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Abstract 

 

This paper aims the damage detection in a clamped-free beam, presenting nonlinear 

behavior for large displacements, considering the data variation related with the 

presence of uncertainties. For this, a stochastic version of the Volterra series, expanded 

through a random version of the Kautz functions, is implemented, using Monte Carlo 

simulations to estimate the underlying statistics. The measurements were performed in 

different days and conditions, to consider the data variation and the presence of 

nonlinear behavior in the analysis. Two different damage indexes are proposed, based 

on the advantage of the use of Volterra series, related with the capability to separate 

linear and nonlinear contributions in the total system response. The results have shown 

that the nonlinear approach is more sensible to the presence of inserted damage (loss of 

mass), presenting better results than the classical linear approach.  

  

1.  Introduction 
 

Many structures and systems can operate in nonlinear regime of motion, depending on 

the working conditions that they are subjected. So, they exhibit complex responses with 

harmonic distortion, jumps, modal interactions, bifurcation, and possible chaos [1]. In 

Structural Health Monitoring (SHM) problems, this nonlinear behavior can be confused 

with the presence of inserted damage, mainly when the classical approaches, based on 

linear metrics, are implemented [2]. In these situations, more sophisticated methods 

have to be used, making the approach able to make difference between the intrinsic 

nonlinear behavior of the system and the presence of damage.  

 

On the other hand, any measurement is uncertain in nature, because of the variability 

related, for example, with the presence of noise, environment conditions, sensors 

sensibility, and others [3]. These uncertainties can reflect in data variation and to 

influence the model’s parameters estimation. Then, this variability can also difficult the 

application of damage detection procedures, considering real structures and systems. 

Therefore, it is essential a statistical analysis to ensure the confidence of the obtained 

results and to reduce the number of false positives in the SHM approaches applied [4].   

 

In this sense, this paper proposes the use of a stochastic version of Volterra series as an 

effective tool to take into account measurement uncertainties in the process of damage 

detection in a clampled-free beam underlying large displacements, using for this the 

Monte Carlo method to construct estimations of the statistical quantities of interest. The 

Volterra series are expanded using random Kautz functions to reduce the number of 

terms to be identified and the processing time. The damage inserted, associated to 

change of mass in connections (bolt loosed), is detected based on comparison between 
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linear and nonlinear contributions of the Volterra series in the total response, estimated 

in reference and damaged conditions. The results have shown that to consider the 

nonlinear terms in the analysis improves the capability of the approach to detect damage 

with a lower level of false alarms. 

 

2.  Detecting Damage Using Stochastic Volterra series 

 
In this paper, a stochastic version of the classical Volterra series is proposed as a tool to 

detect damage in a structure operating in nonlinear regime of motion and that it is 

subject to data variation. In general, the systems uncertainties can be classified in two 

main groups, the data uncertainties and the model uncertainties [3]. The model 

uncertainties are related with the lack of knowledge about the physics of the problem, 

so, they can be reduced or even eliminated with the increase of knowledge about the 

system behavior [5]. This type of uncertainties is not taken into account in this work. 

Thus, it is assumed that the Volterra series are able to describe the dynamics behavior of 

the structure. On the other hand, the data uncertainties are related with the model 

parameters variation, caused by data variation, environment conditions, noise, and 

others [6]. In this work, the data uncertainties are considered through the use of a 

parametric probabilistic approach.  In this sense, the model parameters subjected to 

uncertainties are assumed as random variables or random process, defined on the 

probabilistic space ( , , )Æ P , where  is a sample space, Æ is a σ-algebra over , and 

P  is a probability measure. It is assumed that any random variable ( )Y R  in 

this probabilistic setting, with probability distribution ( )P dyY  on R, admits a probability 

density function (PDF) ( )y p dyY  with respect to dy.  

 

2.1 Stochastic version of the Volterra series 

 

The discrete-time Volterra series can describe the nonlinear relationship between input 

and output signals through the generalization of the convolution concept [7]. For better 

understanding about the Volterra series formulation and more details considering the 

deterministic analysis, some other works are suggested [8-9]. Thus, consider a nonlinear 

system with a single output, that it is a random process ( , ) ( , )k kZ y , as a 

consequence of a single input, that it is deterministic ( ) ( )k u kZ . The stochastic 

version of the Volterra series can describe the random output of the nonlinear system as  
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where the random process                                                                represents the random 

version of the η-order Volterra kernel and N1,…,Nη the number of terms used. In this 

work the Volterra series will be truncated in the third order term (η = 3), because of the 

characteristic of the nonlinear system in study, that can be well approximated by a 

Duffing oscillator [10]. The main advantage of the use of Volterra series in the 

description of nonlinear systems is its capability in separate linear and nonlinear 

contributions in the total response through the kernels convolution 

 

1 1( , ,..., ) ( , ,..., )n n n nZ H



 3 

where 
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There are some drawbacks in the use of this formulation, like the high number of terms, 

the difficulty in the series convergence and the model stability. So, in order to reduce 

the high number of terms the kernels can be expanded in a orthonormal bases, such as 

the Kautz functions, that will be considered in this work because of its capability in 

describe oscillatory systems [11-12]. Then, it can be considered 

 

where                                                         represents the η-order random Volterra kernel, 

expanded in the Kautz basis, J1,….,Jη are the number of Kautz functions used in each  

orthonormal projection and  the random process                                           represents 
the random version of the ij-th Kautz filter. It is important to observe that the Kautz 

functions are assumed as random, because their definition depends of the system 

dynamics and, in this work, the system output, which is related with its dynamic 

behavior, is considered as random. 

 

Now the random system output can be estimated through multiple convolutions between 

the random Volterra kernels, represented in the orthonormal basis, and the deterministic 

input signal filtered by the random Kautz functions 

 

where the random process                                     represents the deterministic input 

signal, filtered by the random Kautz functions, i. e., 
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Then, the estimation of the coefficients can be done considering the least squares 

method and Monte Carlo simulations. In this regard, considering each realization θ, the 

input signal filtered ( , )
ji kl  can be used to complete the matrix Γ, and the random 

experimental output ( , )ky  used to complete the vector Y. Finally, the coefficients 

estimation is made considering  

 

where, Φ is composed by the terms of the orthonormal kernels Bη for each realization θ. 

The procedure is repeated until the Monte Carlo convergence is achieved. Figure 1 

shows a flowchart describing the kernels estimation procedure used in this work, 

considering the Monte Carlo simulations. 

 

 
 

Figure 1. Flowchart of the random kernels coefficients estimation based on Monte Carlo 

simulations. 

 

2.2 Random version of the Kautz functions 

 

The deterministic version of the Kautz functions can be found in [13]. The functions 

definition is related with the system dynamics, expressed as natural frequencies and 

damping ratios. As, in this work, the system response is assumed as random, the modal 

parameters are also considered as random. So, the Kautz functions are modeled as 

random process, of generalize can be rewritten as  

 

and  

 

being the random parameters     and               defined as 
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where      and                       represent, respectively, the random Kautz 

poles in discrete domain, related with each Volterra kernel, and its complex conjugate. 

The discrete poles can be related with the continues poles             

  

where Fs is the sampling frequency. Finally, the Kautz poles, for each kernel, are 

defined as  

 

where                          and                         are the parameters of the Kautz poles and η 

represents the number of the Volterra kernel considered in the analysis. When it is 

cosidered the linear analysis          and           can be approximated, respectively, by the 

damping ratio                         and natural frequency                         , that are considered 

random variables as a consequence of the data variation. The definition of the 

parameters related with the high order Volterra kernels it is more complicated, because 

they are not exactly the natural frequencies and damping ratios, but combinations of 

these values. In this work, it is proposed a linear approximation of these parameters, 

considering the kernels of second and third order  

 

where the relationships, p1, p2, p3 and p4 can be determined through the minimization of 

the error function 

 

where       is the system response obtained through the Volterra model,       is the 

experimental system response, and Δ the vector with the coefficients p1, p2, p3 and p4. 

The optimization is realized only for a representative data, and not in all Monte Carlo 

simulations, this methodology reduces the computational costs. So, in this work, the 

system's mean response is used in the optimization procedure. Then, the Kautz 

functions poles are obtained through the modal parameters estimated in each Monte 

Carlo simulation and the coefficients estimated. 
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2.3 Damage detection approach based on novelty detection 

 

The damage detection is done based on the variation of the Volterra kernels 

contributions in the total system response and novelty detection. As mentioned before, 

the main advantage of the Volterra series is the capability to separate linear and 

nonlinear contributions through the kernels convolution, and this advantage allows the 

comparison between the contributions before and after the damage occurrence. So, this 

characteristic allows the analysis of which term of the response is more sensible to the 

presence of damage. In this sense, two damage indexes can be calculated, in reference 

condition, considering the contributions obtained through the Eq. (3) 

 

 
1

( , ) ( , )
lin

ref refk ky y , 
(15) 

 
2 3
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ref ref refk k ky y y , 

where                 is a matrix Ns × k representing the  linear  contribution,  composed  by  

only  the  first kernel contribution,  and                is also a matrix Ns × k representing the 

nonlinear contribution composed by the sum of the second and third kernels 

contributions.  Additionally, the index m is used to represent the two different indicators 

calculated. So, the general notation             is used from here, with m = lin or nlin, 

depending on the number of kernels considered in the analysis. Ns is the number of 

Monte Carlo simulations considered and k represents the discrete-time. It is observed 

that the contributions of the total response obtained, in reference condition, are random 

processes, estimated with statistic confidence and not simple curves. Therefore, to 

detect system variations related with damage, is needed to determine if the new 

contributions obtained through models identified in unknown system condition are 

contained in these random processes. To create a classification damaged/healthy state a 

distance-based method to outliers’ detection is used [14]. In this sense, two different 

damage indexes, in reference condition, based on the standardized Euclidian distance 

between vectors, can be calculated as 

 

where             and             are, respectively, the linear and nonlinear indexes calculated 
in reference condition, that are random variables,  and V is a diagonal matrix Ns × k in 

which the diagonal elements are the standard deviations of the columns of                   or   

   . The indexes are calculated in a stochastic sense, because the model is 

stochastic and the model response is assumed as a random process. It is expected that 

the statistic confidence of the model does the approach able to differ data variation and 

damage. With the indexes identified, their probability density function (PDF) can be 

estimated considering Kernel Density Estimation approach [15-16] 

 

where                  represents an approximation of the true PDF of              ,         is the ith 

realization of the random variable             , K is the kernel used in the transformation, a 
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Gaussian kernel in this work, and h is a smoothing parameter. The main difficulty in 

Kernel Density Estimation is the choice of optimal value to the smoothing parameter, 
then the cross-validation was used to set the better value to h [17]. The Kernel Density 

Estimation is used because the index distribution is assumed as unknown a priori and 

the large number of Monte Carlo simulations provides sufficient samples of the index to 

estimate its density with this approach. 

 

Then, a threshold of the reference condition can be defined based on the empirical 

distribution estimated [18] 

 

where β is the probability of false alarms considered and Λm is the threshold estimated. 

Now, with the model constructed in the reference condition and the threshold 

calculated, new Volterra models can be calculated in unknown conditions (healthy or 

damaged) and compared with the stochastic reference system response 

 

where              represents the kernels contributions of the Volterra series identified in the 

unknown condition. So, the hypothesis test can be applied to determine if the system is 

in healthy or damaged condition 

where the null hypothesis H0 represents the healthy condition and H1 the damaged. 

Figure 2 shows a flowchart of the damage detection approach proposed in this work, 

based on a stochastic version of the Volterra series.  

 

3.  Experimental damage detection in a nonlinear beam 
 

The experimental setup considered was the same used in [9] and [19], composed by a 

clamped-free beam with dimensions of 300×18×3[mm
3
] and a magnet positioned near 

to the free end, to generate a nonlinear interaction with the beam (Figure 1). To emulate 

the presence of damage a bolted connection is positioned 150 [mm] from the free end 

with four nuts with 1 [g] each one, so the reference condition considers the 4 nuts and 

the damage is simulated through the loss of mass. Table 1 shows the structural 

conditions considered in the analysis. The signals acquisition was done considering 
sampling frequency of 1024 Hz and 4096 samples and using a m+p VibPilot data 

acquisition system. The structure was excited using a MODAL SHOP shaker (Model 

Number: K2004E01) attached 50 mm from the clamped, considering three different 

levels of voltage amplitude 0.01 V (low level), 0.10 V (medium level) and 0.15 V (high 
level). Finally, a vibrometer laser Polytec (Model: OFV-525/ -5000-S) and a Dytran 

load cell (Model: 1022V) are used to measure the velocity at the free end of the beam 

and the force excitation, respectively. 
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Figure 2. Flowchart of the damage detection approach based on Volterra kernels contributions and 

novelty detection. 

The stepped sine test was performed to show the nonlinear behavior of the system, close 

to the first vibration mode of the structure, when the high level of input is applied. 

Figure 3 shows the results obtained, it is observed the jump phenomena, characteristic 

of nonlinear systems, when 0.15 V of voltage amplitude is applied, so the structure 

presents nonlinear behavior for large displacements. Additionally, to consider the data 

variation in the procedure, the measurements were repeated 160 times in different days 

during 2 weeks, and then, a white noise with 5% of the signals' RMS value was 

randomly added to the data, generating 2048 synthetic experimental realizations to be 

used in the Monte Carlo simulations. To exemplify the difficulty of detect damage in 

this situation, figure 4 shows the envelope of the FRFs curves, with 99% of confidence, 

in reference condition, and different levels of damage. It is observed that it is not 

possible to differentiate the damaged and healthy conditions, mainly when the level of 

the damage is low (3 nuts). Thus, to use only the inspection of the output in time or 

frequency domain is not enough to correctly detect the structural state of the system.  
   

 

Steel Mass

50 mm

300 mm

Excitation

150 mm

Velocity Measurement 
Point

Magnet

Bolt
Beam 

Masses

 

(a) Photo. (b) Scheme. 

Figure 3. Experimental setup [9]. 

 

Table 1. Structural conditions. 

State Ref Dam I Dam II Dam III Rep 

Structural condition 4 nuts (reference) 3 nuts 2 nuts 1 nut 4 nuts (repair) 
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Figure 4. Stepped sine test considering different 

levels of input amplitude. 

Figure 5. FRF representing the data and 

damage variations. 

 

2.1 Volterra models estimation  

 

The estimation of the Volterra kernels was done in two steps, first a low level (0.01 V) 

chirp, varying the frequency from 10 to 50 Hz with rate of 10 Hz/s, was applied to 

estimate the first kernel (linear), and then, a high level (0.15 V) chirp, varying the 

frequency from 10 to 50 Hz with rate of 10 Hz/s, was applied to estimate the second and 

third kernels (nonlinear). The procedure is repeated 2048 times, to achieve the Monte 

Carlo convergence and to construct the stochastic reference model. The reference model 

was validated in time and frequency domains, considering as input the same chirp signal 

used in the identification process and a single tone sine with frequency close to the first 

vibration mode of the structure (~23 Hz) and high level of amplitude (0.15 V). Figures 6 

and 7 show the results obtained in the validation process. It is observed that the 

probability bands of the model, with 99% of confidence, can describe the nonlinear 

system behaviour, in all frequencies components, and the data variation.  

  
Figure 6. System output, considering a chirp 

input with high level of amplitude (0.15 V). 

Figure 7. PSD of system output, considering a 

sine input with high level of amplitude (0.15 V). 

 

The main advantage of Volterra series approach is the capability to separate linear and 

nonlinear contributions through the kernels convolution. This characteristic can be used 

to detect damage in the system. So, to exemplify, figures 8 and 9 shows the kernels 

contributions in the total response, considering the responses showed in figures 6 and 7. 

The first and third kernels have high contribution in the total response in time domain, 

the second kernel has low contribution because the output is approximated symmetric. 
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In frequency domain, the linear kernel contributes only to the first frequency 

component, the second kernel contributes only to the second harmonic and the third 

kernel contributes to the first and third harmonics. This occurs because of the 

mathematical definition of the third kernel that it has dependence of the first kernel.    

  
Figure 8. Kernels contributions in the total 

output, considering a chirp input with high level 

of amplitude (0.15 V). 

Figure 9. PSD of kernels contributions, 

considering a sine input with high level of 

amplitude (0.15 V). 

 

2.2 Damage detection  

 

After the identification of the set of reference models, the stochastic model obtained is 

used in the damage detection process. Then, new Volterra models are identified in each 

structural condition, and again, to consider the data variation, 2048 realizations were 

considered. So, the methodology explained in section 2.3 is applied, considering the two 

different indexes proposed (linear and nonlinear). The results were obtained considering 

a chirp input signal, with high level of voltage amplitude and varying the frequency 

from 10 to 50 Hz with rate of 10 Hz/s. Figure 10 shows the probability to detect damage 

using the proposed indexes, considering the 5 different structural conditions and 3 
values of β. The nonlinear index has better performance, because it is more sensible to 

the presence of the damage. The linear index cannot classify all damage conditions as 

damaged.     

  
(a) Linear index. (a) Nonlinear index. 

Figure 10. Probability of damage detection for different structural conditions. 

 

Finally, the receiver operating characteristics (ROC) curve was computed (Farrar 2012). 

This curve shows the relation between false alarms and true detections obtained 
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considering different values of β and structural conditions. Figure 11 shows the results 

obtained to the two indexes proposed. The nonlinear index has better performance than 

the linear index, with lower number of false alarms and higher number of true 

detections. Therefore, although the damage emulated (loss of mass) it has linear 

characteristic, the nonlinear metric proposed present better results, because the 

nonlinear terms of the response are more sensible to the presence of damage, without 

high influence of the data variation. 

  
(a) Linear index. (a) Nonlinear index. 

Figure 11. Receiver operating characteristics (ROC) curve. 

 

3.  Conclusions 
 

This paper has proposed an approach based on a stochastic version of the Volterra 

series, estimated based on Monte Carlo simulations, to detect damage in a nonlinear 

system considering data variation related with uncertainties. The results have shown that 

the nonlinear index proposed has better performance than the classical linear approach, 

despite the linear characteristic of the damage emulated (loss of mass). This occurs, 

probably, because the third kernel’s mathematical definition is related with the linear 

kernel, how can be observed on the cubic contribution in the first harmonic of the 

system’s output PSD (Fig. 9), doing the cubic contribution more sensible to the 

presence of damage. These results prove the advantage in using nonlinear metrics when 

the monitored structure presents nonlinear behavior. Besides that, the problem is more 

difficult to solve when uncertainty in the date is assumed and it can change or fluctuate 

by chance the metrics. In order to separate these effects, the proposed method in this 

paper has shown adequate to allow identifying the source of nonlinearities or presence 

of damage in an uncertainty scenario. 
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