in subjects with mild cognitive impairment or diagnosed with AD) was on cognitive functioning with some effect of cognitive functioning on change in cerebral structure in addition to its effect on change in functional structure. Such backward influence of cognition on anatomic structure may appear counterintuitive from a biological point of view. Yet, some studies showed that interventions made on cognitive functioning (e.g., literacy at adulthood) could induce an improvement in cerebral structure [START_REF] Carreiras | An anatomical signature for literacy[END_REF][START_REF] Boyke | Training-induced brain structure changes in the elderly[END_REF]. This application which gives a first insight on the possibilities of this dynamic model, could be now refined by targeting specific brain regions (separating for instance cortical thicknesses from hippocampal volume) and specific cognitive functions (separating for instance episodic memory from executive functioning).

As a conclusion, we proposed here a new methodology that may help identify temporal structures in multivariate longitudinal data. Although motivated and applied in dementia context, this approach has some potential to address unsolved questions in many other chronic diseases where multiple processes are in play, and or time-dependent exposures are to be assessed.

Appendix A: Relationships between model components under different discretization steps

For computational reasons, the latent processes in the structural model are assumed to evolve in discrete time with a constant step δ which may vary depending on the application. In reality the processes evolve in continuous time and causal inference should be done in continuous time. We thus established the relationship between transition matrices obtained under different discretization steps: δ * and a smaller discretization step δ with δ * = ρ × δ and integer ρ > 1.

With a discretization step δ = δ * ρ , the second line of equation ( 1) can be rewritten:

Λ i (t + δ) = δ (X i (t + δ)γ + Z i (t + δ)v i ) + (I D + δA i,δ (t)) Λ i (t), ∀t > 0, ρ > 1 (17)
By recurrence, the network level at t + ρδ, that also correspond to t + δ * , can be expressed as a function of Λ i (t + δ * ) as follows:

Λ i (t + δ * ) = Ψ i,δ (t, ρ, 0)Λ i (t) + δ ρ s=1 Ψ i,δ (t, ρ, s) (X i (t + δs)γ + Z i (t + δs)v i ) (18)
with function Ψ i,δ defined in the relation (7).

Considering directly a discretization step of δ * , the second line of equation (1) can also be rewritten

Λ i (t+δ * ) = δ * (X i (t + δ * )γ * + Z i (t + δ * )v * i )+(I D + δ * A i,δ * (t)) Λ i (t), ∀t > 0 and δ * > 0. ( 19 
)
Relationships between transition matrices under different steps Considering that the second parts of equations ( 18) and ( 19) are close enough although the model specifications are different, we obtain:

I D + δ * A i,δ * (t) ≈ Ψ i,δ (t, ρ, 0) = ρ-1 l=0 I D + δ * ρ A i,δ (t + l δ * ρ ) (20) 
Equation ( 20) can be rewritten to highlight the relationship between the causal structure A i,δ * and A i,δ :

A i,δ * (t) = 1 δ * ρ-1 l=0 I D + δ * ρ A i,δ (t + l δ * ρ ) -I D (21) 
When assuming that the causal structure A i,δ is constant in each interval [t, t + δ * ], ∀t ∈ τ , the relationship (21) becomes :

A i,δ * (t) = 1 δ * I D + δ * ρ A i,δ (t) ρ -I D (22) 
Or equivalently,

A i,δ (t) = ρ (δ * ) (ρ+1) 1 δ * I D + A i,δ * (t) 1 ρ -I D (23)
Note that the limits of the right part of relation ( 22), when ρ tends to infinity provide the relationship between A i,δ * (t) and its continuous time counterpart. Assuming that lim ρ→∞ A i,δ (t) = A i (t) is finite, the relationship (22), become:

A i,δ * (t) ≈ 1 δ * (exp (δ * A i (t)) -I D ) (24) 
Relationships between trend parameters under different steps To relate the transition matrices under different steps, we considered second parts of equations ( 18) and ( 19) were close enough. We identified:

           X i (t + δ * )γ * ≈ 1 ρ ρ s=1 Ψ i,δ (t, ρ, s)X i (t + δ * ρ s)γ Z i (t + δ * )v * i ≈ 1 ρ ρ s=1 Ψ i,δ (t, ρ, s)Z i (t + δ * ρ s)v i (25) 
In the particular case where X i and Z i reduce to intercepts,

           γ * ≈ 1 ρ ρ s=1 Ψ i,δ (t, ρ, s)γ v * i ≈ 1 ρ ρ s=1 Ψ i,δ (t, ρ, s)v i (26) 
Or equivalently,

           γ ≈ ρ ρ s=1 Ψ i,δ (t, ρ, s) -1 γ * v i ≈ ρ ρ s=1 Ψ i,δ (t, ρ, s) -1 v * i ( 27 
)
Appendix B: Additional results in the simulations studies 

Figure 1 :

 1 Figure 1: Graph of the dynamic causal model considered on ADNI data with three dimensions (labelled Λ A for cerebral anatomy, Λ C for cognitive ability and Λ F for functional autonomy), each one repeatedly measured by one marker Y A , Y C and Y F .

Figure 2 :

 2 Figure 2: Temporal relationships estimated between cerebral anatomy (Λ A ), cognitive ability (Λ C ), and functional autonomy (Λ F ) at healthy (CN), MCI and dAD stages. Arrows represent effects of one dimension on the change of another dimension between two discretized times. Numbers indicate intensity effects, stars indicate the significance of the effects. Arrows in solid line indicate effects that exist at all stages; arrows in dashed line indicate effects that exist only for some stages.

Figure 3 :

 3 Figure 3: Means of subject-specific predictions at each visit (with crosses) along with the corresponding means of transformed observed scores (plain lines) and their 95% confidence interval (dashed lines). Columns refer to the group (controls CN, Subjects with Mild Cognitive Impairments MCI and subjects diagnosed with Alzheimer's disease dAD). Rows refer to the dimensions (cerebral anatomy, cognitive ability and functional autonomy).

Figure 4 :

 4 Figure 4: Predicted trajectories of cerebral, cognitive and functional dimensions at healthy (CN), MCI, and dAD clinical stages of Alzheimer's disease for a woman non-carrier of APOE 4 allele with lower educational level (plain lines) and for a man carrier of APOE 4 allele with higher educational level (dashed lines). "n", "m" and "d" indicate trajectories at healthy, MCI and dAD stages, respectively.

Table 1 :

 1 Results of the simulations for scenario 2 (100 replicates of samples of size 512).

			without missing values (conv † =100%)	with missing values (conv † =98%)
		θ	θ ESE ‡ ASE ‡	CR(%)	θ ESE ‡ ASE ‡	CR(%)
	β	-1.661 -1.655 0.104 0.112	96.0	-1.653 0.111 0.113	98.0
	β	-1.803 -1.831 0.146 0.128	92.0	-1.834 0.150 0.133	90.0
	γ	0.278	0.281 0.043 0.046	96.0	0.285 0.045 0.050	98.0
	γ	-0.152 -0.154 0.023 0.023	96.0	-0.156 0.024 0.026	96.0
	γ	0.117	0.121 0.080 0.080	94.0	0.111 0.093 0.086	91.0
	γ	-0.143 -0.145 0.040 0.041	96.0	-0.140 0.046 0.045	95.0
	L(3,1)	0.041	0.040 0.019 0.022	97.0	0.039 0.020 0.024	98.9
	L(4,2)	0.012	0.026 0.021 0.039	97.0	0.029 0.025 0.044	97.0
	L(3,3)	0.198	0.197 0.015 0.014	94.0	0.196 0.016 0.014	92.0
	L(4,4)	0.373	0.372 0.027 0.027	95.0	0.371 0.029 0.029	93.0
	α 1	0.112	0.109 0.040 0.044	96.0	0.107 0.046 0.048	97.0
	α 2	0.003	0.010 0.047 0.050	95.0	0.015 0.052 0.056	96.0
	α 3	-0.033 -0.050 0.070 0.070	97.0	-0.056 0.070 0.079	98.0
	α 4	-0.132 -0.117 0.095 0.093	95.0	-0.108 0.099 0.104	97.0
	α 1	0.168	0.170 0.039 0.037	93.0	0.172 0.044 0.041	92.0
	α 2	0.079	0.067 0.043 0.043	92.0	0.067 0.049 0.048	92.0
	α 3	0.143	0.160 0.062 0.057	92.0	0.161 0.065 0.064	92.0
	α 4	0.070	0.050 0.080 0.073	90.0	0.048 0.088 0.081	89.0
	α 1	0.238	0.225 0.071 0.068	95.0	0.220 0.076 0.073	92.0
	α 2	0.138	0.159 0.092 0.090	94.0	0.162 0.097 0.097	93.0
	α 3	0.359	0.331 0.128 0.126	94.0	0.330 0.134 0.135	95.0
	α 4	0.014	0.048 0.170 0.165	94.0	0.045 0.179 0.178	95.0
	α 1	0.108	0.108 0.077 0.074	91.0	0.102 0.085 0.081	89.0
	α 2	0.037	0.024 0.082 0.084	97.0	0.025 0.091 0.088	95.0
	α 3	-0.067 -0.046 0.105 0.107	90.0	-0.049 0.116 0.113	91.0
	α 4	-0.066 -0.093 0.133 0.133	96.0	-0.085 0.154 0.142	94.0
	η	0.387	0.391 0.015 0.015	93.0	0.391 0.015 0.016	96.0
	η	0.713	0.713 0.035 0.033	94.0	0.709 0.035 0.035	95.0
	η	3.769	3.725 0.192 0.197	95.0	3.719 0.199 0.199	93.0
	η	2.580	2.561 0.092 0.090	95.0	2.563 0.094 0.092	95.0
	σ	2.489	2.511 0.138 0.120	92.0	2.515 0.144 0.124	91.0
	σ	1.412	1.413 0.063 0.060	93.0	1.415 0.063 0.064	95.0

  . Covariates were the age at entry (centered around 75.4 and indicated in decades), gender, educational level (low level if ≤ 12 years vs high level if >12 years), the APOE genotype ( 4 carrier vs 4 non-carrier ) and the 3 clinical stages (CN, MCI, dAD). We selected in the sample all the subjects who had no missing data for the covariates and had at least one measure for each dimension during the follow-up. The main analysis included 656 subjects (82% of the initial sample).

	The sample consisted of 190
	(29%) subjects at healthy stage (CN), 322 (49%) subjects at mild cognitive impairment
	stage (MCI), and 144 (22%) subjects diagnosed with Alzheimer's disease (dAD); 43%
	were females, 83% had a high educational level and 49% carried APOE 4 allele. The
	mean age at entry was 75.4 years old (sd=6.6). The mean number of visits was 5, 6 and
	4 for CN, MCI and dAD subjects, respectively.

Table 4 :

 4 Results of the simulations (100 replicates of samples with 512 subjects) considering two latent processes, each one repeatedly measured by a marker, with linear trajectories and constant covariate-specific causal structure. ASE is the asymptotic standard error, ESE is the empirical standard error and CR is the coverage rate of the 95% confidence interval.

			without missing values (conv † =100%)	with missing values (conv † =99%)
		θ	θ ESE ‡ ASE ‡	CR(%)	θ ESE ‡ ASE ‡	CR(%)
	β 1 1	-0.268 -0.267 0.068 0.073	97.0	-0.269 0.070 0.075	97.9
	β 1 2	-1.695 -1.698 0.112 0.112	92.0	-1.705 0.113 0.116	92.9
	β 2 1	0.057	0.055 0.075 0.078	96.0	0.060 0.079 0.082	95.9
	β 2 2	-1.749 -1.777 0.139 0.127	94.0	-1.775 0.148 0.137	94.9
	γ 1 0	0.042	0.044 0.018 0.019	97.0	0.044 0.020 0.021	97.9
	γ 1 1	-0.033 -0.032 0.020 0.019	94.0	-0.032 0.020 0.020	94.9
	γ 1 2	-0.242 -0.232 0.048 0.052	97.0	-0.225 0.054 0.063	98.9
	γ 2 0	-0.097 -0.098 0.041 0.040	95.0	-0.098 0.047 0.045	92.9
	γ 2 1	-0.014 -0.016 0.023 0.020	93.0	-0.015 0.023 0.022	95.9
	γ 2 2	-0.066 -0.062 0.063 0.056	92.0	-0.061 0.068 0.062	94.9
	L(3,1)	0.188	0.181 0.027 0.031	97.0	0.177 0.033 0.038	97.9
	L(4,2)	0.067	0.066 0.021 0.022	96.0	0.069 0.027 0.026	96.9
	L(3,3)	0.149	0.145 0.013 0.014	95.0	0.143 0.014 0.016	93.9
	L(4,4)	0.250	0.247 0.019 0.019	96.0	0.247 0.022 0.022	93.9
	a 0 11	-0.230 -0.223 0.031 0.035	98.0	-0.219 0.037 0.043	96.9
	a 1 11	0.099	0.100 0.017 0.017	95.0	0.100 0.017 0.019	96.9
	a 0 12	0.118	0.120 0.024 0.025	92.0	0.121 0.027 0.027	93.9
	a 1 12	-0.040 -0.044 0.024 0.023	93.0	-0.045 0.026 0.027	95.9
	a 0 21	0.095	0.095 0.022 0.023	95.0	0.094 0.024 0.025	95.9
	a 1 21	0.043	0.046 0.026 0.027	97.0	0.046 0.027 0.029	98.9
	a 0 22	-0.399 -0.400 0.043 0.042	97.0	-0.401 0.054 0.050	90.9
	a 1 22	0.319	0.325 0.034 0.033	96.0	0.321 0.040 0.037	95.9
	η 01	3.793	3.794 0.188 0.195	94.0	3.795 0.195 0.199	93.9
	η 02	2.601	2.608 0.135 0.127	93.0	2.607 0.148 0.136	93.9
	η 11	1.597	1.594 0.026 0.027	97.0	1.593 0.027 0.028	96.9
	η 12	1.226	1.225 0.026 0.025	93.0	1.225 0.026 0.027	96.9
	σ 1	0.397	0.399 0.015 0.015	95.0	0.399 0.015 0.016	96.9
	σ 2	0.672	0.672 0.031 0.029	96.0	0.673 0.032 0.033	95.9

Table 7 :

 7 Parameter estimates of the measurement model. Parameters (σ 1 , σ 2 , σ 3 ) represent the standard deviation of the measurement errors for the three composite scores. Other parameters given by series of six (η 10 to η 15 ; η 20 to η 25 and η 30 to η 34 ) correspond to the parameters of the quadratic I-splines link function used to transform the anatomic composite score, the cognitive composite score and the functional composite score, respectively.

	score	Parameter Estimate	SE	p-value
		η 10	-5.611	0.249 <0.001
		η 11	0.527	0.115 <0.001
		η 12	0.263	0.097 0.006
	cerebral anatomy score	η 13	0.846	0.046 <0.001
		η 14	0.671	0.074 <0.001
		η 15	0.558	0.208 0.007
		σ 1	0.236	0.008 <0.001
		η 20	-6.429	0.310 <0.001
		η 21	-0.122	0.285 0.668
		η 22	0.579	0.107 <0.001
	cognitive score	η 23	1.436	0.042 <0.001
		η 24	0.461	0.101 <0.001
		η 25	0.884	0.136 <0.001
		σ 2	0.394	0.015 <0.001
		η 30	-7.332	0.299 <0.001
		η 31	0.953	0.082 <0.001
		η 32	0.272	0.135 0.045
	functional score	η 33	0.528	0.064 <0.001
		η 34	0.631	0.041 <0.001
		σ 3	0.581	0.025 <0.001

Table 8 :

 8 Estimates of the transition matrix intensities on ADNI data when considering three discretization steps: 6 months (AIC=1386.68), 3 months (AIC=1370.45) and 2 months (AIC=1367.21).

		δ = 6 months	δ = 3 months	δ = 2 months
		Estimate	SE Estimate	SE Estimate	SE
	α 0	-0.054 0.014	-0.054 0.015	-0.054 0.015
	α 1	0.008 0.009	0.008 0.009	0.008 0.009
	α 2	0.001 0.013	0.001 0.013	0.001 0.013
	α 0	0.010 0.008	0.011 0.008	0.011 0.008
	α 1	0.022 0.010	0.022 0.010	0.022 0.010
	α 2	0.025 0.014	0.025 0.015	0.025 0.015
	α 0	0.010 0.017	0.008 0.017	0.008 0.017
	α 1	-0.012 0.017	-0.011 0.018	-0.010 0.018
	α 2	-0.011 0.019	-0.010 0.020	-0.009 0.020
	α 0	0.077 0.023	0.083 0.026	0.084 0.027
	α 1	0.018 0.026	0.019 0.029	0.019 0.029
	α 2	-0.009 0.034	-0.010 0.037	-0.011 0.039
	α 0	-0.396 0.074	-0.423 0.088	-0.432 0.093
	α 1	0.081 0.030	0.088 0.033	0.090 0.034
	α 2	0.026 0.042	0.029 0.045	0.029 0.047
	α 0	0.146 0.054	0.156 0.062	0.159 0.064
	α 1	-0.068 0.054	-0.073 0.060	-0.074 0.062
	α 2	-0.078 0.059	-0.080 0.066	-0.079 0.068
	α 0	0.077 0.035	0.103 0.048	0.109 0.050
	α 1	0.025 0.043	0.017 0.056	0.016 0.058
	α 2	-0.001 0.052	-0.010 0.068	-0.012 0.071
	α 0	0.132 0.042	0.177 0.062	0.185 0.063
	α 1	0.018 0.048	0.000 0.066	-0.004 0.066
	α 2	0.012 0.061	-0.006 0.079	-0.009 0.082
	α 0	-0.892 0.108	-1.195 0.207	-1.237 0.219
	α 1	0.569 0.078	0.770 0.142	0.798 0.149
	α 2	0.478 0.082	0.667 0.141	0.692 0.148

† Rate of convergence, (15% missing occasions, 7% missing outcomes), ‡ ASE is the asymptotic standard error, ESE is the empirical standard error and CR is the coverage rate of the 95% confidence interval.

† Rate of convergence (15% missing occasions, 7% missing outcomes) ‡ ASE is the asymptotic standard error, ESE is the empirical standard error and CR is the coverage rate of the 95% confidence interval.
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Goodness-of-fit of the model

We assessed the goodness-of-fit of the model by comparing the subject-specific predicted trajectories (conditionally to the random effects) with the observed trajectories in the transformed scale of the markers. Specifically, we computed the mean predictions and 

Appendix C: Additional results in ADNI application