
Polarization effects in 3D vectorial induced current
reconstructions
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In tomography algorithms, the complex amplitude scattering matrix corresponds to the input parameter. When
considering three-dimensional targets, the scattering matrix is now containing vectorial information. Thus,
this scattering matrix might be calculated with various polarization projections. Moreover, when dealing with
experimental data, we are almost every time faced with truncated data. We focus here on the impact of
selecting parts of the amplitude scattering matrix elements versus others and in particular on the influence of
the polarization choices on the imaging results. In order to better apprehend the physical content associated to
each polarization term, the study is conducted with a simple vectorial induced current reconstruction algorithm
allowing to reconstructed qualitative maps of the scene. This algorithm is applied on scaled models of aggregates
combined with experimental scattered fields acquired in the microwave frequency range.

1. Introduction
Electromagnetic wave probing is an interesting tool to
obtain the physical features of unknown targets (posi-
tion, shape, size, complex permittivity). Indeed, these
characteristics can be retrieved from the measurements
of its scattered field by an inverse procedure. In practice,
there exists some difficulties in particular when dealing
with measurements. Indeed, as the scattered field can
not be measured on an entire surface enclosing the tar-
get - due to mechanical constraints or/and due to the
measurement time limitation, the data are truncated [1].
Moreover, all the polarization cases of the scattered field
are rarely measured in a multistatic configuration. The
measurements are also ineluctably disturbed by noise,
which does not a priori follow an uniform or a white
Gaussian distribution [2]. It seems thus interesting to
understand and analyze which measurements are the
most relevant ones. The final goal is to reduce the num-
ber of experimental data points while guaranteeing the
best reconstructions.

In this contribution, we focus our efforts on the po-
larization aspect. The polarization of the electromag-
netic wave contains useful information as studies in radar
polarimetry [3], [4], [5] or light scattering communities
[6], [7] and references therein [8] point out. In inversion
procedures, the different polarizations are generally con-
sidered to contain the same amount of information and
hence, are treated as a whole. In fact, reconstruction
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results seem to be greatly influenced by the choice of
the field components as shown by the results obtained
in [9]. The present study is performed by calculating
the amplitude scattering matrix using two classical po-
larization projections. The influence on the reconstruc-
tion results of each polarization projection will there-
fore be investigated. Moreover, in order to better ap-
prehend the physical content associated to each term of
the amplitude scattering matrix, we have decided to em-
ploy a simple induced current reconstruction algorithm
which is rendered vectorial as the polarization states of
the transmitter and the receiver are taken into account.
The reconstructions are made on scaled models of aggre-
gates [10] with experimental scattered fields acquired in
the microwave frequency range [11]. These targets fulfill
neither the Born or the Rytov approximation and thus
only qualitative maps of the scene will be provided.

The paper is organized as follows. The scattered field
is expressed in Part 2. Part 3 is devoted to the anal-
ysis of the available spectral information. In Part 4,
amplitude scattering matrices are calculated using two
conventions, the spherical convention often used in the
microwave community and the Bohren and Huffman
convention [12] often used in the light scattering com-
munity. The induced current reconstruction algorithm,
which uses these amplitude scattering matrices as input
is described in Part 5. The reconstruction results from
the measurements are provided in Part 6 as well as the
discussion on the impact of the polarization projection
on the reconstructed target. Concluding remarks follow
in Part 7.
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2. Far-field scattered field
The field scattered by a target, enclosed in a domain Ω
and illuminated with a monochromatic electromagnetic
wave, is calculated in a receiving zone Γ, at each receiver
position r ∈ Γ, by means of the observation equation
which can be written as

Es(r) =

∫
Ω

G(r, r′)χ(r′)E(r′)dr′ (1)

A free space configuration is considered, thus G is the
dyadic free-space Green function between the object
zone Ω and the receiver zone Γ. E and χ (χ(r′) =
k(r′)2−k2

0) are respectively the field and the contrast in
the Ω domain (with k0 the wavenumber in vacuum and
k(r′) the wavenumber in zone Ω).

When the far-field conditions are realized [6], that is,

k0r � 1, r � r′,
k0r
′

2r
� 1, ∀r ∈ Γ,∀r′ ∈ Ω(2)

The dyadic free-space Green function in spherical coor-
dinates (Figure 1(a)) can also be approximated by:

G(r, r′) ≈ ejks.(r−r′)

4πr
[I− er ⊗ er] (3)

where ks is the scattered wavevector, I the identity op-
erator, a ⊗ b the tensor product between the vector a
and the vector b and (er, eθ, eφ) are the unit vectors of
the spherical basis.

3. Ewald sphere
If the transmitter and the receiver can be placed all
around the Ω zone, on a sphere Γ of radius r, all the
information in the far-field is reached for a considered
frequency and the Ewald sphere is totally covered [13].
This Ewald sphere corresponds to the location, in the
spectral domain, of the vector K = ks − ki, where ki

(resp. ks) corresponds to the incident (resp. scattered)
wavevector. Unfortunately this configuration is difficult
to obtain in practical situations. Indeed, all geometrical
positions may not be allowed due to various considera-
tions (measurement time, mechanical constraints, ...).

Figure 1 describes the geometrical configuration as-
sociated to the experimental setup of the C.C.R.M. -
Marseille employed in the present work for acquiring the
data sets (see section 6.A). The origin O of the spheri-
cal coordinate system (r, θ, φ) is located at the center of
the target zone Ω [14]. The transmitter is placed on the
sphere surrounding the target, its position is described
by (rT , θT , φT ) with θT ∈ [0, 2π] and φT ∈ [φTb , φ

T
u ]

(where φTb and φTu are the limit φT -angles). The receiver,
placed on the same sphere (rR = rT ), has a position
described by (rR, θR, φR) with θR ∈ [θRb , θ

R
u ] (where θRb

and θRu are the limit θR-angles) and with φR = 90◦. The
associated Ewald sphere which describes the spectral in-
formation contained by the scattered field is represented
in Figure 2. From a global point of view, this sphere
is relatively well-filled. The lack of the backscattering
zone - due to the limits of the θR angle - is balanced

(a) (b)

Fig. 1. Geometrical configuration.

by the variation of the θT angle between 0 and 2π. To
take a closer look at this sphere, cross-sections defined
at kx = 0, ky = 0 and kz = 0 are presented in Fig-
ures 2(b), (c), (d). The plane (kx0ky) is relatively well-
filled. Nevertheless it can be noticed that it contains
a larger amount of low spatial frequency values than of
high frequency ones. In the (kx0kz) and (ky0kz) planes,
parts of the disks are missing, i.e., the lower and the up-
per parts along the kz-axis are truncated and only low
spatial frequency values are present. This is due to the
constrained measurement geometry, i.e., the angles be-
tween 0 and φTb (30◦ in the case of Figure 2) are not
accessible by the transmitter in the positive part of the
z-axis and the angles between φTu and π (50◦ in the case
of the Figure 2) are excluded in the negative part. This
explains also the asymmetry with respect to the kz = 0
axis.

(a)3D view (b)kx = 0 plane

(c)ky = 0 plane (d)kz = 0 plane

Fig. 2. Ewald sphere using the specified configuration with
φTb = 30◦, φTu = 130◦, θRb = θT + 50◦ and θRu = θT + 310◦

(each point corresponds to a transmitter-receiver couple): (a)
3D visualization and (b), (c) and (d) cross-sections
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In the following, the discussion on the polarization im-
pact is restricted to this specific Ewald sphere topology.

4. Amplitude scattering matrix

In the far-field, for a non-absorbing medium, the com-
plex amplitude scattering matrix S, as defined in [6],
describes the realtion between the components of the
incident field vector and the components of the scat-
tered field vector. With this definition, the scattered
field vector Es is linked to the incident field vector Ei

as:

Es = SEi (4)

This scattering matrix is determined by the incidence
and the scattering directions as well as by the proper-
ties of the target, but it also depends on the choice of
the polarization basis. Two main conventions are usu-
ally used, the first one - called here the spherical conven-
tion - is well-spread in the microwave community while
the second one - here called the Bohren and Huffman
convention - is favored by the optics community.

4.A. Spherical convention

For a given transmitter/receiver couple, the scattering
matrix can be constructed with a spherical convention,
using as basis the (uTθ , u

T
φ ) vectors for the incident wave

and the (uRθ , u
R
φ ) vectors for the scattered wave [15], [11]

(Figures 1(b) and 3(a)). As the far-field conditions are
assumed, the field vectors have no radial components
and are then totally determined by their components
along uRθ and uRφ . Accordingly, the element Sp,q of the
scattering matrix corresponds to a scattered field mea-
sured along the uRq vector for an incident field Ei po-

larized along the uTp vector (for p, q ∈ {φ, θ}) and the
scattering matrix is written as:(

Esθ
Esφ

)
=

(
Sθθ Sθφ
Sφθ Sφφ

)(
Eiθ
Eiφ

)
(5)

(a) (b)

Fig. 3. For a given couple of transmitter and receiver posi-
tions (source : (rT = 102λ, θT = 100◦, φT = 60◦), receiver
(rR = 102λ, θR = 150◦, φR = 90◦), representation of the ba-
sis vectors for the source (red) and for the receiver (green)
(the ki and ks vectors are plotted in black (- -)) under (a)
the spherical convention, (b) the Bohren and Huffman con-
vention.

This convention is particularly convenient when the
fields are measured with several incident and scattering
directions.

4.B. Bohren and Huffman convention
In the previous definition, the elements are not linked to
the scattering plane, i.e, the plane containing both the
ki incident wave vector and the ks scattered wave vec-
tor (see Figure 3(b)). For a given transmitter/receiver
couple, the complex amplitude scattering matrix can be
constructed using another basis related to this specific
scattering plane, as proposed in the Bohren and Huff-
man (BH) definition [12] which is commonly used in the
light scattering community. The scattered field compo-
nents are then linked to the incident ones in the far-field
region as follows:(

Es‖
Es⊥

)
=

(
S‖‖ S‖⊥
S⊥‖ S⊥⊥

)(
Ei‖
Ei⊥

)
(6)

where E‖ (resp. E⊥) corresponds to the field compo-
nent parallel (resp. perpendicular) to the scattering
plane and the element Sp,q of the scattering matrix cor-
responds to a scattered field measured along the uRq vec-

tor for an incident field Ei polarized along the uTp vector
(for p, q ∈ {⊥, ‖}).

5. Induced current reconstructions based on scatter-
ing matrices
In a classical first-order diffraction tomography algo-
rithm, the scattered field vector and the incident field
are along the same direction and the Born approxima-
tion or the Rytov approximation is used in Equation
(1). This equation becomes a scalar equation and the
contrast map is then retrieved via an inverse Fourier
transform (see for example [16], [17], [18]).

Here, a different approach is considered: (i) the entire
vectorial nature of the fields is taken into account, and
(ii) no linearized assumption is made. We only assume
that the induced current vector J(r′) = χ(r′)E(r′) is
collinear with the polarization state of the incident field
uTp (for p ∈ {φ, θ,⊥, ‖}). The scattered field expression
becomes:

Es(r) ≈ ejks.r

4πr
[eθ ⊗ eθ + eφ ⊗ eφ]uTp∫

Ω

e−j(ks−ki).r
′
Jp(r

′)e−jki.r
′
dr′

(7)

The vector uTp describing the polarization state of the
incident field is not constant for all the illumination di-
rections. For a given choice of polarization (p ∈ {θ, φ,⊥
, ‖}), it can be written in the form

uTp = frp er + fθp eθ + fφp eφ (8)

where the terms fr,θ,φp are functions of the θT , φT , θR

and φR angles. Due to the specific geometry of the con-
figuration under investigation, the scattered field polar-
ization vector is generally not collinear with the incident
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field one. The vector uRq , which represents the projec-
tion on the selected polarization (q ∈ {θ, φ,⊥, ‖}) given
by the receiver is:

uRq = gθq eθ + gφq eφ (9)

where the terms gθ,φq are functions of the θT , φT , θR and

φR angles.
For a selected polarization case (p, q), the element of
the scattering matrix Sp,q (where p ∈ {θ, φ,⊥, ‖} and
q ∈ {θ, φ,⊥, ‖}) corresponds then to the scalar product
between the vectors uTp and the vector uRq :

Sp,q = Es(r).uRq (10)

≈ ejks.r

4πr
uTp .u

R
q

∫
Ω

e−j(ks−ki).r
′
Jp(r

′)e−jki.r
′
dr′

The magnitude of the induced current |Jp,q| created by
a target at the position r′ - in a lossless embedding
medium - is then linked to the measurement of the ele-
ment Sp,q of the scattering matrix by the following equa-
tion :

|Jp,q(r′)| ≈ A
|S̃p,q(K)|
uTp .u

R
q

, if uTp .u
R
q 6= 0 (11)

where 1/A = | e
jks.r

4πr | is a constant term and S̃p,q(K) is
the 3D inverse Fourier transform of Sp,q(r

′).
In this work, we only use measurement points with

collinear incident and scattered polarization vectors.
The Sθφ, S‖⊥ and S⊥‖ elements are thus not exploited
herein as they correspond to situations where the inci-
dent and the scattered polarization vectors are orthogo-
nal. Nevertheless, these elements are non null only when
the target is changing the polarization of the impinging
wave. Finally, the number of elements in the complex
amplitude scattering matrix which will be considered in
the imaging algorithm may vary according to the polar-
ization state. Table 1 summarizes the percent of mea-
surements used in each case.

Table 1. Measurements used with the inversion procedure
for the configuration with φTb = 30◦, φTu = 130◦, θRb = 50◦

and θRu = 310◦

Polarization Sφφ Sθθ Sφθ S⊥⊥ S‖‖

% 84 55 33 100 46

Number 4407 2886 1732 5247 2414

6. Reconstruction results from measurements
In this part, the induced current reconstruction algo-
rithm is assessed using scattering matrices determined
from experimental data.

6.A. Experimental configuration
To get all possible information on an object in the far-
field, the field should be measured on the entire sphere
enclosing the target. The spherical experimental setup

in the anechoic chamber of the C.C.R.M. - Marseille al-
lows to obtain a configuration similar to the one de-
scribed in Figure 1. This setup has been used by the
researchers of the Institut Fresnel to perform the mea-
surements.

6.A.1. Geometrical arrangement
For a target at the origin of the coordinate system of
the spherical setup (Figure 4), the scattered field can
be measured on a portion of the sphere enclosing this
object. Indeed, the transmitting antenna can move on

Fig. 4. Experimental setup: photography of the anechoic
chamber.

a circular arch, the target can rotate around the z−axis
- which allows to create a situation which is similar to
a fixed target and a source displaced over several verti-
cal arches around the target. The receiver is also moved
in the horizontal plane with a circular movement cen-
tered on the target. This setup was already described
in several publications (see for example [19]). As the
distance between the center of the setup and the trans-
mitting antenna or the receiving antenna is 102λ, we are
in agreement with the far-field conditions (equation (2))
as long as the radius of the minimum sphere enclosing
the target has a diameter smaller than 10λ.

6.A.2. Experimental parameters
The geometrical parameters are chosen in agreement
with the maximum spatial bandwidth of the scattered
field to measure the field in a non-redundant way [1].
Indeed, 99 positions of the source are used in this
study. Each source has a position (rT , θT , φT ) where
φT ∈ [φTb = 30◦ : 10 : φTu = 130◦] and θT ∈ [θTb =
20◦ : 40 : θTu = 340◦]. The field is measured at 53 re-
ceiver positions (rR, θR, φR = 90◦) where θR ∈ [θRb =
θT + 50◦ : 5 : θRu = θT + 310◦]. The measurements
were performed for a wavelength comprised between
λ = 15 mm and λ = 18.7 mm, but all the results here
are for λ = 16.7 mm. Measurements are calibrated to
refer to the scattered field associated to an incident field
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having a unit magnitude and a null phase at the center
of the setup [20], [21]. Data processing is required to
extract the maximum of information [2] from the mea-
surements. In particular all the fields are processed to
avoid drift phenomena [22].

6.A.3. Polarization

As the two antennas are linearly polarized pyrami-
dal horns (ARAMWH-1826B), the target is illuminated
with a linearly polarized wave and one single polariza-
tion component of the scattered field is measured at each
measurement point. The different polarization cases are
obtained by combining two different emitting antennas
plus a rotation of the receiving antenna. The experi-
mental data are thus obtained by measuring for each
incident field parallel to uTφ (and then uTθ ), the scat-

tered field vectors which are parallel to uRφ and to uRθ
(see Figure 1 for notations).

6.B. Targets

We have considered two targets which are clusters of
spheres. The spheres of the first object have diameters
which are comparable to the wavelength and in theory it
should be possible to separate them with our algorithm.
On the contrary, the spheres of the second object are
much smaller and can not easily be separated with such
an algorithm.

The first target is a pyramid of four 1.5λ in diameter
spheres of PMMA (εr = 2.6) (Figure 5(a)). Its total size
is equal to 3λ. It has a density of approximatively 50%
as compared to its minimum covering sphere. The sec-

(a) (b)

Fig. 5. Dielectric targets: (a) Pyramid of 4 spheres (sphere
diameter: 1.5λ) and (b) Aggregate of 74 spheres (sphere
diameter: 0.3λ)

ond target is an horizontal shaped aggregate composed
of 74 spheres (Figure 5(b)). This object was made by
stereo lithography, which is a sequential deposit of lay-
ers of liquid acrylate resin (εr = 2.85 + j0.06) [10]. The
diameter of each sphere is equal to 0.3λ. Its total size
is equal to 5λ. It has a density of approximatevely 3%
as compared to its minimum covering sphere.

Due to their size and their permittivity contrast with
respect to the background, the two targets do not fullfil
the validity condition of the Born or the Rytov approx-
imation [23].

6.C. Reconstruction parameters
6.C.1. Investigation zone
The dimension of the investigation zone is directly
linked to the discretisation step in the spectral domain.
As the scattered field is not measured with an uniform
step along each component of K, the field has to be
interpolated before performing the inverse Fourier
transform. For the present measurement configuration,
the spectral domain step is set equal to 2 leading to an
associated investigation zone corresponding to a cube
with a side length of 30λ. As the voxel width in the
reconstructed map is directly linked to the maximum
values in the spectral domain, the voxel width is bigger
along the z-axis (0.65λ) than along the y-axis (0.27λ)
and along the x-axis (0.28λ).

6.C.2. Normalized maps
Each reconstructed map contains qualitative informa-
tion - position and shape - on the target. We only
consider magnitude maps and normalize them to obtain
values between 0 and 1. A normalized map Mn is thus
obtained from an initial map M with

Mn =
|M | −min(|M |)

max(|M |)−min(|M |)
(12)

6.C.3. Estimate assessment
To have a quantitative assessment of the reconstruction,
we use three criteria. Before calculating these criteria,
it is necessary to determined the real position of the tar-
get mass center d∗= (xd, yd, zd) to avoid bias. Using the
reconstructed maps, we determined the real position of
this target mass center using a 3D cross correlation be-
tween the reconstructed map and the expected one as
explained in [9]. The first criterion is a comparison be-
tween the true and reconstructed normalized maps using
a classical L2 norm.

CL2 = ||M true
n −Mreco

n ||L2
(13)

We have shown in [9] that the usually adopted criteria
L1 and L2-norms are not very well suited to evaluate
the accuracy of the reconstruction of complex targets
as their values are particularly dependent on the recon-
struction of the empty voxels. We thus use two other
criteria, i.e., the correlation Cc and the cross correlation
Ccc coefficients between the two maps:

Cc =
Cov(Mreco

n , M true
n )√

V ar(Mreco
n )V ar(M true

n )
(14)

Ccc =

∑
r(M

true
n (r + d∗))(Mreco

n (d∗))∑
r(M

true
n (r + 0))(M true

n (0))
(15)

where Cov(u, v) is the covariance between u and v,
V ar(u) the variance of u, r the position of the considered
cell and d∗ the real position of the target determined as
explained in the following. The Ccc coefficient quantifies
the similarity between the two maps by only comparing
the voxels containing some material. The more similar
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the two maps are, the closer to 0 the criteria CL2 is and
the closer to 1 the criteria Ccc and Cc are. These criteria
are calculated considering a reduced (6 × 6 × 6)λ3 cu-
bic investigation zone centered at 0. Indeed, due to the
relative number of voxels without material in the cal-
culation, the considered zone dimension affects the CL2

criterion.

6.D. Reconstructions in the different polarization
cases
In this part, results are presented and then discussed.

6.D.1. Pyramid of spheres
The true position of the center of gravity of the tar-
get was found to be at d∗ = (0.12, 0.12, 0.68)λ. This
position is very close to the expected one (0, 0, 0.68)λ.

The reconstructions using the amplitude scattering
matrix and the spherical convention are plotted in Fig-
ures 6, 8 and 7. In each polarization case, the presence
of the target can be seen and its size can be determined
on these maps. Nevertheless, the quality of the imaging
results is strongly different from a chosen polarization
case to another. The φφ and φθ cases allow to obtain
rather good results, while the θθ case is clearly less accu-
rate. The kind of information contained in each recon-
struction is also different according to the polarization
cases. Indeed with the Sφφ element, the boundaries of
the spheres are better reconstructed than the internal
parts. On the contrary, with the Sφθ element, the in-
ternal parts of the spheres are better reconstructed than
the boundaries. Looking at the criteria values, the L2

criterion gives very little information as this criterion is
the same (equal to 0.002) for all polarization cases. The
values of the two other criteria are given in Table 2. The
Cc and Ccc criteria show that the best cases are the φφ
and φθ cases, the latter being slightly better due to the
good reconstruction of the internal part of the spheres.

Let us now consider the reconstruction obtained with
the scattering matrix elements under the Bohren and
Huffman definition (Figures 9 and 10). The reconstruc-
tion with the S⊥⊥ element is very close to the one ob-
tained with the Sφφ element. This is confirmed by the
Ccc and Cc criteria (Table 2). The result with the S‖‖
element is not very good and is similar to the one ob-
tained with the Sθθ element.

Table 2. Criteria values for the pyramid of spheres.

Sφφ Sθθ Sφθ S⊥⊥ S‖‖

Ccc 0.47 0.27 0.53 0.46 0.28

Cc 0.73 0.68 0.71 0.72 0.72

6.D.2. Aggregate of spheres
The real position of the aggregate mass center using the
correlation criterion was found at (0, 0.18, 0.31)λ and
the expected position was (0, 0, 0.41)λ. This target is a
”flat” target, i.e, it has a small thickness along the z-
axis as it can be seen in Figure 11. The reconstruction

(a)z = 0λ (b)z = 0.66λ

(c)z = 1.32λ (d)z = 1.98λ

Fig. 6. Maps reconstructed at several altitudes using the
pyramid of spheres scattered fields in the Sφφ polarization.
The real sphere boundaries are plotted in black.

(a)z = 0λ (b)z = 0.66λ

(c)z = 1.32λ (d)z = 1.98λ

Fig. 7. Maps reconstructed at several altitudes using the
pyramid of spheres scattered fields in the Sθθ polarization.
The real spheres boundaries are plotted in black.

results are plotted at the altitude z = 0 for the differ-
ent polarization cases in Figures 12 - 13 and the criteria
values are given in Table 3. The localization and the
object global dimensions are well determined for all the
polarization cases. As expected, none of the cases al-
lows to distinguish the spheres due to the use of a linear
imaging algorithm. In the same way as for the previous
object, the reconstruction results differ from a polariza-



7

(a)z = 0λ (b)z = 0.66λ

(c)z = 1.32λ (d)z = 1.98λ

Fig. 8. Maps reconstructed at several altitudes using the
pyramid of spheres scattered fields in the Sφθ polarization.
The real spheres boundaries are plotted in black.

(a)z = 0λ (b)z = 0.66λ

(c)z = 1.32λ (d)z = 1.98λ

Fig. 9. Maps reconstructed at several altitudes using the
pyramid of spheres scattered fields in the S⊥⊥ element. The
real spheres boundaries are plotted in black.

tion case to another. Indeed, the reconstruction in the
θθ case is the worst according to the Cc and Ccc cri-
teria. The imaging results obtained with the Sφφ and
S⊥⊥ elements are very similar - it is also confirmed by
the criteria values - and all the ”branches” of the tar-
get are reconstructed in these cases. The S‖‖ element
provides a better reconstruction than the Sθθ element,
where all the ”branches” of the target are reconstructed,

(a)z = 0λ (b)z = 0.66λ

(c)z = 1.32λ (d)z = 1.98λ

Fig. 10. Maps reconstructed at several altitudes using the
pyramid of spheres scattered fields in the S‖‖ element. The
real spheres boundaries are plotted in black.

but the boundaries of the reconstruction are blurred. In
the Sφθ reconstruction result, some ”branches” are miss-
ing and this leads to lower criteria values, but the others
”branches” are correctly reconstructed.

Fig. 11. 3D visualization (in blue) of the reconstructed maps
using the S⊥⊥ case - the iso-surface threshold value is set to
0.2. The real 74 sphere aggregate is overlaid (in green).

Table 3. Criteria values for the aggregate.

Sφφ Sθθ Sφθ S⊥⊥ S‖‖

L2 0.009 0.008 0.014 0.008 0.009

Ccc 0.70 0.58 0.62 0.70 0.67

Cc 0.51 0.47 0.40 0.51 0.50
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(a)Sφφ (b)Sθθ

(c)Sφθ

Fig. 12. Maps reconstructed at z = 0λ using different ele-
ments of the scattered fields matrix with the spherical con-
vention. The real aggregate boundaries are plotted in green.

(a)S⊥⊥ (b)S‖‖

Fig. 13. Maps reconstructed at z = 0λ using different el-
ements of the scattered fields matrix with the Bohren and
Huffman convention. The real aggregate boundaries are plot-
ted in green.

6.D.3. Discussion

For the two targets, the reconstructions from the Sφφ
and the Sφθ elements are rather close to the real object
and the reconstructions from the Sθθ element is clearly
less accurate. With the Bohren and Huffman polariza-
tion definition, the S⊥⊥ element leads to better results
than the S‖‖ element. The results from the S⊥⊥ case are
similar to the ones derived from the Sφφ case. Neverthe-
less, it can be noticed that the S⊥⊥ element is the only
one taking into account all the measurements and this
can be of interest depending on the target under test.

The different parts of the target are not reconstructed
in a similar way from one polarization case to another
even if the polarization of the incident wave is the same.
This is clearly visible while comparing the reconstruc-
tions from the Sφφ and the Sφθ cases for the two tar-
gets. To better understand this behavior, we have plot-

ted the magnitude of the mean of the induced currents
calculated in the target zone at the altitude z = 0.45λ
(Figure 14) - corresponding to the middle of the three
spheres of lower altitude - for the pyramid of spheres.
These currents were obtained using a volume integral al-
gorithm [24], for source positions between φT = 30◦ and
φT = 120◦ with a 30◦ step, considering all the θT angles,
and for a single transmitter polarization uTφ . We can see
that the magnitudes of the components along ex and ey
have stronger values in the central part of the spheres
than on the boundaries, in opposition to the compo-
nents along ez which have an inverse behavior. Thus,
the projection of the resulting scattered field along uRφ
or uRθ will provide a different informative content. These
maps consolidate the results shown in Figures 6 and 8,
where different parts of the target were reconstructed ac-
cording to the chosen polarization reception orientation.

(a)| Jn,x | (b)| Jn,y |

(c)| Jn,z |

Fig. 14. Maps of the normalized induced current magni-
tude in the target zone at altitude z = 0.45λ for the pyra-
mid of spheres for a transmitter polarization choice along
eφ. Jn,i corresponds to the component along the ei vector
(i ∈ {x, y, z}).

7. Conclusion
In this paper, we have considered the amplitude scat-
tering matrix calculated with two classical polarization
projections. The same imaging procedure, a vectorial in-
duced current reconstruction algorithm, has then been
used, while the input components varied according to
the projections choices.

Our imaging process was tested using the amplitude
scattering matrix calculated from experimental fields
measured in an anechoic chamber for two clusters of
spheres, a pyramid of 4 spheres with a radius of 0.75λ
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and an aggregate of 74 spheres with a radius of 0.15λ.
The results show that the polarization choice has a
strong influence on the imaging result. With a spher-
ical configuration, the S⊥⊥ element using the Bohren
and Huffman convention or the Sφφ and Sφθ elements
using the spherical convention lead to the best results.
A suitable choice of polarization will therefore provide
different kinds of information contents, in particular the
capability to focus on either the inner or the outer details
of the target substructure.

In our linear algorithm, far-field conditions are re-
quired and the induced current vector is assumed to
be collinear with the incident field polarization vector.
Under these assumptions, three-dimensional qualitative
maps of the scene are retrieved in real-time with a low-
memory requirement. Depending on the studied target,
in particular if the target can create strong depolariza-
tion effects, it might be of interest to pursue the inves-
tigation with a non-linear imaging algorithm.
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