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ABSTRACT
A computational inverse method to estimate the discharge of rivers observed by
satellite altimetry (water surface measurements at few days frequency) is developed
and assessed in detail. The flow model relies on the Saint-Venant equations (1D
shallow-water) combined with algebraic systems dedicated to the considered inverse
problems. The resulting hierarchical model combined with a variational data as-
similation method enables estimation of the three unknown key flow features: the
discharge Q(x, t), the bathymetry b(x) (an effective one) and corresponding friction
coefficients K(x). The complete inverse strategy results in the so-called HiVDI al-
gorithm. Extensive numerical results are analyzed for three rivers in two different
observations contexts (frequent satellite overpasses corresponding to the SWOT Cal-
Val orbit, ∼1 day period, and SWOT nominal orbit ∼ 5-21 days period) and three
different scenarii of prior information availability. These investigations cover numer-
ous realistic worldwide applications. It is shown that the space-time variations of
the river discharge Q(x, t) and the bathymetry profile b(x) can be accurately infered.
However the infered values of Q may be obtained at a multiplicative factor only (a
”bias” may remain), depending on the prior information accuracy. This bias van-
ishes as soon as an accurate mean value or one reference value of one of the three
infered field is provided. Once the assimilation of the satellite measurements has
been done during a sufficiently representative hydrological cycle, a dedicated low
complexity system can provide discharge estimations in real-time from the newly
acquired measurements.
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1. Introduction

While in-situ observability of the continental water cycle and river flows is declining, a
myriad of satellites for earth observations provide an increasing volume of river obser-
vations. The future Surface Water and Ocean Topography (SWOT) mission (CNES-
NASA, planned to be launched in 2021) equipped with a wide swath radar interfer-
ometer will provide river surfaces mapping at a global scale with an unprecedented
spatial and temporal resolution. Its measurements will be Water Surface (WS) height,
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width and slope, with a decimetric accuracy on WS height averaged over 1 km2 [1].
SWOT will cover a great majority of the globe with relatively frequent revisits (1 to
4 revisits per 21 days repeat cycle). By complementing decades of nadir altimetry in
inland waters [2], SWOT should offer the opportunity to increase our knowledge of
the spatial and temporal distribution of hydrological fluxes.

Thanks to this increased observability of WS worldwide, it will be possible to ad-
dress a variety of inverse problems in surface hydrology and related fields. Given these
WS measurements (elevation, water mask extents), see Fig. 1, the challenging inverse
problem(s) consists to estimate: the discharge Q(x, t), the unobserved bathymetry
b(x), the friction law parametrization K(x) and any lateral contributions. The esti-
mation of the discharge is more or less challenging depending on the space-time WS
observation density and the prior information quality (and potentially the measure-
ment errors too). Recent literature addresses some aspects of inverse problems in the
present remote sensing context, see e.g. [3] for a review. Relatively basic inverse meth-
ods have been developed; they are either based on the algebraic Manning-Strickler’s
law (see e.g. [4]) or empirical explicit hydraulic geometries power-laws [5–8]. In [9],
numerous approaches are compared on 19 rivers with artificially densified daily ob-
servables; the results fluctuate depending on the algorithm tested. No approach turned
out to be accurate or robust in all configurations. In this study the potential benefit
of having a correct a-priori estimation of the bathymetry was highlighted. In the river
hydraulics community, the most employed data assimilation studies are based on se-
quential algorithms, the Kalman Filter and its variants, see e.g. [10,11] based on the
1D Saint-Venant model and e.g. [12] based on the diffusive wave model.

None of the studies aforementioned has fully solved the inverse problem encountered
in the satellite context at global scale yet: the inference of the key triplet (discharge
Q(x, t), bathymetry b(x) and friction coefficient K(x)).

Variational Data Assimilation (VDA) approaches (optimal control of the dynamic
flow models [13–15]) have already been employed to address the present inverse prob-
lem. Recall that VDA approaches consists in minimizing a cost function measuring
the discrepancy between the model outputs and the observations; somehow combining
at best the model, the observations and prior information (fields values, characteristic
wave length of variations and fields regularity). In some circumstances (depending on
the a-priori available information), it is possible to infer the key unknown “parame-
ters” of the river flow model: the inflow discharge Qin(t), the bathymetry b(x), the
friction K and/or forcing terms (e.g. lateral fluxes). Among the pioneer VDA studies
dedicated to hydraulic models, let us cite [16–18]; next [19,20] have infered the inflow
discharge in 2D shallow water river models. Infering the discharge and complete set
of the hydraulic parameters from WS measurements only may lead to “equifinality is-
sues” (ill-posed inverse problems) depending on the adequacy between the observations
frequency and the flow dynamics, and the available prior information. The inference of
the key triplet (inflow discharge, effective bathymetry and friction coefficient) is inves-
tigated in [20,21] but from surface Lagrangian drifting markers providing constraining
observations. The upstream, downstream and a few lateral fluxes are identified from
water levels measured at in-situ gauging stations (Pearl River, China) in [22]; however
again the bathymetry and friction are given. The assimilation of spatially distributed
water level observations in a flood plain (a single image acquired by SAR) and a par-
tial in-situ time series (gauging station) are investigated in [23,24], see also [25]. In
[26,27] the inference of inflow discharge and lateral fluxes are identified by VDA by
superposing a 2D local “zoom model” over the 1D Saint-Venant model; these studies
are not conducted in a sparse altimetry measurement context.
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The altimetry measurements of WS are generally sparse compared to the flow dy-
namics, both in space and time. This important feature of the inverse problem is
analyzed in detail in [28] through the original and instructive “identifiability map”.
The latter is the (x, t)-plane representation of all the available information, that are:
the satellite measurements, the model response in terms of wave propagation and the
misfit with respect to the equilibrium state.

Concerning the bathymetry inference, it is shown in [7,28,29] that given a single
in-situ measurement of bathymetry, the complete bathymetry profile can be recon-
structed. [28,30,31] present accurate inferences of Q(t) by a similar VDA process as
the present one but based on the 1D Saint-Venant flow model “only” (it does not in-
clude a hierarchical modeling strategy as in the present approach). In the (single) river
case considered in [31], the priors are computed from small Gaussian perturbations of
the “true” values of K and b. Moreover these priors define a highly controlling rating
curve Q(Z) at downstream (outflow condition). As a consequence, the inversion pro-
cess converges quite easily to the correct discharge Q(t) and bathymetry b(x): values
corresponding to the nearly exact rating curve.

In summary these recently developed VDA algorithms are accurate to infer the
inflow discharge Qin(t) but from accurate prior information. The latter may be a
controlling downstream flow condition [30,31] or a single depth measurement in the
river [28].

In view to apply the algorithms to worldwide ungauged rivers, no accurate prior in-
formation should be introduced, neither in the direct model nor in the inverse method.
This was not the case up to now; on the contrary this is one of the challenging scenarii
considered in the present study. To do so, crucial improvements of the aforementioned
VDA-based inversions are proposed. Firstly the hierarchical modeling strategy based
on dedicated algebraic systems strengthens the robustness of the estimations in partic-
ular if a local or large scale value of Q is provided e.g. from a large scale hydrological
model.

It is formally demonstrated (and numerically confirmed) that the complete inverse
problem may be ill-posed for ungauged rivers (the most challenging case). However
a simple good prior mean value of Q̄ (or one reference value of bathymetry bref )
improves the accuracy of the estimations of the space-time dependent unknowns
(Q(x, t), b(x);K(x;h)).

The complete inversion strategy presented in this article may provide river discharge
estimations at global scale from the upcoming SWOT satellite data (NASA-CNES-
CSA space agencies, 2021). Depending on the rivers, additional prior information
may be obtained from databases or not. The estimations are valid at observation
hours since the observations are propagated by the time-dependent flow model. An
identifiability map [28] provides a rough estimation of the estimations range of validity.
The numerical experiments scenarii addressed are relatively extensive to cover a large
spectrum of realistic contexts and worldwide rivers. Numerical results are analyzed
for portions of three different rivers (∼ 100 km long each); each case presenting a
“low identifiability index” (following the definition introduced in [28]). This means
that each case presents a high frequency of hydrograph variations compared to the
observation frequency. The corresponding inverse problems are relatively challenging,
somehow partially ill-posed.

Two contexts of observation are considered. ObsFs): a SWOT like fast sampling
(Cal-Val) orbit with ∼1 day period; ObsNs): a SWOT like nominal sampling with 21
days period (with 1 to 4 passes at mid-latitudes).
For each of the three (river - observation context) cases, three different inverse problems
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are considered. Each of them corresponds to a ”scenario”:

• Scenario S1): ungauged rivers. The observed river is ungauged: no reliable prior
information is available excepted the satellite measurements.
• Scenario S2): partially gauged river. In this case relatively reliable values of

discharge are provided at one location (gauge station) in the portion of the
river. These values may be provided by either a global discharge database or a
calibrated hydrological model.
• Scenario S3): pointwise measured bathymetry. In this case, one point-wise in-situ

measurement of bathymetry bref (or a cross-section profile) is available.

For each scenario Sn) (n = 1, .., 3), a different computational strategy is developed.
All the developed algorithms are available in the open-source computational software
DassFlow [32].

The outline of the article is as follows. Section 2 presents the river flow models:
a) the classical Saint-Venant equations with altimetry dedicated cross sections; b)
original altimetry dedicated algebraic flow systems (”low complexity” - ”low Froude”
systems). These systems are either based on the classical Manning-Strickler’s law or
on explicit “low Froude bathymetry” expressions. They are useful for different pur-
poses, both direct and inverse computations, and depending on the scenario. Section
3 presents the VDA formulation which takes into account prior hydraulic length scale
and error measurement amplitudes. Moreover it is demonstrated (formal calculations)
that based on the 1D Saint-Venant equations and WS measurements only, the space-
time variations of discharge Q(x, t) may be infered up to a multiplicative factor only
(a ”bias” may remain). The descriptions of the three test rivers and the WS mea-
surements are presented in Section 4. The various scenarii (leading to 20 numerical
experiments in total) are presented in Section 5. The estimation of the first guesses
is an important step of the upcoming inversions by VDA. It depends on the available
prior information; their computations are presented in Section 5 too. Section 6 focuses
on Scenario S1): inferences for ungauged rivers. The numerical results confirm that
the space-time variations of the infered discharge Qin(t) are (very) accurate, however
up to a potential bias. Section 7 focuses on Scenario S2) while Section 8 focuses on
Scenario S3): in-situ measurements, discharge time series at a gauging station and a
single bathymetry value respectively are available. The resulting estimations are good.
Section 9 presents how to compute Q in real time from newly acquired observations
(past the ”calibration” - ”learning” period). It is done using one of the algebraic - low
complexity system presented in Section 2. A conclusion is proposed in Section 10.

2. The rivers flow models

The primary rivers flow model is the classical Saint-Venant equations in (A,Q)(x, t)
variables, see e.g. [4,33], with the Manning-Strickler friction coefficient K defined as a
power law in water depth h. It is worth recalling that at the current hydrology satel-
lites measurement scale, the river flows present a low Froude number Fr; typically Fr
ranges approximatively within ≈ [0.1, 0.3]. A first consequence is that the imposed
downstream condition controls the flow; then in lack of prior information, it is im-
portant that this outflow condition is as “transparent” as possible (that is no wave
is reflected by the outflow condition at the boundary). To do so, a condition related
to the normal depth (derived from the equilibrium Manning-Strickler’s equation, see
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e.g. [4,33]) is imposed. A second consequence is the relatively good accuracy of the
simple Manning-Strickler’s equation to model the flow (see e.g. [6,7,9] for studies in
the present SWOT context). However the Manning-Strickler’s equation is a scalar al-
gebraic relation highly sensitive to uncertainties; moreover as shown in [7] the actual
independent variable of this relation is Q/K and not simply Q. Then below are derived
“low complexity (algebraic) systems” which are more robust to the uncertainties of
the numerous measurements. These algebraic equations are based on the classical hy-
draulic assumption “low Froude” hence similar in this sense to the Manning-Strickler’s
equation, but they natively integrate the numerous WS measurements. The resulting
systems are original; they are employed both for direct modeling (real-time estima-
tions past the calibration period) and inverse modeling (in particular the estimation
of first guesses in the VDA inverse method). The inversions of these low complexity
systems based on the numerous observations are much robust (less sensitive to the
errors, uncertainties) than the usual Manning-Strickler scalar equation.

2.1. The 1D Saint-Venant model

The 1D Saint-Venant equations below are extremely classical in river hydraulics. It is
depth-integrated equations relying on the long-wave assumption that is the geometrical
ratio of the flow ε = h∗/L∗ small, h∗ being a characteristic water depth and L∗ a
characteristic length scale (shallow water assumption). In their non conservative form
in (A,Q) variables, A the wetted-cross section

[
m2
]
, Q the discharge

[
m3.s−1

]
, the

equations read as follows, see e.g. [4]:

{
∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A

)
+ gA∂xZ = −g ASf (A,Q;K)

(1)

where g is the gravity magnitude
[
m.s−2

]
, Z is the WS elevation [m], Z = (b+ h)

where b is the lowest bed level (bathymetry elevation) [m] and h is the water depth
[m].
Sf is the classical Manning-Strickler friction term:

Sf (A,Q;K) =
|Q|Q

K2A2R
4/3
h

(2)

with K the Strickler friction coefficient
[
m1/3.s−1

]
, Rh = A/Ph the hydraulic radius

[m] , Ph the wetted perimeter. It will be noticed in next section that Rh may be
approximated by the water depth h for large rivers. The discharge Q is related to the
average cross sectional velocity u

[
m.s−1

]
: Q = uA. The Strickler friction coefficient

K is defined as a power law in h:

K(h) = α hβ (3)

where α and β are two constants. This friction coefficient definition is richer than
a constant uniform value; it represents a quite general friction law with with two
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parameters only. This law may depend on the space variable x too.
At the upstream boundary, the discharge Qin(t) is imposed. At the downstream

boundary, the Manning-Strickler equation depending on the unknowns (A,Q;K)out is
imposed (it is classically integrated in the Preissmann scheme equations). The initial
condition is set as the steady state backwater curve profile: Z0(x) = Z(Qin(t0)). This
1D Saint-Venant model is discretized using the classical implicit Preissmann scheme.

2.2. River description from SWOT measurements

The upcoming SWOT measurements will provide time series with spatially distributed
measurements of river surface elevation Z and width W , [1]. The measurements will
be provided at two different scales:

• The ”node scale”: ∼ 200m long;
• The ”reach scale”: a few kilometers long.

The altimetry signal at node scale enables measurements of relatively high frequencies
variations but with relatively important uncertainties. On the contrary at reach scale
the signal measurements is more accurate but capture lower frequencies only. The WS
elevations and widths are similarly computed both at reach scale and node scale. The
WS slopes are reliable at reach scale only.

Let us decompose the river portion using R ”points”: r = 1, .., R, see Fig. 1. The
considered time period is decomposed following (P + 1) overpasses: p = 0, .., P . The
overpasses are ordered by increasing flow height. The case p = 0 denotes the lowest
water level. The SWOT data set on a river domain is: {Zr,p,Wr,p}R,P+1.

Depending on the considered flow model complexity, the r-th ”point” denotes
either the node or the reach number. Indeed for data assimilation in the (complete)
1D Saint-Venant flow dynamics, the finest scale (node scale) is more adequate since
containing richer variability. On the contrary, for the low complexity algebraic model
based on a Low Froude assumption (see next section), the large (reach) scale is more
adequate since not containing high frequency variations.
In what follows this discrete space variable r, r = 1, .., R, denotes the reach number in
the low complexity algebraic systems and the node number (or even the computational
grid number if indicated) in the 1D Saint-Venant flow dynamics.

The direct model (1) is considered with the specific cross-sectional geometry shape
described in Fig. 1. It consists in discrete cross sections formed by asymmetrical
trapezium layers (Zr,p,Wr,p); the center of each top width (in the cross-flow direc-
tion) is denoted by Yr,p. In what follows, the WS slope is assumed to be positive:
Sr,p = −∂rZr,p ≥ 0.

The cross-sectional areas Ar,p are defined as follows: Ar,p = Ar,0 + δAr,p =

Ar,0 +
∫ Zr,p

Zr,0
Wr(h)dh ∀r ∀p. The variations δAr,p are approximated by the trapez-

iums δAr,p ≈
∑p

q=1
1
2(W q

r +W q−1
r )(hqr−hq−1

r ). (Note that the considered width values

W q
r are deterministic. In others words they would be the instrument signal mean value :

no uncertainty is added). The lowest cross-sectional areas denoted by Ar,0 ∀r are unob-
served; they are key unknowns of the flow model. They are represented by rectangles,
see Fig. 1, or any other fixed shape (e.g. a parabola); all the other cross-sectional areas
are trapezoidal.

We have: hr,p ≈ Rhr,p ≈
Ar,p

Wr,0+2hr,p+Wr,p
∀r. It is worth pointing out that this

approximation has been numerically verified on all considered rivers. Since W >> h,
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it follows the effective depth expression: hr,p = (Ar,0 + δAr,p)(Wr,0 + Wr,p)
−1 . The

flows are supposed to be gradually varied that is: ∂xWr,p/Wr,p ≈ 0.
The unobserved wetted cross section A0 can be represented by a rectangle, a trapez-

ium, a parabola or even a triangle, by setting: A0 = αAh0,αW with αA ∈ [1
2 , 1]. How-

ever it will be shown that the a-priori effective cross-section shape does not influence
the low Froude (“low complexity”) flow relations, see Section 2.3. We define the hy-
draulic mean depth h0 by: h0 = A0

W ; it is the depth corresponding to an effective
rectangular cross-section.

Figure 1. (Up) The inverse problem: infering the flow discharge Q(x, t)(m3/s), the bathymetry b(x) and
a friction parameter K(x) from the WS elevation Z(x, t) at large scale -see below- and every few days

only. (Down)(Left) The river measured by SWOT mission: the satellite swaths (large colored rectangles),

the 1D longitudinal grid with the averaged satellite measurements (black dots) along the river centerline
(black line). (Down)(Right Top) Effective river cross section at reach r defined from SWOT measurements

{Zr,p,Wr,p}R,P+1. (Down Right Bottom) Resulting space - time stencil (r, p). x denotes the curvilinear ab-

scissa along the river centerline defined at low flow by Yr,0 with Yr,p the middle of the cross sectional width.

2.3. Low complexity algebraic models

In this section, so-called “low complexity systems” are derived; this terminology “low
complexity” being in comparison with the space-time dependent Saint-Venant model
which requires higher CPU time computations. Indeed these low complexity systems
are algebraic and they are solvable in real-time (Section 9.2). Their equations are based
on classical hydraulic assumptions but they are derived in the particular present con-
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text: the assimilation of SWOT altimetry data. They natively integrate the measured
fields and they may be differently formulated depending on which field is given or
unknown. Note that another formulation of the low complexity system is derived in
Section 7.1 too.

To derive these equations, the basic assumptions made on the flows and data are
the following.

A1) The altimetry measurements are relatively “large scale” compared to the river
flows dynamics. In terms of temporal dynamics, since the satellite cannot make infer
dynamics much faster than its own frequency revisit (which is ≈ 10 days), at each
observation instant p, the flow may be described as a steady state flow . In terms of
spatial variations, the SWOT instrument will provide an average value of the WS mea-
surement at relatively large scale (RiverObs measurements in the SWOT community
[34]). Therefore the flow may be described as locally uniform at the reach length scale.

A2) At the reach scale defined above, the flow presents low Froude number values;
under the low Froude flow assumption, the inertial terms in the momentum equations
can be neglected.

A3) The considered rivers do not present lateral fluxes.
Moreover the considered rivers are wide enough to assume that the hydraulic radius

Rh ≈ h in the Manning-Strickler friction term Sf , see (1).

2.3.1. The low Froude flow model: system of local Manning-Strickler’s equations

For example for a rectangular cross section, the Froude number Fr satisfies: Fr2 =
uc−1
e with ce the wave celerity, ce =

√
gh. Assuming that the flow is permanent and

low Froude, Fr2 << 1, the momentum equation simplifies as the Manning-Strickler
law: Q = KAh

2/3
√
S . Considering this law at each river reach r and each observation

time p, this provides the following system:

(K−1
r,pQr,p)

3/5 = (A0,r + δAr,p)W
−2/5
r,p S3/10

r,p ∀r, ∀p (4)

for each reach r ∈ [1...R] and each satellite pass p ∈ [0...P ]. The terms
δAr,p,Wr,p, Sr,p are measured, while the terms Qr,p, A0,r and Kr,p are not.

This system (4) can be employed differently depending on the available information
and the unknowns. In the inversion computations presented in Section 7.1, (4) is

reformulated in (14) to estimate pairs (K
3/5
r , Ar,0) from prior discharge values Qr,p

(ancillary data).

2.3.2. The effective low Froude bathymetry

By injecting the expression of Q in (4) (we suppress the subscripts r,p) into the

mass conservation equation (∂xQ = 0), it follows: ∂x
(
KAh

2/3S1/2
)

= 0. Assuming a

constant friction coefficient K, this simplifies to: ∂xh
h (x) = −3

2

(
∂x(S

1/2)

S
1/2

+ ∂xA
A

)
(x).

Next, following [29] and given a reference depth value href (measured at one

reference reach ref), the explicit expression of h follows: h(x) = href
(
AS1/2

)3/2
ref
·(

AS1/2
)−3/2

(x). This estimation of water depth h is analyzed in detail in [7,29].
Let us extend this estimation of the water depth h (hence the bed elevation b)

to the present context, that is from a complete set of WS measurements. If con-
sidering an effective cross-sectional area A = αAhW with αA ∈ [1

2 , 1] then the
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bathymetry expression reads: b(x) = Z(x) − Cref · α
−3/5
A (x) · (WS1/2)−3/5(x) with

Cref = href
(
αAWS1/2

)
|
3/5
ref . The three parameters (αA,W, S) describe the three di-

mensions of the flow.
Given the WS measurements (Z, W,S) and the value Sref at an arbitrary reach

ref , this explicit expression of b(x) provides an effective bathymetry. Observe that
the effective bathymetry elevation b is equivalent if considering different wetted cross-
section shapes determined by αA. In other words, in the present low Froude relations,
the shape of the effective cross-sectional area A may be chosen arbitrarily. In the
following we set αA = 1; that is a rectangular effective shape. Finally the effective
bathymetry expression under the assumptions A1)-A3) previously mentioned reads:

br + (Zref,p − bref ) · O−1
ref,p · Or,p = Zr,p ∀r, r 6= ref, ∀p ≥ 0 (5)

with the observational term Or,p =
(
Wr,p

√
Sr,p

)−3/5 ∀r ∀p. (The only observational

terms of this estimation are Z and the product WS1/2 ≡ O).
In the following the bathymetry {br}r solution of (5) is called the “Low Froude

bathymetry”.
The system (5) contains (P+1)×(R−1) equations (given 1 reference reach only) with

R unknowns: the bathymetry vector b = ({br}r, bref ) r ∈ [1, R] , r 6= ref . The system

reads: (A.b)p = (F )p ∀p , with(Fr)p = Zr,p−Zref,pO−1
ref,p·Or,p and the (R−1)(P+1)×R

matrix (A)p =
[
I(R−1×R−1)|O−1

ref,p · Or,p
]
. For P ≥ 1, A is of maximal rank excepted

if the observational vectors (Or)p are linearly dependent; that is not the case if the
considered water flow lines represent flow variations.

On the coupled influence between b and a non constant friction coefficient K. As
shown above and already demonstrated in [7,29], the low Froude assumption enables
to separate the bathymetry effect from the friction effect if the friction coefficient
K is constant, see (5); K does not appear anymore in (5). On the contrary, if K
varies in space or depends on the depth h, like in (3) or in the Einstein formula,
see e.g. [4], then K and b have a coupled influence even at low Froude. Typically
if considering the following power-law: K(h) = K0 · (h − h0)β(x) with gradually
varied coefficients i.e. ∂xK0 ∼ 0 ∼ ∂xβ, after calculations the depth expression reads:

[h(x) · |h(x)−h0|3β/2] = c0 ·(AS1/2)−3/2(x) with c0 = |href −h0|3β/2 ·href ·(AS1/2)
+3/2
ref

(href the reference depth value). The case K constant is recovered from the equation
above by setting β = 0.

Relationship with empirical laws. It may be practical to consider empirical laws

based on hydraulic geometry such as: Zr,p = br + arW
β
r,p. In other respects, (5) can

be re-written as follows: Zr,p = br + Cref,p · α
−3/5
A,r · (WS

1/2)|−3/5
r,p ∀r, ∀p, p = 0, .., P

with Cref,p = href,p
(
αAWS1/2

)3/5
ref,p

. We assume constant cross section shapes

(αA,r = αA ∀r). By equaling the two estimations it follows: W β
r,p · (Wr,pS

1/2
r,p )3/5 =

a−1
r · href,p

(
WS

1/2
)3/5
ref,p

∀r ∀p. Assuming that the flow is uniform in terms of the

observational term (WS1/2) i.e. this quantity is constant for the considered reaches,

we obtain that: W β
p = a−1 hp; equivalently: Zp = b+ a W β

p .Therefore the low Froude
estimation (5) contains empirical laws of the form indicated above. Given β and time
series of WS elevation and width this relation allows to infer an effective river bed
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elevation e.g. as in [5]. Such law could be defined in function of hydraulic geometry
knowledge.

On the accuracy of these low Froude - low complexity systems. The two systems (4)
and (5) turn out to be reasonably accurate in the present altimetry context (Assump-
tions A1) -A3)). Employed as direct modeling, their solutions have been numerically
assessed in [7]; it is done in the present context too, see Section 7.

3. The Variational Data Assimilation (VDA) formulation

The VDA method employed in the study is presented. Moreover a simple formal re-
scaling calculation of the Saint-Venant equations is derived; it shows the ill-posedness
of the inverse problem if no additional in-situ data is provided.

3.1. The control parameter

Given the WS measurements at nodes scale (see Section 2.2), the VDA method aims at
estimating the “input parameters” of the Saint-Venant flow model that is: the inflow
discharge Qin(t) of the Saint-Venant model, the bathymetry b(x) and the friction
coefficient K(h) defined by (3). In discrete form, this unknown “parameter” reads:

c = (Qin,0, ..., Qin,P ; b1, ..., bN ; α, β)T (6)

In (6) the subscript p denotes the instant, p ∈ [0..P ], α and β are the friction law
parameters defined by (3) and N denotes the computational grid number. The latter
contains ≈ 4 computational grid points per node r, r = 1, .., R. Recall that the VDA
method combined to the Saint-Venant flow model is applied at the node scale and not
at the ”reach scale”. Indeed this enables to capture the ”high frequencies” contained
in the observations.

Given the bijection function between the elevation Z and the cross-sectional area
A described in Section 2.2, measuring Z is equivalent to measure A. Of course the
parameters used for imposing a normal depth at downstream, see Section 2.1, are
considered as unknown; otherwise it would be equivalent to impose an exact outflow
condition which highly control the model solution.

3.2. The optimization problem

To estimate the unknown parameter vector c, the VDA consists to minimize a cost
function j. The latter is defined by:

j(c) = jobs(c) + γ jreg(c) (7)

The term jobs(c) measures the misfit between the observations and the model output:

jobs(c) =
1

2
‖(Z(c)− Zobs)‖2N (8)
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The norm N is defined from the a-priori covariance operator N (a positive definite
matrix): ‖ · ‖N = ‖N1/2 · ‖2. The regularization term jreg(c) is detailed below; the
weighting coefficient γ > 0 is set following an iterative regularization strategy detailed
below.

The WS elevation Z depends on c through the flow model (1). The inverse problem
reads as: c∗ = argmin j(c).
This minimization problem of (1) is numerically solved by a Quasi-Newton descent
algorithm (here the classical L-BFGS algorithm presented in [35]). This first order
method requires the computation of the cost gradient ∇j(c). The gradient is com-
puted by introducing the adjoint model (enabling to consider large control vector
dimensions). The adjoint code is obtained by employing the automatic differentiation
tool Tapenade [36]. We refer to the pioneer studies [14,15,37,38] for VDA concepts;
see also e.g. the online detailed courses [37,38] for details on thee approach.
The unknown parameter c contains three variables of different physical nature which
are space and/or time dependent. Moreover the bathymetry b(x) and the friction co-
efficient K(h) are correlated and they may have a similar influence in terms of WS
signature therefore leading to an ill-posed inverse problem, see e.g. [7] for such a dis-
cussion in the present inversion context. Then the inverse problem is regularized in
two ways following relatively classical techniques.

Firstly, the regularization term jreg , see (7) is simply set as: jreg(c) = 1
2 ‖b”(x)‖22.

jreg imposes a smoothing effect on the infered bathymetry profiles b(x)). Secondly the
following metrics based on (classical) covariance operators are introduced.

3.3. Covariance operators and change of control variable

The following natural change of variable is made, [39,40]:

k = B−1/2(c− cprior) (9)

where B is a covariance matrix. Recall that the unknown parameter (the control
variable) c is defined by (6); cprior is a prior value (also called “background” or “first-
guess” value). The value of cprior depends on the prior information.

The choice of B may be viewed as an important prior information too since the
optimal solution k∗ (strongly) depends on B. Indeed, after this change of variable, the
optimality condition reads: B1/2∇j(c) = 0. This change of variable may be viewed as
a preconditioning method, see e.g. [41,42] for detailed analysis in a different context.
Then the optimization problem to be solved re-reads as:

min
k

J(k) (10)

with J(k) = j(c), j defined by (7) and the control vector k defined by (9). The
unknown parameter k contains the three variables Qin(t), b(x), K(h) in their discrete
form. These three variables are assumed to be uncorrelated: B is thus defined as a
block diagonal matrix. We set:
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B =

 BQ 0 0
0 Bb 0
0 0 BK

 (11)

Each block B� is defined as a covariance matrix (positive definite matrix). The ma-
trices BQ and Bb are set as classical second order auto-regressive correlation matrices,
see e.g. [40,42,43]:

(BQ)i,j = (σQ)2 exp

(
−|tj − ti|

∆tQ

)
and (Bb)i,j = (σb)

2 exp

(
−|xj − xi|

Lb

)
(12)

The parameters ∆tQ and Lb act as correlation wave lengths. Given the observation
frequency (1 day minimum), given the measurements accuracy (200m long “observa-
tion pixels”) and given the typical Froude number of the observed river flows, adequate
values for these parameters are: ∆tQ = 24 h and Lb = 1 km. We refer to [28] for a
thorough analysis of the discharge inference in terms of frequencies and wave lengths.
The matrix BK is diagonal; it may be (roughly) set as: BK = diag(σ2

α, σ
2
β). The scalar

values σ� may be viewed as variances.
This VDA formulation above takes into account prior hydraulic scales through the

parameters ∆tQ and Lb; the balance between the different control variables are set
through the parameters σ�. Their values are detailed in the numerical results sections
(Sections 6 and 7).

On the non over-fitting of data. Let us denote by δ the noise level such that for all
locations ‖Zobs − Ztrue‖2 ≤ δ with Zobs the observed and Ztrue the true WS elevation.
Following the Morozov discrepancy principle, see e.g. [44] and references therein, the
regularization parameter γ in (7) is chosen a-posteriori such that j does not decrease
below the noise level. In the present numerical experiments, the convergence is stopped
if jobs(c) ≤ χδ with χ ∼ 0.9.

3.4. On the potentially ill-posed inverse problem

Let us derive a simple formal calculation showing that the inverse problem based
on the 1D Saint-Venant equations and the WS data only (no additional in-situ data
is available) is ill-posed. This feature is confirmed in upcoming numerical results
(Section 6).

Let ᾱ be a scalar value. Typically ᾱ is a mean value of K or Q. Let us rescale the
variables (A,Q, h) as follows: (A∗, Q∗, h∗) = (A,Q, h)/ᾱ with e.g. the cross-section
shape relation A∗ = h∗W , W the measured surface width (or any linear combination
of super-imposed trapeziums).
The mass equation divided by ᾱ reads: ∂t(A∗) + ∂x(Q*) = 0. Therefore as it is well
known, in terms of mass, rescaling Q implies to rescale A by the same factor (or
rescaling equivalently the water depth h).
The momentum equation divided by ᾱ reads:

∂t(Q∗) + ∂x

(
Q2
∗

A∗

)
+ gA∗ ∂xZ = −gA∗Sf
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with Sf the RHS previously defined: Sf (A,Q;h;K) = 1
K2

|Q|Q
A2h4/3 . A short calculation

shows that: Sf (A,Q, h;K) = Sf (A∗, Q∗, h∗; ᾱ
−2/3K).

At boundaries, both the imposed discharge at upstream and the normal depth at
downstream are similarly rescaled.
Therefore, given the WS measurements (W,Z), the 1D Saint-Venant equations (1)
with friction coefficient K is equivalent to the same equations with the re-scaled vari-
ables (A∗, Q∗, h∗) but with the friction coefficient equal to (ᾱ−2/3K).
As a consequence the infered solution (A,Q;K) obtained by inverting the Saint-Venant
model (with inflow-outflow ungauged boundary conditions) is the solution correspond-
ing to the given prior value cprior, see (7)-(10). (Recall that this prior value cprior is
related to the first guess value, see Section 5.2 for details).

This ill-posedness feature of the considered inverse problem (if no additional in-situ
data or good prior values is introduced) is observed in the numerical results, see
Section 6.

Observe that if imposing a rating curve at outflow e.g. Qout = cst hγ , then the
rescaled form of the law is not equivalent to the original one (excepted if γ = 1). In
other words, if imposing an accurate rating curve at outflow, the whole upstream
flow is accurately controlled. (This statement valid for low Froude flows is classical).
Moreover this highly controlling boundary condition cannot be rescaled like the other
model terms. However in practice such rating curve is unknown for ungauged rivers.

The same inversions based on the (scalar) Manning-Strickler equation or on the
algebraic system (4) (and not on the dynamic Saint-Venant equations) present equi-
finality issues even stiffer. Indeed, given a set of WS measurements (Zr,p,Wr,p)R,P+1

and an effective low flow bathymetry A0,r ∀r (therefore the effective cross-sectional
area Ar,p = Ar,0 + δAr,p ∀r ∈ [1..R] is given), the inference of the ratio Qr,p/Kr,p is
possible from (4) but not the pair (Qr,p,Kr,p)... Infering the discharge value from the
WS measurements and local Manning-Strickler’s laws i.e. the low Froude system (4),
requires additional information on the friction coefficient; otherwise the uncertainty
on the estimation Q is proportional to the uncertainty on K−1, and reciprocally.

4. Test rivers description

In this section the three test rivers with the associated data (WS measurements) are
presented. The three test rivers consist of 75 km of the Garonne River (France), 98
km of the Po River (Italy) and 147 km of the Sacramento River (California, USA),
see Tab. 1. These three rivers have contrasting morphological characteristics in terms
of the slope variability and cross section shapes. The numerical inversions of the WS
measurements are performed in two different observational contexts. a) The SWOT
Cal/Val (Calibration/Validation) period measurements of the satellite corresponding
to a temporary low orbit providing daily observations; this is the ObsFs context. This
context is considered for the Po and the Garonne rivers. b) The nominal SWOT spatio-
temporal sampling providing unfrequent observations (≈ 21days frequency); this is the
ObsNs context. This context is considered for the Sacramento river only.

The WS measurements consist in sets of (Zr,p,Wr,p)R,P+1: a) either numerically
computed with daily frequency (ObsFs) context); b) or using the SWOT Hydrology
Simulator with few days frequency (ObsNs context).

SWOT Hydrology Simulator outputs (ObsNs context) are available for Sacramento
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river only so the considered data for the two other rivers (Garonne and Po) are syn-
thetic: they are obtained by adding Gaussian errors to outputs of a reference hydraulic
model. In this case we have: Zobs(x, t) = Ztrue(x, t) +N (0, σZ) with σZ = 25cm. This
value of σZ corresponds to the expected magnitude of SWOT measurement errors,
see [1]. The observation period is ∆tobs = 1 day; this corresponds to the Cal/Val
(Calibration/Validation) phase of the satellite mission (ObsFs context).

For the Sacramento case, the observations are simulated by the SWOT Hydrology
Simulator, corresponding to a nominal 21 days SWOT cycle. The whole river portion is
observed by SWOT (from two tracks) at the 9th and 19th days of each 21 days repeat
cycle. The measurement error on Z is characterized by an average variance σZ = 34
cm, see Tab. 1. It is interesting to consider this large amplitude error in case of the
real SWOT errors is higher than the scientific requirements, [1]. For the three cases
the spatial sampling is ∆xobs = 200 m; the SWOT Hydrology Simulator outputs are
averaged in space on ∼ 200 m nodes (corresponding to the so-called RiverObs nodes).

Table 1. Hydraulic characteristics for each test river

River Reach Length Max. Width Avg. Slope Avg. Flow Froude Range

(km) (m) (m/km) (m3/s) (-)

Garonne 75 49/1,383 0.861 156 0.03-0.67

Po 98 116/5,515 0.145 1499 0.04-0.47

Sacramento 147 59/678 0.558 251 0.02-0.64

Table 2. Observations sources and characteristics for each test river

River Hydrodynamic Temporal #nodes #reaches Observations

Model Window (N) (R) Context

Garonne [45] HEC-RAS 06 jan. 2010 - 06 apr. 2010 376 75 ObsFs

Po [46] HEC-RAS 01 jan. 2002 - 01 apr. 2002 488 97 ObsFs

Sacramento HEC-RAS + SWOT HR 01 jan. 2009 - 27 jun. 2009 718 17 ObsNs

5. The different scenarii and first guess computations

In this section the three different scenarii S1)-S3) are detailed. The method to compute
the first guesses (first values in the iterative VDA method) may depend on the scenario;
it is presented in a next section. Finally a summary of the resulting 16 numerical
experiments is presented.

5.1. The three different scenarii S1)-S3)

The capabilities of the present inverse method(s) are tested in three scenarii of increas-
ing difficulty. All scenarii are based on a set of SWOT observations (Zr,p,Wr,p)R,P+1

(R× (P + 1) WS measurements). The three scenarii are as follows.

(1) Scenario S1): ungauged rivers. The observed river is ungauged: no reliable prior
information is available (excepted the WS measurements). This corresponds to
the most challenging inverse problem. It is addressed in Section 6.

(2) Scenario S2): partially gauged river. In this case ”relatively reliable” values of
discharge, at least (R+1) values, see (4), are provided at one location in the river
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portion. These values may be provided by either a global discharge database or
a calibrated hydrological model. This scenario is addressed in Section 7.

(3) Scenario S3): one bathymetry measurement bref is available in the river portion.
This enables to first estimate the so-called effective low-Froude bathymetry, next
to infer the pair (Qin,p,Kr,p)R,P . This scenario is addressed in Section 8.

5.2. First guesses computation

The complete control vector c, see (6) and (9), contains (P + N + 2) components:

c =
(
Q

(0)
in,0, ..., Q

(0)
in,P ; b

(0)
1 , ..., b

(0)
N ; α(0), β(0)

)T
. A first value has to be set; it is the

first guess denoted by c(0).

For all scenarii S1)-S3), the first-guess value Q
(0)
in is computed as follows.

First-guess value Q
(0)
in . At inflow, we set: Q

(0)
in (tp) = QMAF ∀p ∈ [0...P ], where

QMAF is a Mean Annual Flow (MAF) value obtained either from the SWOT a-priori
river database under construction [47,48] or from the global Water Balance Model
(WBM) [49].

First-guess value K(0). In scenarii S1) and S3), a constant value of the friction
coefficient K(0) is derived from the SWOT a-priori river database. The considered
constant K(0) values are 25 (resp. 33 and 25)

[
m1/3.s−1

]
for the Garonne river (resp.

Po and Sacramento rivers). Since constant, these values correspond to the values of
α(0) and β(0) = 0, see (3).
In Scenario S2), multiple prior values of discharge are provided. Then the algebraic
system (4) (see also (13)) is solved to obtain K(0) (actually α(0)) and the correspond-
ing effective bathymetry (br)r=1,...,R.

Observe that given the lowest flow WS measurements, defining (br)r=1,...,R is
equivalent to define the unmeasured lowest cross sectional areas (Ar,0)r=1,...,R since a
shape assumption is assumed (e.g. rectangular).

First-guess value b(0). The computation of b(0) depends on the scenario.

• Scenario S1) bathymetry (ungauged river). b(0) is computed by inverting the

Manning-Strickler equation (4) with K(0) and Q
(0)
in setup as previously described.

(4) is a scalar equation; its WS parameters are those of the median observed flow
line.
• Scenario S2) bathymetry (partially gauged river). b(0) is obtained by inverting

the algebraic system (13). To be invertible, (13) has to be based on sufficiently
numerous different flow lines. Note that the estimation of b(0) computed from the
scalar Manning-Strickler equation (4) is much more sensitive to errors (e.g. those
of the prior values (Q(0),K(0))) than if computed from the algebraic system (13).
• Scenario S3) bathymetry. One in-situ bathymetry measurement (denoted by

bref ) is available. Then an effective bathymetry profile (b
(0)
r )r=1,...,R is derived

from (5) and the WS measurements. It is the so-called Low-Froude bathymetry.

The first guess value b(0) is estimated at the reach scale (see Section 2.2 for the

reach scale definition). Next, the values at the computational grid points (b
(0)
1 , .., b

(0)
N )

are derived by linear interpolation.
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Table 3. Summary of the numerical experiments (*: two overpasses at days 9 and 19 every 21 days repeat

period)

Case name Scenario River σperturb
Z ∆tobs σQ

S1.Ga.0 S1) Garonne 0 1 day 15 m3/s

S1.Po.0 S1) Po 0 1 day 71 m3/s

S1.Sa.0 S1) Sacramento 0 21 days* 20 m3/s

S1.Ga.σ S1) Garonne 25 cm 1 day 15 m3/s

S1.Po.σ S1) Po 25 cm 1 day 71 m3/s

S1.Sa.σ S1) Sacramento 34 cm 21 days* 20 m3/s

S2.Ga.0 S2) Garonne 0 1 day 15 m3/s

S2.Po.0 S2) Po 0 1 day 71 m3/s

S2.Ga.σ S2) Garonne 25 cm 1 day 15 m3/s

S2.Po.σ S2) Po 25 cm 1 day 71 m3/s

S3.Ga.0 S3) Garonne 0 1 day 15 m3/s

S3.Po.0 S3) Po 0 1 day 71 m3/s

S3.Sa.0 S3) Sacramento 0 21 days* 20 m3/s

S3.Ga.σ S3) Garonne 25 cm 1 day 15 m3/s

S3.Po.σ S3) Po 25 cm 1 day 71 m3/s

S3.Sa.σ S3) Sacramento 34 cm 21 days* 20 m3/s

For Sacramento river, not sufficiently numerous WS observations were available to
invert the algebraic system (13) (17 overpasses only were available). As a consequence,
Scenario S2) cannot be considered for the Sacramento river.

A comparison of the estimations of b(0) obtained following these three methods (is
presented in next section.

For all cases (see Tab. 3) we have:

∆xobs ≡ [r, (r+1)] ≈ 200m, σZ = 25cm, σαK
= 0.5m1/3.s−1, σβK

= 0.01 and σb = 25cm

The criteria used to evaluate the performance of the estimations are the following
classical RMSE and relative RMSE at assimilation times:

RMSE =

√∑n
t=1(Qestt −Qtruet )2

n
, rRMSE =

√√√√ 1

n

n∑
t=1

(
Qestt −Qtruet

Qtruet

)2

with Qestin (resp. Qtruein ) the estimated (resp. observed) value of inflow discharge at
assimilation time t.

5.3. Inference of an effective bathymetry b(0) (equivalently A0)

In the ”complete” inverse problem solved by VDA, the control vector c, see (6), is com-
posed by the upstream discharge, the friction parameter and the bathymetry. However
infering by VDA the pair (Q(t);K(h)) given the bathymetry b is much less challenging
than infering the complete triplet (Q(t);K(h); b(x)), see e.g. [28]. As a consequence
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a) b) c)

d) e) f)

g) h)

Figure 2. True and infered bathymetry deviation from trend (B∗)1..N compared to prior bathymetry esti-

mations, noisy observations (Section 5.2): (a,d,g) Scenario S1) bathymetry. (b,e) Scenario S2) bathymetry.

(c,f,h) Scenario S3) bathymetry.

infering first a (reliable) prior bathymetry profile before performing the iterative
VDA process may be interesting. In this section, different alternatives to estimate
an effective bathymetry (bn)1..N are compared. The latter is either employed as the
first guess value b(0) in the VDA process or may be considered as the (final) estimation.

Given one flow line measurement, the (scalar) Manning-Strickler equation provides
the corresponding bathymetry profile b(0). Obviously this basic approach is highly
sensitive to the errors made on the prior values prior values (Q(0);K(0)). If solving
the algebraic system (13) based on multiple flow lines measurements, the resulting
estimation of b(0) is naturally less sensitive to the errors made on the prior values
(Q(0);K(0)). A third method consists to solve the ”low Froude bathymetry” equation
(5). Since based on one in-situ measurement bref , the resulting estimation is more ro-
bust and accurate than those obtained from prior values only. The first two approaches
are compared for the the Po and Garonne Rivers only on Fig. 2 (B∗ represents the
bed elevation b minus an average bathymetry trend). The first and third approach are
compared for the three Rivers on Fig. 2.

In the Sacramento river case, a drift of the estimation (increasing error in space)
rises with distance to the reference point bref . Indeed if the basic steady-state condition
∂xQ = 0 in the “Low Froude” equation is not fully satisfied. Moreover a drift in space
naturally appears since the model is a first order differential equation. Typical drift
amplitudes are presented in [7]. In order to avoid such drifts, a segmentation in two
parts of the Sacramento river has been done; next two reference bathymetry values
are used, see Fig. 2 (Bottom Right).

17



6. Inferences for ungauged rivers: Scenario S1)

This section presents the numerical inference of the complete control vector (6) in the
1D Saint-Venant model (1) in the case of ungauged rivers: WS observations distributed
in space and time (SWOT like data) only are available. The inferences are performed
in the SWOT Cal/Val (ObsFs) sampling for the Po and Garonne rivers and for a
real like SWOT (ObsNs) sampling for the Sacramento River. In the latter case, a
preliminary analysis of the inverse problem based on the identifiability map (see [28])
helps to define the control frequency.

6.1. ObsFs context: Po and Garonne rivers

The infered inflow discharge for this case are shown in purple on Fig. 3 (Cases S1.Ga.σ
and S1.Po.σ in Tab. 3). For each of the two rivers, the true daily inflow hydrograph
over 90 days (green curve) is satisfactorily retrieved with rRMSEQ = 24.3% on the
Po River the and rRMSEQ = 9% on the Garonne River (resp. 8.5% and 4.8% with
perfect observations). For a better reading, the results obtained for the bathymetry are
indicated using the deviation from the trend B∗ (cf Tab. 5 and Fig. 2). The estimated
bathymetry b1,..,N is improved by the VDA process on the Garonne River (the prior
RMSEb(0) = 0.39 decreases to RMSEb = 0.31); it remains close to the first guess
in the Po River case. Let us recall that the friction parameter K is model-equations-
geometry dependent; its calibrated value compensates various modelling errors.

For these two ungauged experiments (Cases S1.Ga.σ ; S1.Po.σ and S1.Ga.0 ;
S1.Po.0 with perfect observations, see Tab. 5), the inference of discharge remains
robust and accurate. Most of the identification errors are absorbed by the friction
coefficient. It can be noticed that the equifinality issue between the bathymetry and
the friction may be observed. Indeed, on the Po River while discharge is very well
retrieved, neither the bathymetry nor the friction coefficient is significantly improved
by the VDA process; different (friction, bathymetry) pair values can produce similar
(correct) discharge values. This observation is consistent with the mathematical devel-
opment presented in Section 3.4. However this ”optimal value” of (K, b(x)), solution
of (10), may be refined by solving afterwards the algebraic model presented in Section
9, see Tab. 5.

To illustrate the ill-posedness feature of the inverse problem (3.4) in Scenario S1),
another experiment has been performed for the Garonne and the Po Rivers: the first
guesses have been computed using either the WBM mean annual flow [49] (Cases
S1.Ga.0.b, S1.Ga.σ.b, S1.Po.0.b and S1.Po.σ.b) or the mean discharge from the
SWOT a-priori river database, see e.g. [47] (Cases S1.Ga.0.a, S1.Ga.σ.a, S1.Po.0.a
and S1.Po.σ.a), see Tab. 4. For both rivers, the WBM mean annual flow provides
a bad estimate of the average flow (on the calibration window) whereas the SWOT
a-priori river database provides a good estimate. For instance for Garonne River the
true average flow is 154m3/s; WBM mean annual flow provides 200m3/s and SWOT
river database provides 150m3/s.

If measuring the inference accuracy in terms of rRMSE on Q, the results obtained
for these 12 experiments show that poor priors Q(0) may lead to poor estimations
of the discharge, see Tab. 5. For the case S1.Ga.0.a, rRMSEQ = 5.1 % ; this is
better than in the case S1.Ga.0.b where rRMSEQ = 30.5 %. For the case S1.Ga.σ.a,
rRMSEQ = 10.3 % , and rRMSEQ = 33.0 % for the S1.Ga.σ.b case. The same
remark can be made for the Po River.
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Figure 3. Inflow discharge (true=target, prior, infered=estimate) with daily SWOT-like observations. (Left)
Garonne River cases S1.Ga.0.a/b (Right) Po River case S1.Po.0.a/b

Table 4. Scores of the inversions performed from different priors (“a” for SWOT a priori database, “b” for
WBM) defining the hydrograph first guess Q(0); Scenario S1).

Case River σobs
Z

Qprior RMSEb(0) RMSEQ rRMSEQ rRMSEQ∗ RMSEb

(m3/s) (m) (m3/s) (%) (%) (m)

S1.Ga.0.a Garonne 0 150 0.18 13.4 5.1 5.0 0.43

S1.Ga.0.b Garonne 0 200 0.51 40.6 30.5 7.5 0.73

S1.Ga.σ.a Garonne 25 cm 150 0.39 24.0 10.3 9.8 0.31

S1.Ga.σ.b Garonne 25 cm 200 0.54 41.8 33.0 13.3 0.45

S1.Po.0.a Po 0 710 0.61 83.9 8.5 8.5 0.75

S1.Po.0.b Po 0 841 0.91 88.4 17.1 11.0 0.92

S1.Po.σ.a Po 25 cm 710 0.92 185.9 24.8 24.8 1.04

S1.Po.σ.b Po 25 cm 841 1.12 235.3 31.5 24.9 1.24

However, as shown on Fig. 3, the infered temporal variations of Q remain excellent
in all cases. Indeed, to better illustrate that the bias is fully dependent on the

prior, an adapted value of rRMSE is computed from Q∗(x, t) = Q̄true

Q̄(0) Q(x, t) (i.e.

normalized by the bias of the prior). In each case, the values of this metric obtained
for the two sources of Q(0) are close: rRMSEQ∗ = 7.5 % (Case S1.Ga.0.b) and
rRMSEQ∗ = 5.0 % (Case S1.Ga.0.a); rRMSEQ∗ = 13.3 % (Case S1.Ga.σ.b) and
rRMSEQ∗ = 9.8 % (Case S1.Ga.σ.a); rRMSEQ∗ = 11.0 % (Case S1.Po.0.b) and
rRMSEQ∗ = 8.5 % (Case S1.Po.0.a); rRMSEQ∗ = 24.9 % (Case S1.Po.σ.b) and
rRMSEQ∗ = 24.8 % (Case S1.Po.σ.a).
This high accuracy of the discharge temporal variations is consistent with the
mathematical formal proof presented in Section 3.4.

On the equifinality issue & the importance of one ancillary data. These
numerical results illustrate the ill-posedness features of the inverse problem if no ad-
ditional in-situ data (e.g. accurate mean first guesses values) is considered, see Section
3.4. Indeed the space time variations of the infered discharge are very accurate but
they may present a bias, see Fig. 3. The bias vanishes if the (scalar) prior value Q(0) is
sufficiently accurate; Q(0) may be the mean value of Q. As a consequence if the a-priori
value(s), see Section 5.2, are far from reality, the rRMSE criteria on the estimation
may be large, see e.g. case S1.Ga.σ.b in Tab. 4. On the contrary the rRMSE computed
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from Q∗(x, t) remains excellent, Fig. 3. This bias can be explained by the re-scaling
calculation presented in Section 3.4.

6.2. ObsNs context: Identifiability map & preliminary analysis

The discharge inference capabilities depend on the space-time sampling of the ob-
servations and on the flow dynamics. An instructive reading of the inverse problem
can be obtained by plotting the “identifiability map” introduced in [28]. The identi-
fiability map represents the complete information in the (x, t)-plane: the “space-time
windows” observed by SWOT, the hydrodynamic wave propagation (flow model in flu-
vial regime) and the misfit to the “local equilibrium” (local misfit between the steady
state uniform flow and the dynamic flow). We refer to [28] for more details. This
preliminary analysis enables to roughly estimate the inflow time intervals that can be
identified by the VDA process. Indeed the inflow discharge mathematically arises from
these observed “space-time windows”. This qualitative reading of the inverse problem
is instructive because it enables to (roughly) estimate if the unknown information has
been indirectly measured or not. In the present case (Sacramento River case), the reach
of 147 km long is completely observed by two satellite tracks respectively at the 9th
and 19th days (for each 21 days repeat period). As the Sacramento River is considered
ungauged in this experiment, the exact identifiability map cannot be computed. To
circumvent this point, an a-priori identifiability map is computed as follows:

• A VDA inference of the control vector c is performed (based on Scenario S1)).
• Given the optimal control vector c, the (forward) Saint-Venant flow model (1)

is re-runned.
• The “equilibrium misfit” (Sf − S0) (see [28] for detailed explanations) and the

wave propagation times (Twave) are computed from the forward flow model out-
puts.

The obtained identifiability map is plotted on Fig. 4. Due to the observation
layover, there are few unobserved zones for the second SWOT pass, for example at
x = 80 km and t = 19, 40 and 61 days. Given the WS observation of each reach
at a given time, the purple dots at x = 0 (upstream BC) on Fig. 4 represent the
origin of the characteristics. In other words they represent the hydraulic information
propagation at inflow. Following this analysis, the identifiability of Qin(t) is possible
on time windows of ∼3 days (∼2 days for the flood peak recession at day 51) before
observation times.

The “equilibrium misfit”(Sf − S0) is represented on the map; it highlights where
and when the flow is not locally stationary-uniform. The magnitude of this equilibrium
misfit increases where and when a flood wave is traveling through the domain; see
observations at day 51 and day 61 on Fig. 4 and 5. The identifiability map analysis
shows that the WS deformations due to the flood peak between days 51 and 61 have
not been observed. Also this analysis indicates that the mean information propagation
time throughout the domain equals ≈ 40h.

Based on the purple dots at x = 0 (upstream BC) (see the explanation of their
meaning above), we define 3 additional assimilation points every ≈ 12h before the
observation days 51 and 61. Indeed these additional assimilation instants contain in-
formation on the first flood peak recession and the third flood peak rise respectively.

20



Figure 4. Identifiability map. Overview in the (x, t)-plane of the inverse problem features: observables, hy-

draulic wave speed and “equilibrium misfit”= absolute value of the source term in the Saint-Venant equations

(colors bar). For each observation of the domain, the vertical spreading corresponds to the time α ·∆x/u nec-
essary for the upstream wave to cross an observed cell of size ∆x (α is a dilatation factor for sake of readability

only). (Left) The complete (x, t)-plane. (Right) Zoom on the most varying time intervall. .

6.3. ObsNs context: Sacramento River

This section focuses on a real SWOT scenario that is unfrequent observations com-
pared to the hydrograph frequencies (ObsNs context). The identifiability maps has
provided some crucial information to set up the VDA process. The inflow discharge,
bathymetry and friction infered by VDA are shown respectively on Fig. 5 (a) and
Tab. 5. The discharge identification is accurate at each observation time and for the 3
points preceding the observed flood peaks at t = 51 and 61 days. It is worth noticing
that a basic approach consisting in infering discharge at observation times only would
lead to a less accurate hydrograph inference as shown in Fig. 5 (see zooms).
The flood peak between days 51 and 61 is not retrieved since the peak effects have not
been observed; this is consistent with the preliminary identifiability map analysis, see
Section 6.2.

Following [28], the identifiability index Iident = Twave

∆tobs
is evaluated for a wave propa-

gation time (Twave) of about 72h (with ∆tobs ∼ 10 days). This results to Iident ∼ 0.3,
that is a relatively low identifiability index (see [28], for details). Interestingly, even
with this low identifiability value, the inference of discharge is accurate at observation
instants but also at the ”identifiable instants” defined before flood observations thanks
to the identifiability map analysis.
Finally we point out that the infered discharge is accurate while the bathymetry and
friction need to be refined using other information or equations; this is done in next
section using the low complexity systems presented in Section 2.3.

7. Inferences for partially gauged rivers: Scenario S2)

Many worldwide rivers are not fully ungauged. In this section, relatively good priors
of discharge are provided at one location in the river portion; they are denoted by
(Qg1, .., Q

g
P ). These values may be provided by either a global discharge database or a

calibrated hydrological model. Given priors of discharge, an additional ”low complexity
system” is derived from those presented in Section 2.3.
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a) b)

Figure 5. Inflow discharge (target=true, prior and infered=estimate with SWOT-HR observations), Sacra-

mento River. Computations with 4 assimilation points every (0h, 12h, 24h, 36h) before observation times (a)
or at observation times only (b).

7.1. Bilinear system in variables (Ar,0,Kr,p)R,P and (Qr,p)R,P

Let us assume that the friction varies both in space and time, that is (Kr,p)R,P .
Then (4) reads as follows:

cr,p ·K3/5
r,p Ar,0 + dr,p ·K3/5

r,p = Q
3/5
r,p for all (r, p) (13)

with cr,p = W
−2/5
r,p S

3/10
r,p and dr,p = cr,p δAr,p.

The coefficients (cr,p , dr,p) can be evaluated from the altimetry measurements. System

(13) is multi-linear in (K
3/5
r,p Ar,0,K

3/5
r,p , Q̄p). It contains R(P + 1) equations. It can

be employed differently depending on the available information and the unknowns. If

considering the full set of unknowns (K
3/5
r,p , Ar,0, Qr,p), it is an underdetermined system

since it has R(2(P + 1) + 1) unknowns; therefore in this case it cannot be solved since
it has an infinity of solutions.

Let us define the diagonal matrices Dc and Dd of dimensions [R(P + 1)]2 by: Mc =

diag (cr,p) , Md = diag (dr,p) . Let us define the vectors : K̃ = (K
3/5
r,p )r,p ∈ RR(P+1),

A = (Ar,0)r, ∈ RR and Q̃ = (Q
3/5
r,p )r,p ∈ RR(P+1). Then (13) reads:

DcBil(K̃, A) +DdK̃ = Q̃ in RR(P+1) (14)

with the bilinear operator Bil(K̃, A)r,p = K
3/5
r,p Ar,0 ∀r∀p.

If Q̃ is given then (14) has (P + 2)R unknowns (the two vectors K̃ and A).
Remark 1. For K constant in space but varying in time (e.g. K is defined as a

power law in h) then K̃ = (K
3/5
p )p ∈ R(P+1). In this case, the (P + 1 +R) unknowns

(K
3/5
p , Ar,0) can be computed by solving the overdetermined bi-linear system (14) e.g.

by employing a trusted region reflective algorithm.

For K constant in time but varying in space, K̃ = (K
3/5
r )r ∈ RR, the system (14) has

2R unknowns. Therefore if P ≥ 1 (more than 2 overpasses), the solution (K
3/5
r , Ar,0)

can be computed e.g. by a trusted region reflective algorithm.

Remark 2. Given large scale estimations of Q = (Qr,p) ∈ RR(P+1) from hydrological
models, (14) may provide effective unobserved wetted areas (Ar,0)r.
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7.2. Estimations of (Ar,0,Kr,p)R,P given Q at one gauge station

Let (Qg1, .., Q
g
P ) be the priors of discharge given at each instant p at one gauge station.

We solve (14) with the RHS built up from these priors (Qg1, .., Q
g
P ). We set:

Q̃ =
(

((Qg)
3/5
0 , ..., (Qg)

3/5
0 ), ..., ((Qg)3/5

p ...(Qg)3/5
p ), ..., ((Qg)

3/5
P ...(Qg)

3/5
P )

)
∈ RR(P+1)

Given Q̃, the pairs (Kr,p, Ar,0)R,P are computed as solution of (14). Observe that the
values of (Kr,p) are not necessarily used in the sequel.

The results in Scenario S2) are a little bit more accurate than those obtained
in Scenario S1). For the Garonne River, rRMSEQ = 4.2 % (Case S1.Ga.0 ) and
rRMSEQ = 8.5 % (Case S1.Ga.σ); For the Po River, rRMSEQ = 10.2 % (Case
S1.Po.0 ) and rRMSEQ = 24.3 % (Case S1.Po.σ).

8. Inferences with one bathymetry measurement available: Scenario S3)

In Scenario S3), the in-situ measurement of the bathymetry at one location bref enables
estimation of the so-called low Froude bathymetry, see Eqn (5) and Section 5.2. This
estimation is employed as the first guess bathymetry b(0) ins the VDA process, see (6).
As already pointed out this bathymetry estimation presents an increasing drift with
the distance to the reference measurement location xref . Indeed, the equation is a first
order differential equation. In the Sacramento river case, a segmentation in two parts
had to be done; each part corresponding to one reference bathymetry value, see Fig.
2 (Bottom Right).

The numerical results presented on Fig. 6 correspond to the inferences
of (Qin,1, .., Qin,P ; b1, .., bN ;α, β) obtained by VDA with the first guesses

(Q(0); b(0);α(0), β(0)) defined as Scenario S3) in Section 5.2. (Note that here (α, β)
are constant values).

In terms of bathymetry, Scenario S3) provide better estimations both for the first
guess and the infered values. This is particularly true for the Sacramento River with
RMSEb(0) = 1.95m and RMSEb = 2.01m for the S3.Sa.0 case and RMSEb(0) = 1.84m
and RMSEb = 1.82m for the S3.Sa.σ case. One can notice that the prior values are
even better than the infered values in Scenario S1). It should also be noticed that
the VDA does not update much the bathymetry. As a consequence the first guess
can be used as is to infer (Qin,1, .., Qin,P ;K) only. We recall that the inference of
(Qin,1, .., Qin,P ;K) only is much more robust.

However, Scenario S3) does not bring significant improvement on discharge when
compared to Scenario S2). For the Garonne River rRMSEQ = 5.2% (Case S3.Ga.0)
and rRMSEQ = 5.2% (Case S3.Ga.σ); these results are close to those obtained for Sce-
nario S2) (or even Scenario S1 with a good prior). For the Po River rRMSEQ = 7.8%
(Case S3.Po.0) and rRMSEQ = 18.3% (Case S3.Po.σ); for this river, Scenario S3)
slightly outperforms Scenario S2), especially for the case with noise. For the Sacra-
mento River rRMSEQ = 15.9% (Case S3.Sa.0) and rRMSEQ = 20.2% (Case
S3.Sa.σ); for the case with perfect observations, results in Scenario S3) are even slightly
worse than results in Scenario S2).
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a) b)

c)

Figure 6. infered inflow discharge with the bathymetry priors infered using the Low-Froude model and one
(1) in-situ point (b(0) “Low Froude”). Daily SWOT-like observations (noise σZ = 0.25) (a, b) and SWOT-HR

observations (c).

Table 5. Scores of the inversions for the different cases.

Case Scenario River σobs
Z

RMSEb(0) RMSEQ rRMSEQ RMSEb

(m) (m3/s) (%) (m)

S1.Ga.0 S1) Garonne 0 0.18 13.4 5.1 0.27

S1.Po.0 S1) Po 0 0.61 83.9 8.5 0.75

S1.Sa.0 S1) Sacramento 0 2.29 30.1 11.5 2.33

S1.Ga.σ S1) Garonne 25 cm 0.39 24.0 10.3 0.31

S1.Po.σ S1) Po 25 cm 0.92 185.9 24.8 1.04

S1.Sa.σ S1) Sacramento 34 cm 2.45 124.7 19.3 2.49

S2.Ga.0 S2) Garonne 0 0.17 10.0 4.2 0.16

S2.Po.0 S2) Po 0 0.73 91.2 10.2 0.88

S2.Ga.σ S2) Garonne 25 cm 0.42 17.9 8.5 0.38

S2.Po.σ S2) Po 25 cm 0.83 183.7 24.3 1.07

S3.Ga.0 S3) Garonne 0 0.16 11.9 5.2 0.22

S3.Po.0 S3) Po 0 0.48 76.4 7.8 0.45

S3.Sa.0 S3) Sacramento 0 1.95 54.5 15.9 2.01

S3.Ga.σ S3) Garonne 25 cm 0.35 19.4 9.1 0.27

S3.Po.σ S3) Po 25 cm 0.64 144.8 18.3 0.60

S3.Sa.σ S3) Sacramento 34 cm 1.84 141.2 20.2 1.82
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9. Past the calibration - ”learning” period: real-time estimations of Q

The inversion method previously presented is based on VDA and WS measurements.
This approach may be summarized as least-square estimations fitting the WS mea-
surements (and potentially prior values too). It is highly advisable to perform it on
a complete hydrological cycle (12 months minimum) presenting a large range of vari-
ability (from low to high flow lines, discharge values). The VDA method cannot be
performed in real-time. In this section, a strategy to estimate discharge values in real-
time is proposed.
The estimations obtained by VDA (as previously described) are performed on a suf-
ficiently varying measurements dataset : it is the so-called ”calibration” - ”learning”
period. As a result, relatively accurate values of (Ar,0) ∈ RR and (Qr,p) ∈ RR(P+1) are
obtained. Given these (Qr,p, Ar,0)R,P values, an effective space-time dependent friction
coefficient (Kr,p)R,P corresponding to the Low-Froude algebraic flow model (14) can
be straightforwardly computed. Recall that the friction parameter K is fully model
dependent; it is not an intrinsic feature of the flows.
In other respects, this low Froude algebraic system is relatively accurate : it has been
throughly assessed in the present cases (see Fig. 7 with the upcoming estimations too).
Moreover it can be solved in real-time (0.3s/cycle on standard laptop).
Therefore given new observations (Zr,Wr)1,..,R (satellite observations acquired past
the “learning period”), the discharge values (Qr)1,..,R can be computed in real-time
simply by evaluating in real time System (14) (see also (4)). Below numerical results
illustrate such real-time estimations.

9.1. Friction coefficient re-calibration

Given (Qr,p, Ar,0)R,P obtained by the VDA process, a new (effective) friction coefficient
corresponding to the low Froude - low complexity flow model is computed : this is the
”re-calibration” step of K. Space-time dependent values Kr,p are obtained by solving
(14). Next one of the two methods below are employed:

1) For each reach r, a mean value is considered as: K̄r = meanp(Kr,p). This mean
value is computed on a subset of the WS observations e.g. by considering the
intervall [2nd - 8th] deciles of the flow profiles (20 overpasses were selected in this
study). (This choice corresponds to a relatively wide and representative range of
flow regimes without the extremes).

2) For each reach r, a power-law is considered as: Kr(h) = αrh
βr . To do so, given

the water depth hr,p, hr,p = (Zr,p − br) with br the infered values, (αr, βr) are
computed as the optimal least-square values.

The case of Sacramento River is not considered in this section because the number of
observations is not sufficient to select reliable deciles of the flow profiles. The recali-
bration methods above are are adequate to the present cases (Garonne and Po rivers)
because no over-bank flow occurs.
The present experiments correspond to a calibration period of 90 days (the VDA in-
versions are obtained on this dataset), and a validation period (real-time estimations)
of ∼ 9 months.
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9.2. Estimations of Q in real-time

Given the re-calibrated friction coefficients (Kr(h))1..R, the discharge is computed
by solving System (14) with its coefficients provided by the newly acquired WS
measurements (validation period of ∼ 9 months). The obtained values in the case
of the Po and Garonne Rivers (with all flow lines) are plotted on Fig. 7. For both
rivers, using a friction coefficient K̄r constant in time provides the best results. The
resulting errors are: rRMSEQ = 6.3% for the Garonne River and rRMSEQ = 10.6%
for the Po River. Note that these performances are evaluated at all observation times
and all R reaches whereas for the VDA inference (sections 6 and 7) the performances
are evaluated at upstream only i.e. for r = 0.

The second method for re-calibrating the friction coefficients Kr(h) provides lower
accurate results but they remain acceptable; the errors are: rRMSEQ = 9.1% for the
Garonne River and rRMSEQ = 25.3% for the Po River.

Remark 3. Recall that the flow model is calibrated from the observed flow lines
hence presenting a minimal and a maximal WS elevation. The re-calibrated friction
coefficient K is related to this flow lines range. If K is defined as a power-law Kr(h)
and if the newly acquired WS elevation is greater than the previously observed WS
than the friction power-law is prone to an over-estimation. That is the reason why we
encourage to prefer the first method (considering K̄r) to the second one ( power-law).

In conclusion, solving the dedicated low-complexity algebraic system (14), after re-
calibration of the friction parameter K constitutes a promising method to estimate the
discharge in real-time that is in an operational way. (It is actually a ”computational
real time” given the newly acquired data; indeed the satellite data may be provided
with latency).

10. Conclusion

This study proposes a new hierarchical computational inversion method to infer the
discharge Q(t), an effective bathymetry b(x) with a corresponding friction coefficient
K from altimetry Water Surface (WS) measurements, more specifically data from
the upcoming SWOT satellite [1]. The inversion method is based on a combination of
an advanced Variational Data Assimilation (VDA) formulation applied to the classical
Saint-Venant equations (1D shallow-water) and original algebraic systems (low-Froude,
locally permanent flows). The VDA formulation takes into account adequate scale de-
pendency and a-priori error measurement amplitudes. The algebraic systems natively
integrate the measured quantities; they may be differently employed depending on the
fields that are not known. They enable to exploit in a consistent manner databases
to define the first guesses (prior information) of the iterative VDA process. More-
over they enable to compute in real-time the discharge past the “calibration-learning
period” (i.e. the assimilation of a complete hydrological year dataset).

Three rivers, ∼ 100 km long each, have been considered with two scenarii of observa-
tion: the SWOT Cal-Val orbit with ∼ 1 day period (or any equivalent multiple-sensor
measurements) and SWOT like data with ∼ 21 days period (with 1 to 4 passes at
mid-latitudes). The corresponding inversions are highly challenging since relying on
relatively sparse observations (both in space and time) compared to the potential flow
dynamics. Indeed the flows present low identifiability indexes as defined in [28]. Pre-
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Figure 7. Discharge estimations obtained from System (14) (after re-calibration of the friction K). Plot:

Qtarget (see Table 2) vs Qinfered. (Top). Discharge Garonne River; (Bottom) Po River. (Left) With K(h)

hence Kp; (Right) With K̄r.

liminary analyses based on the identifiability maps introduced in [28] enable to define
adequate time grids for the identification process.

For ungauged rivers and/or in total absence of good prior information on the flow,
the inversion algorithm provides accurate space-time variations of Q with an effective
bathymetry b(x) and a corresponding friction coefficient K(h) (K function of the water
depth h). However if the prior mean value of one of the three infered fields (typically
those of Q) is far from reality, a bias on the infered hydrograph Q(t) may remain. But
as soon as a good mean value is provided (e.g. a mean discharge value from a database
or from a large scale hydrological model), or a single reference value of bathymetry,
the bias vanishes: the discharge Q(t) is perfectly recovered even in terms of amplitudes
(RMSE of a few percent at observation times are obtained).

Past the calibration period by VDA, the estimated values of Q(t) and b(x) obtained
by the VDA process are kept and a new (effective) friction coefficient K(x) corre-
sponding to the low complexity flow model is computed. Next, this low complexity
(algebraic) model can provide estimations of the discharge Q in real-time from newly
acquired satellite data.

This new and complete inverse method fulfills the conditions of an operational
solution to the estimations of rivers discharge at global scale from the upcoming SWOT
satellite mission (launch planned in 2021).

All the present equations and algorithms have been implemented into the open-
source computational software DassFlow [32]. The present algorithms and computa-
tion al code have been recently employed with multi-satellite datasets (ENVISAT,
SWOT) for a braided river, [50]. Moreover investigations are in progress for larger
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rivers presenting lateral fluxes.
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[1] Rodŕıguez E, et al. Swot science requirements document. JPL document, JPL. 2012;.
[2] Calmant S, Cretaux JF, Remy F. Principles of radar satellite altimetry for application

on inland waters. In: Baghdadi N, Zribi M, editors. Microwave remote sensing of land
surface. Elsevier; 2016. p. 175 – 218.

[3] Biancamaria S, Lettenmaier DP, Pavelsky TM. The swot mission and its capabilities for
land hydrology. Surveys in Geophysics. 2016;37(2):307–337.

[4] Chow V. Handbook of applied hydrology. McGraw-Hill Book Co, New-York, 1467 pages.
1964;.

[5] Bjerklie DM. Estimating the bankfull velocity and discharge for rivers using remotely
sensed river morphology information. Journal of hydrology. 2007;341(3):144–155.
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[49] Wisser D, Fekete B, Vörösmarty C, et al. Reconstructing 20th century global hydrography:
a contribution to the global terrestrial network-hydrology (gtn-h). Hydrology and Earth
System Sciences. 2010;14(1):1.

[50] Garambois PA, Larnier K, Monnier J, et al. Variational inference of effective channel
and ungauged anabranching river discharge from multi-satellite water heights of different
spatial sparsity. Journal of Hydrology. Accepted, to appear 2019;.

30


