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ABSTRACT
An inversion method to estimate the discharge of rivers observed by the forthcom-
ing SWOT mission (wide swath altimetry) is developed and assessed in detail. The
method relies on a variational data assimilation formulation and the Saint-Venant
equations (1D shallow-water) combined with dedicated algebraic systems. This hi-
erarchical modeling approach enables to estimate from altimetry measurements the
three key flow features: the discharge Q(t) associated with an (effective) bathymetry
b(x) and a friction coefficient K. Cross sections river geometry are built up from
trapezium superimposition deduced from the altimetry measurements. Extensive
numerical results are analyzed for three rivers portions presenting rapid flow vari-
ations compared to the observation frequency. Two scenarios of observation are
considered: frequent satellite overpasses corresponding to the SWOT Cal-Val orbit
(∼1 day period) and SWOT like data (∼ 5-21 days period depending on the lat-
itude). It is shown that the space-time variations of the river discharge Q(t) and
the bathymetry profile b(x) are accurately infered; however the infered values of Q
may be obtained up to a multiplicative factor depending on the first guesses (prior
values). This bias vanishes as soon as an accurate mean value or one reference value
of one of the three infered field is provided. Various prior information sources are
investigated in view of worldwide applications. Once the assimilation of the satel-
lite measurements is done during a complete hydrological cycle, a dedicated low
complexity (algebraic) system may be correctly calibrated, next providing accurate
discharge estimations in real-time from newly acquired measurements.

KEYWORDS
Hydrology; inference; data assimilation; altimetry; SWOT; discharge; bathymetry.

1. Introduction

While in-situ observability of the continental water cycle and river flows is declining, a
myriad of satellites for earth observations provide increasingly accurate measurements.
The future Surface Water and Ocean Topography (SWOT) mission (CNES-NASA,
planned to be launched in 2021) equipped with a wide swath radar interferometer will
provide river surfaces mapping at a global scale with an unprecedented spatial and
temporal resolution. Its measurements will be Water Surface (WS) height, width and
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slope, with a decimetric accuracy on WS height averaged over 1 km [1]. SWOT will
cover a great majority of the globe with relatively frequent revisits (1 to 4 revisits per
21 days repeat cycle). By complementing decades of nadir altimetry in inland waters
[2], SWOT should offer the opportunity to increase our knowledge of the spatial and
temporal distribution of hydrological fluxes.

Thanks to this increased observability of WS worldwide, it will be possible to ad-
dress a variety of inverse problems in surface hydrology and related fields. Given these
WS measurements (elevation, water mask extents), the challenging inverse problem(s)
consists to infer: the discharge, the bathymetry (unobservable part of the river cross
sections), the friction law parametrization and any lateral contributions. The estima-
tion of the discharge is more or less challenging depending on the space-time WS
observation density and the prior information quality (also potentially the measure-
ment errors). Recent literature addresses some aspects of these inverse questions in a
purely remote sensing context, see e.g. [3] for a review. Relatively basic inverse meth-
ods have been developed; they are either based on the algebraic Manning-Strickler’s
law (see e.g. [4]) or empirical explicit hydraulic geometries power-laws[5–8]. In [9],
numerous approaches are compared on 19 rivers with artificially densified daily ob-
servables; the results fluctuate depending on the algorithm tested. No approach turned
out to be accurate or robust in all configurations. In this study the potential benefit
of having a correct a-priori estimation of the bathymetry was highlighted. In the river
hydraulics community, the most employed data assimilation studies are based on se-
quential algorithms, the Kalman Filter and its variants, see e.g. [10,11] based on the
1D Saint-Venant model and e.g. [12] based on the diffusive wave model.

None of these aforementioned studies address the real inverse problem encountered
in the satellite context at global scale: the inference of the triplet (discharge Q(t),
bathymetry b(x) and friction coefficient K(x, h), h being the water depth).

Variational Data Assimilation (VDA) approaches (optimal control of the dynamic
flow models [13–15]) have already been employed to address the present inverse prob-
lem. Recall that VDA approaches consists in minimizing a cost function measuring
the discrepancy between the model outputs and the observations; somehow combining
at best the model, the observations and prior information (fields values, characteristic
wave length of variations and fields regularity). In some circumstances (depending on
the a-priori available information), it is possible to infer the key unknown “parame-
ters” of the river flow model: the inflow discharge Qin(t), the bathymetry b(x), the
friction K and/or forcing terms (e.g. lateral fluxes). Among the pioneer VDA studies
dedicated to hydraulic models, let us cite [16–18]; next [19,20] have infered the in-
flow discharge in 2D shallow water river models. Infering the discharge and complete
set of the hydraulic parameters from WS measurements only may lead to “equifinal-
ity issues” (ill-posed inverse problems) depending on the flow regime, the adequacy
between the observations frequency and the flow dynamics, and the available prior
information. The inference of the key triplet (inflow discharge, effective bathymetry
and friction coefficient) is investigated in [20,21] but from surface Lagrangian drift-
ing markers providing constraining observations. The upstream, downstream and a
few lateral fluxes are identified from water levels measured at in-situ gauging stations
(Pearl River, China) in [22]; however again the bathymetry and friction are given.
The assimilation of spatially distributed water level observations in a flood plain (a
single image acquired by SAR) and a partial in-situ time series (gauging station) are
investigated in [23,24], see also [25]. In [26,27] the inference of inflow discharge and
lateral fluxes are identified by VDA by superposing a 2D local “zoom model” over
the 1D Saint-Venant model; these studies are not conducted in a sparse altimetry
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measurement context.
The altimetry measurements of WS are generally sparse compared to the flow dy-

namics, both in space and time. This important feature of the inverse problem is
analyzed in detail in [28] through the original and instructive “identifiability map”.
The latter is the (x, t)-plane representation of all the available information, that are:
the satellite measurements, the model response in terms of wave propagation and the
misfit with respect to the equilibrium state.

Concerning the bathymetry inference, it is shown in [7,28,29] that given a single
in-situ measurement of bathymetry, the complete bathymetry profile can be recon-
structed. [28,30,31] present accurate inferences of Q(t) by a similar VDA process as
the present one but based on the 1D Saint-Venant flow model “only” (it does not
include a hierarchical modeling strategy as in the present original approach). In the
(single) river case considered in [31], the priors are computed from light Gaussian
perturbations of the “true” values of K and b and define a (highly controlling) rat-
ing curve Q(Z) is applied at downstream. This boundary condition is a strong prior
information making converge the minimization process to the correct discharge Q(t)
and the bathymetry b(x): the values corresponding to the nearly exact rating curve.

In summary these recently developed VDA algorithms are accurate to infer the
inflow discharge Qin(t) but from accurate prior information. The latter may be a
controlling downstream flow condition [30,31] or a single depth measurement in the
river portion [28].

In view to apply the algorithms to worldwide ungauged rivers, no prior information
may be introduced neither in the direct model nor in the inverse method. This was
not the case up to now; this is the challenging scenario considered in the present
study. To do so, crucial improvements of the aforementioned VDA based inversions
are proposed. Firstly the hierarchical modeling strategy based on original dedicated
algebraic systems strengthens the robustness of the estimations in particular if a mean
value of Q is provided by a database or a large scale hydrological model.

It is formally demonstrated and numerically confirmed that such a mean value
of one field (typically Q or b) i.e. a quite rough but accurate information, im-
proves the accuracy of the estimations of all the space-time dependent unknowns
(Q(t), b(x);K(x;h)).

The complete inversion strategy presented in this article may provide rivers dis-
charge estimations at global scale from the forthcoming SWOT satellite data (NASA-
CNES et al. 2021) and considering additional prior information or not. This is the
reason why the presented numerical results are relatively extensive. These results are
analyzed in detail on three rivers portions, ∼ 100 km long each. Each case presents
a “low identifiability index” following the definition introduced in [28]: they present a
quite high frequency of hydrograph variations compared to the observation frequency;
therefore challenging inverse problems.

Two scenarios of observation are considered: 1) a SWOT like Cal-Val orbit with
∼1 day period; 2) a SWOT like data with 21 days period (with 1 to 4 passes at
mid-latitudes). For each river case and observation scenario, three inverse problems
are considered: the most challenging one, ungauged rivers observed by SWOT only;
the second one where multi-temporal priors on discharge are available; and finally the
third one where in-situ measurements of bathymetry are available. Suitable methods
for each case were developed and are presented in this article. All the algorithms
and methods developed here are available in the open-source computational software
DassFlow [32].
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The outline of the article is as follows. Section 2 presents the river flow models:
the classical Saint-Venant equations but with the particular cross section shapes and
the original low Froude - low complexity systems. These systems are either based on
the classical Manning-Strickler’s law or on explicit “low Froude bathymetry” expres-
sions; they are useful for different purposes (direct and inverse ones) depending on
the scenario. Section 3 presents the advanced VDA method taking into account prior
hydraulic scale and error measurement amplitudes. The description of the three test
rivers and scenarios (20 numerical experiments in total) are presented in Section 4.
The first guess computation is important; it depends on the available prior information
and may be estimated by solving the aforementioned low-complexity systems. Section
5 focuses on hydraulic inferences on ungauged rivers. It is formally demonstrated and
numerically shown that the space-time variations of the infered discharge Qin(t) are
(very) accurate, however up to a potential bias. In Section 6, in-situ measurements
are supposed to be available (e.g. from a database), these may be a single bathymetry
value or a discharge time series at a gauging station; the estimations are very accu-
rate. Section 7 presents how to compute real-time estimations of discharge using the
original algebraic - low complexity system, past the calibration (or “learning”) period.
A conclusion is proposed in Section 8.

2. River flow hydrodynamic models

The primary river flow model is the classical Saint-Venant equations in (A,Q)(x, t)
variables, see e.g. [4,33], with the Manning-Strickler friction coefficient K defined as a
power law in water depth h. It is worth to recall that at the current hydrology satel-
lites measurement scale, the river flows present a low Froude number Fr; typically Fr
ranges approximatively within ≈ [0.1, 0.3]. A first consequence is that the imposed
downstream condition controls the flow; then in lack of prior information, it is impor-
tant that this outflow condition is as “transparent” as possible. To do so, a condition
related to the normal depth (derived from the equilibrium Manning-Strickler’s equa-
tion, see e.g. [4,33]) is imposed. A second consequence is the relatively good accuracy
of the simple Manning-Strickler’s equation to model the flow (see e.g. [6,7,9] for studies
in the present SWOT context). However the Manning-Strickler’s equation is a scalar
algebraic relation highly sensitive to uncertainties; moreover as shown in [7] the actual
independent variable of this relation is Q/K and not simply Q. Then below are derived
“low complexity (algebraic) systems” which are more robust to the uncertainties of
the numerous measurements. These algebraic equations are based on the classical hy-
draulic assumption “low Froude” hence similar in this sense to the Manning-Strickler’s
equation, but they natively integrate the numerous WS measurements. The resulting
systems are original; they are employed both for direct modeling (real-time estima-
tions past the calibration period) and inverse modeling (in particular the estimation
of first guesses in the VDA inverse method). The inversions of these low complexity
systems based on the numerous observations are much robust (less sensitive to the
errors, uncertainties) than the usual Manning-Strickler scalar equation.

2.1. The 1D Saint-Venant model

The 1D Saint-Venant equations below are extremely classical in river hydraulics. It is
depth-integrated equations relying on the long-wave assumption that is the geometrical
ratio of the flow ε = h∗/L∗ small, h∗ being a characteristic water depth and L∗ a
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characteristic length scale (shallow water assumption). In their non conservative form
in (A,Q) variables, A the wetted-cross section

[
m2
]
, Q the discharge

[
m3.s−1

]
, the

equations read as follows, see e.g. [4]:

{
∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A

)
+ gA∂xZ = −g ASf (A,Q;K)

(1)

where g is the gravity magnitude
[
m.s−2

]
, Z is the WS elevation [m], Z = (b+ h)

where b is the lowest bed level (bathymetry elevation) [m] and h is the water depth
[m].
Sf is the classical Manning-Strickler friction term:

Sf (A,Q;K) =
|Q|Q

K2A2R
4/3
h

(2)

with K the Strickler friction coefficient
[
m1/3.s−1

]
, Rh = A/Ph the hydraulic radius

[m] , Ph the wetted perimeter. It will be noticed in next paragraph that Rh may be
approximated by the water depth h for large rivers. The discharge Q is related to the
average cross sectional velocity u

[
m.s−1

]
: Q = uA. The Strickler friction coefficient

K is defined as an non usual power law in h:

K(h) = α hβ (3)

where α and β are two constants. This original way to model the friction turns
out to be adequate since simply representing the flow friction in function of h hence
somehow in function of the flow regime; it is richer than a constant uniform value as
it is often set in the literature from a-priori tables of friction in function of river types
for instance, see e.g. [4]. This law may depend on the space variable x too. For a sake
of simplicity, here the law is supposed to be uniform.

Similar approaches based on hydraulic geometry or power law resistance equations
are developed in the literature for predicting mean flow velocity for example on a wide
range of river measurements in [34].

At upstream the discharge Qin(t) is imposed. At downstream the Manning-Strickler
equation depending on the unknowns (A,Q;K)out is imposed (it is classically inte-
grated in the Preissmann scheme equations). The initial condition is set as the steady
state backwater curve profile: Z0(x) = Z(Qin(t0)). This 1D Saint-Venant model is
discretized using the classical implicit Preissmann scheme.

2.2. River description from SWOT measurements

The forthcoming SWOT measurements will provide spatially distributed measure-
ments of river surface elevation Z and width W with temporal revisits [1]. The mea-
surements will be provided at two different scales, the node scale ( 200m) and the
reach scale (a few kilometers). The signals at node scale will allow to capture the high
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frequencies at the cost of imporant uncertainties. On the contrary the signals at reach
scale will have less uncertainties but will only allow to capture low frequencies. The
WS elevations and width will be calculated similarly at reach and node scale. The WS
slopes will only be given at the reach scale, but they can also be computed at the node
scale using finite differences on Z). All the methods presented after can be applied on
both scales (and can even be extended to other scales that are compatible with the
hydraulics, e.g. the cross-section scale for the Saint-Venant model). For the sake of
clarity, the methods are hereafter presented at the reach scale only.

We consider R reaches, r = 1, .., R, and (P + 1) overpasses, p = 0, .., P . The over-
passes are ordered by increasing flow height. The case p = 0 denotes the lowest water
level. The SWOT data set on a river domain is: {Zr,p,Wr,p}R,P+1 . The direct model
(1) is considered with the specific cross-sectional geometry shape described in Fig. 1. It
consists in discrete cross sections formed by asymmetrical trapezium layers (Zr,p,Wr,p),
the center ox each in the cross-flow direction being denoted by Yr,p. In the following
we assume that the WS slope is positive: Sr,p = −∂rZr,p ≥ 0.

The cross-sectional areas Ar,p are defined as follows: Ar,p = Ar,0 + δAr,p = Ar,0 +∫ hp

h0
Wr(h)dh ∀r ∀p. The variations δAr,p are approximated by the trapeziums δAr,p ≈∑p

q=1
1
2(W q

r +W q−1
r )(hqr − hq−1

r ). The lowest cross-sectional areas denoted by Ar,0 ∀r
are unobserved; they are key unknowns of the flow model. They are represented by
rectangles, see Fig. 1, or any other fixed shape (e.g. a parabola); all the other cross-
sectional areas are trapezoidal.

We have: hr,p ≈ Rhr,p ≈
Ar,p

Wr,0+2hr,p+Wr,p
∀r. It is worth pointing out that this

approximation has been numerically verified on all considered rivers. Since W >> h,
it follows the effective depth expression: hr,p = (Ar,0 + δAr,p)(Wr,0 + Wr,p)

−1 . The
flows are supposed to be gradually varied that is: ∂xWr,p/Wr,p ≈ 0.

The unobserved wetted cross section A0 can be represented by a rectangle, a trapez-
ium, a parabola or even a triangle, by setting: A0 = αAh0,αW with αA ∈ [1

2 , 1]. How-
ever it will be shown that the a-priori effective cross-section shape does not influence
the low Froude (“low complexity”) flow relations, see Section 2.3. We define the hy-
draulic mean depth h0 by: h0 = A0

W ; it is the depth corresponding to an effective
rectangular cross-section.

2.3. “Low complexity” algebraic models

In this paragraph, so-called “low complexity systems” are derived; this terminology
“low complexity” being in comparison with the space-time dependent Saint-Venant
model which requires higher CPU time computations. Indeed these low complexity
systems are algebraic and they are solvable in real-time (Section 7.2). Their equations
are based on classical hydraulic assumptions but they are derived in the particular
present context: the assimilation of SWOT altimetry data. They natively integrate
the measured fields and they may be differently formulated depending on which field
is given or unknown. Note that another formulation of the low complexity system is
derived in Section 6.2 too.

To derive these equations, the basic assumptions made on the flows and data are
the following.

A1) The altimetry measurements are relatively “large scale” compared to the river
flows dynamics. In terms of temporal dynamics, since the satellite cannot make infer
dynamics much faster than its own frequency revisit (which is ≈ 10 days), at each
observation instant p, the flow may be described as a steady state flow . In terms of
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Figure 1. (Left) Schematic river plane view with satellite swaths (large colored rectangles), longitudinal

grid with 1D averaged satellite measurements (black dots) along the river centerline (black line). (Right Top)

Effective river cross section at reach r defined from SWOT data set {Zr,p,Wr,p}R,P+1. (Right Bottom) Space
- time stencil (r, p). x denotes the curvilinear abscissa along the river centerline defined at low flow by Yr,0
with Yr,p the middle of the cross sectional width.

spatial variations, the SWOT instrument will provide an average value of the WS mea-
surement at relatively large scale (RiverObs measurements in the SWOT community
[35]). Therefore the flow may be described as locally uniform at the reach length scale.

A2) At the reach scale defined above, the flow presents low Froude number values;
under the low Froude flow assumption, the inertial terms in the momentum equations
can be neglected.

A3) The considered rivers do not present lateral fluxes.
Moreover the considered rivers are wide enough to assume that the hydraulic radius

Rh ≈ h in the Manning-Strickler friction term Sf , see (1).

2.3.1. The low Froude flow model: system of local Manning-Strickler’s equations

For example for a rectangular cross section, the Froude number Fr satisfies: Fr2 =
uc−1
e with ce the wave celerity, ce =

√
gh. Assuming that the flow is permanent and

low Froude, Fr2 << 1, the momentum equation simplifies as the Manning-Strickler
law: Q = KAh

2/3
√
S . Considering this law at each river reach r and each observation

time p, this provides the following system:

(K−1
r,pQr,p)

3/5 = (A0,r + δAr,p)W
−2/5
r,p S3/10

r,p ∀r, ∀p (4)

for each reach r ∈ [1...R] and each satellite pass p ∈ [0...P ]. The terms
δAr,p,Wr,p, Sr,p are measured, while the terms Qr,p, A0,r and Kr,p are not.

This system (4) can be employed differently depending on the available information
and the unknowns. In the inversion computations presented in Section 6.2, (4) is

reformulated in (14) to estimate pairs (K
3/5
r , Ar,0) from prior discharge values Qr,p

(ancillary data).
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2.3.2. The effective low Froude bathymetry

By injecting the expression of Q in (4) (we skip the subscripts r,p) into the mass con-

servation equation (∂xQ = 0), it follows: ∂x
(
KAh

2/3S1/2
)

= 0. Assuming a constant

friction coefficient K, this simplifies to: ∂xh
h (x) = −3

2

(
∂x(S

1/2)

S
1/2

+ ∂xA
A

)
(x).

Next, following [29] and given a reference depth value href (measured at one

reference reach ref), the explicit expression of h follows: h(x) = href
(
AS1/2

)3/2
ref
·(

AS1/2
)−3/2

(x). This estimation of water depth h is analyzed in detail in [7,29].
Let us extend this estimation of the water depth h (hence the bed elevation b)

to the present context, that is from a complete set of WS measurements. If con-
sidering an effective cross-sectional area A = αAhW with αA ∈ [1

2 , 1] then the

bathymetry expression reads: b(x) = Z(x) − Cref · α
−3/5
A (x) · (WS1/2)−3/5(x) with

Cref = href
(
αAWS1/2

)
|
3/5
ref . The three parameters (αA,W, S) describe the three di-

mensions of the flow.
Given the WS measurements (Z, W,S) and the value Sref at an arbitrary reach

ref , this explicit expression of b(x) provides an effective bathymetry. Observe that
the effective bathymetry elevation b is equivalent if considering different wetted cross-
section shapes determined by αA. In other words, in the present low Froude relations,
the shape of the effective cross-sectional area A may be chosen arbitrarily. In the
following we set αA = 1; that is a rectangular effective shape. Finally the effective
bathymetry expression under the assumptions A1)-A3) previously mentioned reads:

br + (Zref,p − bref ) · O−1
ref,p · Or,p = Zr,p ∀r, r 6= ref, ∀p ≥ 0 (5)

with the observational term Or,p =
(
Wr,p

√
Sr,p

)−3/5 ∀r ∀p. (The only observational

terms of this estimation are Z and the product WS1/2 ≡ O).
In the following the bathymetry {br}r solution of (5) is called the “Low Froude

bathymetry”.
The system (5) contains (P+1)×(R−1) equations (given 1 reference reach only) with

R unknowns: the bathymetry vector b = ({br}r, bref ) r ∈ [1, R] , r 6= ref . The system

reads: (A.b)p = (F )p ∀p , with(Fr)p = Zr,p−Zref,pO−1
ref,p·Or,p and the (R−1)(P+1)×R

matrix (A)p =
[
I(R−1×R−1)|O−1

ref,p · Or,p
]
. For P ≥ 1, A is of maximal rank excepted

if the observational vectors (Or)p are linearly dependent; that is not the case if the
considered water flow lines represent flow variations.

On the coupled influence between b and a non constant friction coefficient K. As
shown above and already demonstrated in [7,29], the low Froude assumption enables
to separate the bathymetry effect from the friction effect if the friction coefficient
K is constant, see (5); K does not appear anymore in (5). On the contrary, if K
varies in space or depends on the depth h, like in (3) or in the Einstein formula,
see e.g. [4], then K and b have a coupled influence even at low Froude. Typically
if considering the following power-law: K(h) = K0 · (h − h0)β(x) with gradually
varied coefficients i.e. ∂xK0 ∼ 0 ∼ ∂xβ, after calculations the depth expression reads:

[h(x) · |h(x)−h0|3β/2] = c0 ·(AS1/2)−3/2(x) with c0 = |href −h0|3β/2 ·href ·(AS1/2)
+3/2
ref

(href the reference depth value). The case K constant is recovered from the equation
above by setting β = 0.
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Relationship with empirical laws. It may be practical to consider empirical laws

based on hydraulic geometry such as: Zr,p = br + arW
β
r,p. In other respects, (5)

re-writes as follows: Zr,p = br + Cref,p · α
−3/5
A,r · (WS

1/2)|−3/5
r,p ∀r, ∀p, p = 0, .., P

with Cref,p = href,p
(
αAWS1/2

)3/5
ref,p

. We assume constant cross section shapes

(αA,r = αA ∀r). By equaling the two estimations it follows: W β
r,p · (Wr,pS

1/2
r,p )3/5 =

a−1
r · href,p

(
WS

1/2
)3/5
ref,p

∀r ∀p. Assuming that the flow is uniform in terms of the

observational term (WS1/2) i.e. this quantity is constant for the considered reaches,

we obtain that: W β
p = a−1 hp; equivalently: Zp = b+ a W β

p .Therefore the low Froude
estimation (5) contains empirical laws of the form indicated above. Given β and time
series of WS elevation and width this relation allows to infer an effective river bed
elevation e.g. as in [5]. Such law could be defined in function of hydraulic geometry
knowledge.

On the accuracy of these low Froude - low complexity systems. The two systems (4)
and (5) turn out to be reasonably accurate in the present altimetry context (Assump-
tions A1) -A3)). Employed as direct modeling, their solutions have been numerically
assessed in [7]; it is done in the present context too, see Section 6.

3. The Variational Data Assimilation (VDA) formulation

VDA method principles. Given the WS measurements, the VDA method aims at
estimating the “input parameters” of the Saint-Venant flow model that is: the inflow
discharge Qin(t) of the Saint-Venant model, the bathymetry b(x) and the friction
coefficient K(h) defined by (3). In discrete form, this unknown “parameter” reads:

c = (Qin,0, ..., Qin,P ; b1, ..., bR; α, β)T (6)

Here the subscript p denotes the instant, p ∈ [0..P ], r denotes the node number,
r ∈ [1..R] , see Fig. 1 and α and β are the law parameters defined by (3). When using
the VDA method with the full Saint-Venant model, it is recommended to consider the
node scale as it allows to capture the high frequencies in the observations; this is what
is done in the present study.

Since the relation between the elevation Z and the cross-sectional area A (see the
river description section 2.2) defines a bijection function, measuring Z is equivalent to
measuring A. Of course the parameters used for imposing a normal depth at down-
stream, see Section 2.1, are considered as unknown otherwise it would be equivalent
to impose an exact condition highly controlling the solution.

The cost function and optimization problem. The considered cost function j
is defined by:

j(c) = jobs(c) + γ jreg(c) (7)

The term jobs(c) measures the misfit between the observations and the model output:

jobs(c) =
1

2
‖(Z(c)− Zobs)‖2N (8)
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The norm N is defined from the a-priori covariance operator N (a positive definite
matrix): ‖ · ‖N = ‖N1/2 · ‖2. The regularization term jreg(c) is detailed below; the
weighting coefficient γ > 0 is set following an iterative regularization strategy detailed
below.

The WS elevation Z depends on c through the flow model (1). The inverse problem
reads as: c∗ = argmin j(c).
This minimization problem (actually an optimal control problem of (1) is numerically
solved by a Quasi-Newton descent algorithm (here the classical L-BFGS algorithm
presented in [36]). This first order method requires the computation of the cost gra-
dient ∇j(c). The gradient is computed by introducing the adjoint model (enabling to
consider large control vector dimensions). The adjoint code is obtained by employ-
ing the automatic differentiation tool Tapenade [37]. We refer to the pioneer studies
[14,15,38,39] for VDA concepts (and e.g. [38,39] for online detailed courses containing
know-hows including implementation ones).
The unknown parameter c contains three variables of different physical nature which
are space and/or time dependent. Moreover the bathymetry b(x) and the friction co-
efficient K(h) are correlated and they may have a similar influence in terms of WS
signature therefore leading to an ill-posed inverse problem, see e.g. [7] for such a dis-
cussion in the present inversion context. Then the inverse problem is regularized in
two ways following relatively classical techniques.

Firstly, the regularization term jreg , see (7) is simply set as: jreg(c) = 1
2 ‖b”(x)‖22.

jreg imposes a smoothing effect on the infered bathymetry profiles b(x)). Secondly
the following metrics based on (classical) covariance operators are introduced.

Covariance operators and change of control variable. The following natural
change of variable is made, see e.g. [40]:

k = B−1/2(c− cprior) (9)

where B is a covariance matrix. Recall that the unknown parameter (the control
variable) c is defined by (6); cprior is a prior value (also called “background” or “first-
guess” value). The value of cprior depends on the prior information.

The choice of B may be viewed as an important prior information too since the
optimal solution k∗ (strongly) depends on B. Indeed, after this change of variable, the
optimality condition reads: B1/2∇j(c) = 0. This change of variable may be viewed as
a preconditioning method, see e.g. [41,42] for detailed analysis in a different context.
Then the optimization problem to be solved re-reads as:

min
k

J(k) (10)

with J(k) = j(c), j defined by (7) and the control vector k defined by (9). The
unknown parameter k contains the three variables Qin(t), b(x), K(h) in their discrete
form. These three variables are assumed to be uncorrelated: B is thus defined as a
block diagonal matrix. We set:
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B =

 BQ 0 0
0 Bb 0
0 0 BK

 (11)

Each block B� is defined as a covariance matrix (positive definite matrix). The ma-
trices BQ and Bb are set as classical second order auto-regressive correlation matrices,
see e.g. [40,42,43]:

(BQ)i,j = (σQ)2 exp

(
−|tj − ti|

∆tQ

)
and (Bb)i,j = (σb)

2 exp

(
−|xj − xi|

Lb

)
(12)

The parameters ∆tQ and Lb act as correlation wave lengths. Given the observation
frequency (1 day minimum), given the measurements accuracy (200m long “observa-
tion pixels”) and given the typical Froude number of the observed river flows, adequate
values for these parameters are: ∆tQ = 24 h and Lb = 1 km. We refer to [28] for a
thorough analysis of the discharge inference in terms of frequencies and wave lengths.
The matrix BK is diagonal; it may be (roughly) set as: BK = diag(σ2

α, σ
2
β). The scalar

values σ� may be viewed as variances.
This VDA formulation above takes into account prior hydraulic scales through the

parameters ∆tQ and Lb; the balance between the different control variables are set
through the parameters σ�. Their values are detailed in the numerical results sections
(Sections 5 and 6).

On the non over-fitting of data. Let us denote by δ the noise level such that
for all locations ‖Zobs − Ztrue‖2 ≤ δ with Zobs the observed and Ztrue the true WS
elevation. Following the Morozov discrepancy principle, see e.g. [49] and references
therein, the regularization parameter γ in (7) is chosen a-posteriori such that j does not
decrease below the noise level. In the present numerical experiments, the convergence
is stopped if jobs(c) ≤ χδ with χ ∼ 0.9.

4. Test rivers and data description

In this section the three test rivers and the different scenarios (depending on the avail-
ability of data) are presented. The developed methods to compute the first guesses
(estimations used as the first value in the iterative VDA process) are detailed; a sum-
mary of all numerical experiments is presented.

4.1. River cases and Water Surface (WS) measurements

The inversion method capabilities are assessed on three rivers with two densities of WS
observations representing increasing difficulty. They consist in 75 km of the Garonne
River (France), 98 km of the Po River (Italy) and 147 km of the Sacramento River
(California, USA), see Tab. 1. These three rivers have contrasting morphological char-
acteristics in terms of the average variability of the slope and the shape of the cross
section, resulting in hydrodynamic nonlinearities observable in WS signatures. The
impact of WS measurements sampling on hydraulic controls identifiability is assessed
with a SWOT Cal/Val scenario (daily observations) on the Po and Garonne Rivers,
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and with the nominal SWOT spatio-temporal sampling on the Sacramento River (i.e.
relatively unfrequent observations).

The SWOT-like WS observations used in the experiments consist in sets of
(Zr,p,Wr,p)R,P+1 either computed using synthetic errors or using the SWOT Hydrology
Simulator. SWOT Hydrology Simulator outputs were only available for the Sacramento
river for this study. For the two other rivers, synthetic SWOT-like data have been sim-
ulated by adding Gaussian errors to the outputs or the reference hydraulic models:
Zobs(x, t) = Ztrue(x, t) + N (0, σZ) with σZ = 25 cm corresponding to the expected
magnitude of SWOT measurement errors at the present spatial scale - according to the
SWOT scientific requirements [1]. The observation period ∆tobs = 1 day for these two
rivers corresponds to the to the calibration/validation (Cal/Val) phase of the mission.

For the Sacramento case, the observability corresponding to a nominal 21 days
SWOT cycle is simulated by the SWOT Hydrology Simulator. The whole river portion
is observed by SWOT (tracks number #249 and #527 respectively) at the 9th and
19th days of each 21 days repeat cycle; the simulated measurement error on Z is
characterized by an average variance σZ = 34 cm, see Tab. 1. It is interesting to
use this high (simulated) measurement error, in case the real SWOT errors would be
locally higher than the scientific requirements. For the three cases the spatial sampling
is ∆xobs = 200 m; the SWOT Hydrology Simulator outputs are averaged in space on
∼ 200 m nodes (corresponding to the so-called RiverObs nodes).

Table 1. Hydraulic characteristics for each case

Case Name Reach Length Max. Width Avg. Slope Avg. Flow Froude Range

(km) (m) (m/km) (m3/s) (-)

Garonne 75 49/1,383 0.861 156 0.03-0.67

Po 98 116/5,515 0.145 1499 0.04-0.47

Sacramento 147 59/678 0.558 251 0.02-0.64

Table 2. Observations sources and characteristics for each case

Case Name Hydrodynamic Temporal Observations

Model Window Frequency

Garonne 44 HEC-RAS 06 jan. 2010 - 06 avr. 2010 1 day

Po 45 HEC-RAS 01 jan. 2002 - 01 avr. 2002 1 day

Sacramento HEC-RAS + SWOT HR 01 jan. 2009 - 27 jun. 2009 21 days

4.2. Classes of inverse problems for ungauged and poorly gauged rivers

The future SWOT mission will observe worldwide rivers wider than 100 m with on
average of 1 to 4 temporal revisits every 21 days at mid-latitudes, see e.g. [3]. The
difficulty of the inverse problem depends on the availability of ancillary data. The
inversion capabilities of the present inverse method(s) are tested on three scenarios
of increasing difficulty. All these scenarios are based on a set of SWOT observations
consisting in measurements of river surface deformations (Zr,p,Wr,p)R,P+1. These three
scenarios are:

(1) Only SWOT observations are available; this corresponds to the most challenging
inverse problems on ungauged rivers. This case is addressed in Section 5.

(2) SWOT observations and multi-temporal priors on discharge are available. These
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prior rough values (potentially a unique one) may be provided by worldwide
hydrological models or discharge databases. This case is addressed in Section 6.

(3) SWOT observations and one in-situ measurement of bathymetry (denoted by
bref ) is available. In this case an accurate effective bathymetry surrounding
(±100 km) the reference value bref can be inferred. This case is addressed in
Section 6.

For all scenarios and river cases a worldwide river database - the SWOT river
database [46,47] in construction - contains at least one discharge value (inter-annual
average value of discharge modeled with a large scale water balance model or estimated
from ancillary hydrological databases) and one friction estimate. Given the R×(P + 1)
WS observations, the complete control vector c formed by (P +4R+2) unknowns, see
(6), is computed by the VDA process. It is formed by (P + 1) unknown discharges, 4R
unknown river bed elevations and a friction parameterization depending on h (forward
model state) and two constant parameters.

4.3. First guess computation

In order to be as realistic as possible, first guesses of the VDA process are infered from
available worldwide databases and/or hydrological models. However for many rivers
worldwide in-situ measurements will not be accessible or even do not exist. First guess

values c(0) =
(
Q

(0)
in,0, ..., Q

(0)
in,P ; b

(0)
1 , ..., b

(0)
R ; α(0), β(0)

)T
of the parameter vector, see

(6) and (9), are obtained as follows:

• At inflow, we set: ∀p ∈ [0...P ], Qp = QMAF ≡ Q(0)
in .

QMAF may be obtained by retrieving Mean Annual Flow (MAF) either from the
SWOT a-priori river database under construction see e.g. [46] or from the global
Water Balance Model (WBM) [48].
• A constant prior on Manning-Strickler friction coefficient K(0) is estimated from

the SWOT a-priori river database. The K(0) values in the present case are 25, 33
and 25 respectively for the Garonne, Po, and Sacramento rivers, corresponding
the α(0) values with β(0) = 0, see (3).
• A prior on the unobserved bathymetry b(0) (or equivalently the unobserved cross

sectional areas (Ar,0)r assuming a shape and knowing the low flow WS widths
(Wr,0)r, see Section 2.3) can be obtained by the following three methods, see
Tab. 3.
◦ ”Manning”- the unobserved low flow bathymetry b(0) is obtained by invert-

ing the Manning equation (4) applied to a single flow line with K(0) and

Q
(0)
in constant in space and time,

◦ ”Manning-multi”- low flow bathymetry b(0) is obtained by inverting Eqn
(13) with numerous flow lines that represent a large range of flow regimes
and variabilities on the studied river. In that case, flow lines can be grouped
by deciles and put in correspondence with deciles of discharge from the
worldwide available WBM model or a discharge database.
◦ ”Low Froude”- In the case where one bathymetry measurement is available,

an effective bathymetry is derived from WS observables and the low Froude
equation (5).

For the three scenarios, ”Manning”, ”Manning-multi” and ”Low Froude”, the first-
guesses Q(0), α(0) and β(0) are determined using the same methods described above.
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Table 3. Summary of experiments (*: two overpasses at days 9 and 19 every 21 days repeat period)

Experiment River b(0) ∆xobs ∆tobs σperturbZ σZ σQ σαK σβK σb

A.1 Garonne Manning 200 m 1 day 0 25 cm 15 m3/s 0.5 0.01 25 cm

A.2 Garonne Manning-multi 200 m 1 day 0 25 cm 15 m3/s 0.5 0.01 25 cm

A.3 Garonne Low Froude 200 m 1 day 0 25 cm 15 m3/s 0.5 0.01 25 cm

A.4 Garonne Manning 200 m 1 day 25 cm 25 cm 15 m3/s 0.5 0.01 25 cm

A.5 Garonne Manning-multi 200 m 1 day 25 cm 25 cm 15 m3/s 0.5 0.01 25 cm

A.6 Garonne Low Froude 200 m 1 day 25 cm 25 cm 15 m3/s 0.5 0.01 25 cm

B.1 Po Manning 200 m 1 day 0 25 cm 71 m3/s 0.5 0.01 25 cm

B.2 Po Manning-multi 200 m 1 day 0 25 cm 71 m3/s 0.5 0.01 25 cm

B.3 Po Low Froude 200 m 1 day 0 25 cm 71 m3/s 0.5 0.01 25 cm

B.4 Po Manning 200 m 1 day 25 cm 25 cm 71 m3/s 0.5 0.01 25 cm

B.5 Po Manning-multi 200 m 1 day 25 cm 25 cm 71 m3/s 0.5 0.01 25 cm

B.6 Po Low Froude 200 m 1 day 25 cm 25 cm 71 m3/s 0.5 0.01 25 cm

C.1 Sacramento Manning 200m 21 days* 0 25 cm 20 m3/s 0.5 0.01 25 cm

C.2 Sacramento Low Froude 200m 21 days* 0 25 cm 20 m3/s 0.5 0.01 25 cm

C.3 Sacramento Manning 200m 21 days* 34 cm 25 cm 20 m3/s 0.5 0.01 25 cm

C.4 Sacramento Low Froude 200m 21 days* 34 cm 25 cm 20 m3/s 0.5 0.01 25 cm

Only the method used to compute b(0) differs for each scenario.
It is important to point out that if b(0) is estimated from the simple one-value

Manning-Strickler relation, this first crucial estimation of the bathymetry is highly
sensitive to any error made on the a-priori estimation of (Q(0),K(0)).

These three scenarios are tested on all river cases, either with perfect or noisy obser-
vations, except for the Sacramento River were the second scenario cannot be computed.
Indeed the small number of overpasses (17) is not sufficient to determine flow regimes
an thus statistically relate observations with deciles of discharge in databases.

The criteria used to evaluate the performance of the estimations at assimilation

times are the classical RMSE =

√∑n
t=1(Qest

t −Qtrue
t )2

n and relative RMSE rRMSE =√
1
n

∑n
t=1

(
Qest

t −Qtrue
t

Qtrue
t

)2
where Qestin (resp. Qtruein ) is the estimated/infered (resp. ob-

served) inflow discharge of size n in time.

5. Hydraulic inferences from WS long time-series on ungauged rivers

This section presents the numerical inference of the complete control vector (6) in the
1D Saint-Venant model (1) in the case of ungauged rivers: WS observations distributed
in space and time (SWOT like data) only are available. The inferences are performed in
the SWOT Cal/Val scenario for the Po and Garonne rivers and for a real like SWOT
scenario for the Sacramento River. In this last case, a preliminary analysis of the
inverse problem based on the identifiability map (see [28]) helps to define the control
frequency. Finally, a formal re-scaling of the Saint-Venant equations demonstrates the
intrinsic ill-posedness feature of the present inverse problem; this (simple) calculation
explains the bias observed in the numerical results.
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5.1. SWOT Cal/Val scenario: Po and Garonne rivers

The infered inflow discharge for the Po and Garonne Rivers and this scenario are
shown in purple on Fig. 2 (Scenarios A.4 and B.4 in Tab. 3). For each of the two
rivers, the true daily inflow hydrograph over 90 days (green curve) is satisfactorily
retrieved with rRMSEQ = 24.3% on the Po River the and rRMSEQ = 9% on the
Garonne River at assimilation points (corresponding to observation points) - 8.5% and
4.8% respectively with perfect observations. Concerning the bathymetry, the results
are listed in Tab. 5 and plotted on Fig. 5 using B∗ (deviation from the trend) for
better reading. The estimated bathymetry b1..R is improved by the VDA process on
the Garonne River (prior RMSEb(0) = 0.39 decreases to RMSEb = 0.31) ; it remains
close to the first guess in the Po River case. Let us recall that the friction parameter
K is model-equations-geometry dependent; its calibrated value compensates various
modeling errors.

For both rivers considered as ungauged i.e. with prior c(0) defined from the a-piori
river database only (scenarios A4,5 ; B4,5 and A1,2 ; B1,2 with perfect observations,
Tab. 5), the inference of discharge remains robust and accurate. Most of the identifica-
tion errors are absorbed by the friction coefficient. It can be noticed that an equifinality
issue may remain between the bathymetry and the friction. Indeed, on the Po River
while discharge is very well retrieved, neither the bathymetry nor the friction coeffi-
cient is significantly improved by the VDA process. Different (friction, bathymetry)
pair values can produce at least similar (correct) discharge given a dataset. However
this ”optimal value” of (K, b(x)) solution of (10) can be refined by solving afterwards
the algebraic model presented in Section 7, see Tab. 5.

The “Manning” method has been performed using both the WBM discharge [48]
and the discharge from the SWOT a-priori river database, see e.g. [46] (respectively
cases A.1.a, A.4.a, B.1.a and B.4.a; or A.1.b, A.4.b, B.1.b and B.4.b in Tab. 4). Recall
that the “Manning” method used to determine the prior value of b(0) is based on a
single pair (Q(0),K(0)), therefore it is highly sensitive to any error in these first-guess
values.

If measuring the inference accuracy in terms of rRMSE on Q, the results obtained
for these 12 experiments show that rough priors Q(0) , see paragraph 4.3, may lead to
poor estimations of the discharge, see Tab. 5. For the A.1.a case rRMSEQ = 4.8 %
which is really better than for the A.1.b case where rRMSEQ = 30.5 %. For the
A.4.a case rRMSEQ = 9.0 % and rRMSEQ = 33.0 % for the A.4.b case. The same
observation can be made for the Po River.

However, as shown in Figure 2, the infered temporal variations of Q remain excellent

in all cases. Indeed, if we compute the same rRMSE but using Q∗(x, t) = Q̄true

Q̄(0) Q(x, t)

(i.e. the shift of the prior is taken into account) the obtained values are: rRMSEQ∗ =
7.6 % for the A.1.b case, rRMSEQ∗ = 13.3 % for the A.4.b case, rRMSEQ∗ = 11.0 %
for the B.1.b case and rRMSEQ∗ = 24.9 % for the B.4.b case. Thus the rRMSE
obtained are comparable with the rRMSE obtained using the good prior. This high
accuracy of the discharge temporal variation independently of the priori quality is
mathematically explained in the next paragraph 5.2.

These results show that the estimations are highly sensitive to the accuracy of
the inflow prior if using the simple “Manning” method. On the contrary, if using
multiple accurate discharges values (here from the GRDC database) that is using the
“Manning-Multi” method, these estimations are much more robust.
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Figure 2. Inflow discharge (true=target, prior, infered=estimate) with daily SWOT-like observations. (Left)

Garonne River Case A.3. (Right) Case B.3

Table 4. Scores of the inversions performed from different priors (“a” for SWOT a priori database, “b” for

WBM) defining the hydrograph first guess Q(0).

Case River σobsZ
Qprior RMSEb(0) RMSEQ rRMSEQ rRMSEQ∗ RMSEb

(m3/s) (m) (m3/s) (%) (%) (m)

A.1.a Garonne 0 150 0.18 13.4 5.1 5.0 0.43

A.1.b Garonne 0 270 0.51 40.6 30.5 7.5 0.73

A.4.a Garonne 25 cm 150 0.39 24.0 10.3 9.8 0.31

A.4.b Garonne 25 cm 270 0.54 41.8 33.0 13.3 0.45

B.1.a Po 0 710 0.61 83.9 8.5 8.5 0.75

B.1.b Po 0 841 0.91 88.4 17.1 11.0 0.92

B.4.a Po 25 cm 710 0.92 185.9 24.8 24.8 1.04

B.4.b Po 25 cm 841 1.12 235.3 31.5 24.9 1.24
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5.2. On the equifinality issue & the importance of one ancillary data

The numerical results above show that the space time variations of the infered dis-
charge are very accurate but may present a bias, see Fig. 2. However the bias vanishes
if the (scalar) prior value Q(0) is sufficiently accurate; Q(0) may be the mean value of
Q. As a consequence if the a-priori value(s), see paragraph 4.3, are far from reality, the
rRMSE criteria on the estimation may be large, see e.g. case A.4.b in Tab. 4; while the
rRMSE computed from Q∗(x, t) remains excellent, Fig. 2. This bias (in other words
this equifinality issue) can be explained by the simple re-scaling calculation of the flow
equations below.

Let Q̄ be a scalar value e.g. a mean value of Q or even K. The variables (A,Q, h) are
re-scaled as follows: (A∗, Q∗, h∗) = (A,Q, h)/Q̄. We set: A∗ = h∗W ; W the measured
surface width. The mass equation divided by Q̄ reads: ∂t(A∗) +∂x(Q*) = 0. Therefore
as it is well known, in terms of mass, rescaling Q implies to rescale A by the same
factor (or equivalently rescaling the water depth h). The momentum equation divided
by Q̄ reads:

∂t(Q∗) + ∂x

(
Q2
∗

A∗

)
+ gA∗ ∂xZ = −gA∗Sf

with Sf ≡ Sf (A,Q;h;K) = 1
K2

|Q|Q
A2h4/3 .

A short calculation shows that: Sf (A,Q, h;K) = Sf (A∗, Q∗, h∗; K̄
−2/3K). Therefore,

given the WS measurements (W,Z), the 1D Saint-Venant equations (1) with K as
Manning-Strickler’s coefficient is equivalent to the same equations but in the re-scaled
variables (A∗, Q∗, h∗) with the Manning-Strickler coefficient equal to (K̄−2/3K).
As a consequence the infered solution (A,Q;K) obtained by inverting the Saint-Venant
model is those corresponding to the prior value(s) introduced into the vector cprior,

see (9) and Section 4.3. (Recall that the first guess value Q(0) and values considered
at downstream for the rating curve conditions are consistent).

This formal re-scaling of the equation and the numerical results, Fig. 2, show that
the inversions from WS measurements only are accurate to retrieve the time variations
of the inflow discharge Qin(t) (therefore the space-time variation throughout the
domain) but it may be up to a multiplicative factor (the bias). This equifinality issue
is solved (the bias vanishes) as soon as a reference value of one of the three fields A0

(or equivalently b) Q or K is provided. One good global mean value may be enough.
The low-complexity algebraic system (13) is solved to obtain the first guess values
(see Section 4.3). Such a context is considered in next section.

It is worth noticing that the same inversions based on the (scalar) Manning-Strickler
equation or on the algebraic system (4) (and not on the dynamic Saint-venant equa-
tions) present equifinality issues even stiffer. Indeed, given a set of WS measurements
(Zr,p,Wr,p)R,P+1 and an effective low flow bathymetry A0,r ∀r (therefore the effective
cross-sectional area Ar,p = Ar,0 + δAr,p ∀r ∈ [1..R] is given), the inference of the
ratio Qr,p/Kr,p is possible from (4); but not the pair (Qr,p,Kr,p) ! Infering the dis-
charge value from the WS measurements and local Manning-Strickler’s laws i.e. the
low Froude system (4), requires additional information on the friction coefficient; oth-
erwise the resulting uncertainty on Q is proportional to the uncertainty on K−1, and
reciprocally. Of course, given a strong prior information on K or Q (e.g. an a-priori
pdf), the corresponding uncertainty on the infered value may be computed.
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5.3. Identifiability map & preliminary analysis

The discharge inference capabilities depend on the space-time sampling of the obser-
vations and on the flow dynamics. An instructive reading of the inverse problem can
be obtained by plotting the “identifiability map” introduced in [28]. The identifia-
bility map represents in the (x, t) plane the complete information: the “space-time
windows” observed by SWOT, the hydrodynamic wave propagation (1D Saint-Venant
model in fluvial regime) and the misfit to the “local equilibrium” (local misfit between
the steady state uniform flow and the dynamic flow), see [28] for details. This pre-
liminary analysis enables to roughly estimate the inflow time intervals that can be
identified by the VDA process; indeed the inflow discharge arise from these observed
“space-time windows”. This qualitative reading of the inverse problem is instructive
since it enables to roughly estimate if the sought information has been observed or not.
In the present case (Sacramento River case), the reach of 147 km long is completely
observed by two SWOT tracks respectively at the 9th and 19th days for each 21 days
repeat period. As the Sacramento River is considered ungauged in this experiment, the
real identifiability map cannot be computed. To circumvent this point, we compute an
a-priori identifiability map as follows:

• A VDA inference of the control vector c is performed from prior information
given by the “Manning” method (Section 4.1) and SWOT observables.
• Using this control vector c, a forward model run is performed (the Saint-Venant

model (1)).
• Finally, the “equilibrium misfit” (Sf − S0) (see [28] for detailed explanations)

and the wave propagation times (Twave) are calculated using the output of the
forward model.

The obtained identifiability map is plotted on Fig. 3. Due to the observation layover,
there are few unobserved zones for the second SWOT pass #527, for example at
x = 80 km and t = 19, 40, 61 days. Given the WS observation of each reach at a
given time, on Fig. 3 purple dots at the upstream BC represent the foot of each
hydraulic characteristics - the upward hydraulic information propagation. Finally the
identifiability of Qin(t) seams to be possible on time windows of ∼3 days (∼2 days for
the flood peak recession at day 51) before observation times.

The “equilibrium misfit”(Sf−S0) is represented on the map; it highlights where and
when the flow is not locally steady and uniform. The magnitude of this equilibrium
misfit tends to increase when a flood wave is traveling through the domain as shown
by the observation at day 51, and day 61 corresponding to another peak entering the
studied domain, Fig. 3 and 4. The map indicates that the WS deformations due to
the flood peak between day 51 and 61 have not been observed. Moreover the mean
estimated upward information propagation time is of 72h.

Consequently, from this analysis we define 3 assimilation points every 12h, hence
corresponding to half the mean propagation time, before observations at days 51 and
61. Those observations may contain information respectively on the first flood peak
recession and the third flood peak rise. The mean estimated upward propagation time
is 36h (estimation coming from “observable times”, which are represented with vertical
purple dots on the right side of the figure). Since these “observable times” are computed
a-posteriori and using an estimation of the wave speeds, we dismissed the extrema
values (we retain 70% of the values).
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a) b)

Figure 3. Identifiability map: overview in the (x, t)-plane of the inverse problem features: observables, hy-

draulic wave speed (and “equilibrium misfit”being absolute value of the source term in the Saint-Venant
equations, color bar). For each observation of the domain in time, the vertical spreading corresponds to the

time α
u

∆x necessary for the upstream wave to cross an observed cell of size ∆x; α is simply a dilatation factor
for a sake of readability. . (a) The complete (x, t)-plane. (b) Zoom on the most varying time interval.

5.4. SWOT scenario: Sacramento River

The accuracy and the robustness of the algorithms proposed in this study are demon-
strated on a real SWOT scenario, that is unfrequent observations compared to the
hydrograph frequencies. The identifiability maps has provided some crucial informa-
tion to set up the VDA process. The inflow discharge, bathymetry and friction infered
by VDA on the Sacramento River are shown respectively on Fig. 4 (a) and Tab. 5.
The discharge identification is accurate at each observation time and for the 3 points
preceding observed flood peaks at t = 51 and 61 days. It is worth noticing that a basic
approach consisting in infering discharge at observation times only would lead to a less
accurate hydrograph inference as shown in Fig. 4 (b). The flood peak between days
51 and 61 is not retrieved since the preliminary analysis in terms of wave propagation
above has shown (see Section 5.3) that the peak effects have not been observed.

Following [28], the identifiability index Iident = Twave

∆tobs
of the river case is evaluated

for a wave propagation time (Twave) of about 72h (with ∆tobs ∼ 10 days). This results
to Iident ∼ 0.3, that is a relatively low identifiability index. Interestingly, even with this
low identifiability value, the inference of discharge is accurate at observation points
but also at the identification times defined before flood observations (following the
analysis based on the identifiability map).

Finally we point out that the infered discharge is accurate while the bathymetry
and friction need to be refined using other information or equations; this is done in
next section using the low complexity systems presented in Section 2.3.

6. Inferences from WS observations and one in-situ measurement

Many worldwide rivers are not fully ungauged. In this section the benefit of using
additional ancillary data is investigated. A single bathymetry measurement can be
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a) b)

Figure 4. Inflow discharge (target=true, prior and infered=estimate with SWOT-HR observations), Sacra-

mento River. Computations with N = 4 assimilation points every (0h,12h,24h,36h) before observation times
(a) or at observation times only (b).

valued with the Low Froude model (5): an accurate first guess bathymetry can be
infered and used in the control vector c(0) (case ”Low Froude” Section 4.3).
A dedicated original bilinear system is derived to exploit discharge values potentially
available in time and/or space. The latter being provided by a regional scale hydro-
logical model or a gauging station. Next this first estimation of (A0,K) is used as a
first guess in the control vector c(0) (case ”Manning-multi” Section 4.3).

On the accuracy of the low Froude - low complexity algebraic systems (4) and (5).
As already mentioned, the systems (4) and (5) have been numerically assessed. For the
Po and Garonne rivers, the HEC-RAS model (US Department of Defense, Army Corps
of Engineers) has been used to generate synthetic observations; next Gaussian noises
with realistic variances have been added, see Section 4.1. For the Sacramento river,
SWOT Hydrology Simulator outputs have been considered. Next these direct models
have provided the considered “true” flows measurements. Next given the effective true
bathymetry b and the synthetic data (Z,WS1/2), the system (4) has been solved and
its solution has been compared to the “true” one. The obtained difference between the
discharge values deduced from (4) and the “true” values equals approximatively ±7%,
see Fig. 7.

The obtained difference between the unobserved flow area A0 infered from (5) and
W0, and the effective “true” value equals approximatively ±10% in ≈ 100 km long
reaches, see Fig. 6.

It is worth noting that this bathymetry estimation presents an increasing “drift”
with the distance to the reference measurement location xref . As discussed in [7],
this drift is a-priori due to the non consistency of the steady state mass conservation
∂xQ = 0. However this low Froude bathymetry is accurate enough if applied to a ∼ 100
km portion only (for a single measurement href ). (Recall that neither tributary flows
nor groundwater exchanges are taken into account in the present modeling).

6.1. Inference of A0 from one in-situ bathymetry measurement

As already pointed out, infering the pair (Q(t);K) given the bathymetry b is much
less challenging; this is one of the context analyzed in detail in [28]. Therefore infering
a reliable prior bathymetry before the iterative VDA process may be highly interest-
ing. Here the control vector c, see (6), is composed by the upstream discharge, the
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Figure 5. True and infered bathymetry deviation from trend (B∗)1..R compared to prior bathymetry esti-

mations, noisy observations (Section 4.3): (a,d,g) “Manning”. (b,e) “Manning-multi”. (c,f,h) “Low Froude”.

bathymetry and the friction. In this paragraph the different alternatives presented in
Section 4.3 for estimating low flow bathymetry are tested on the three rivers, see Fig.
5. Each method gives fairly good estimations of (br)1..R (represented here as B∗ the
bed elevation b minus an average bathymetry trend). For each river, unsurprisingly,
the best estimate is given by the low Froude approach, Eqn (5) requiring one in-situ
point. Using the approaches based on the Manning equation and one flow line (b(0)

“Manning”, Eqn (4)) leads to a shift of the infered prior bathymetry (Po and Sacra-
mento rivers) whereas it is avoided if using the low complexity approach involving
multiple flow lines better sampling flow regimes (b(0) “Manning-multi”, Eqn (13)).

In the Sacramento river case, a drift (increasing error in space) appears in the
“Low Froude” bathymetry for nodes far from the reference point. Indeed if the basic
hypothesis ∂xQ = 0 of “Low Froude” model is not satisfied (that is an unsteady
flow), such a drift appears due to the nature of the differential equation (a first order
differential equation), see [7] for a detailed investigation. In order to avoid this drift,
a segmentation of the river into two zones is performed and two reference bathymetry
points are used for the “Low Froude” bathymetry prior estimation, Fig. 5 (Bottom
Right).

6.2. Inference of (A0,K) from one gauging station

This section aims at formulating an additional ”low complexity model” to take advan-
tage of discharge data available in space and/or time, for example provided by a large
(regional) scale hydrological model or a gauging station. Again the derived equations
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natively integrate the measurements in its coefficients.
It is assumed that spatially distributed values of Q are available in the domain for
each overpass p ∈ [0...P ], that is (Qr,p)r,p.
Let us assume that the friction varies both in space and time, that is (Kr,p)r,p. Then
(4) reads as follows:

cr,p ·K3/5
r,p Ar,0 + dr,p ·K3/5

r,p = Q
3/5
r,p for all (r, p) (13)

with cr,p = W
−2/5
r,p S

3/10
r,p and dr,p = cr,p δAr,p. The coefficients (cr,p , dr,p) can

be evaluated from the altimetry measurements. System (13) is multi-linear in

(K
3/5
r,p Ar,0,K

3/5
r,p , Q̄p). It contains R(P + 1) equations. It can be employed differ-

ently depending on the available information and the unknowns. If considering the

full set of unknowns (K
3/5
r,p , Ar,0, Qr,p), it is an underdetermined system since it has

R(2(P + 1) + 1) unknowns; therefore in this case it cannot be solved since it has an
infinity of solutions.

Let us define the diagonal matrices Dc and Dd of dimensions [R(P + 1)]2 by: Mc =

diag (cr,p) , Md = diag (dr,p) . Let us define the vectors : K̃ = (K
3/5
r,p )r,p ∈ RR(P+1),

A = (Ar,0)r, ∈ RR and Q̃ = (Q
3/5
r,p )r,p ∈ RR(P+1). Then (13) reads:

DcBil(K̃, A) +DdK̃ = Q̃ in RR(P+1) (14)

with the bilinear operator Bil(K̃, A)r,p = K
3/5
r,p Ar,0 ∀r∀p. If Q̃ is given then (14) has

(P + 2)R unknowns (the two vectors K̃ and A).
For K constant in space but varying in time (e.g. K is defined as a power law in h)

then K̃ = (K
3/5
p )p ∈ R(P+1). In this case, the (P + 1 +R) unknowns (K

3/5
p , Ar,0) can

be computed by solving the overdetermined bi-linear system (14) e.g. by employing a
trusted region reflective algorithm.

For K constant in time but varying in space, K̃ = (K
3/5
r )r ∈ RR, the system

(14) has 2R unknowns. Therefore if P ≥ 1 (more than 2 overpasses), the solution

(K
3/5
r , Ar,0) can be computed e.g. by a trusted region reflective algorithm.

Then the RHS of (14) reads: Q̄ =
(

(Q̄
3/5
0 , ..., Q̄

3/5
0 ), ..., (Q̄

3/5
p ...Q̄

3/5
p ), ..., (Q̄

3/5
P ...Q̄

3/5
P )

)
∈

RR(P+1) . Given Q̄, estimations of (Ar,0)r are obtained by computing the pairs
(Kr,p, Ar,0)r,p solution of (14) (with the values of (Kr,p) not necessarily used).

Recall the estimations of Q = (Qr,p) ∈ RR(P+1) may be provided at large scale by
hydrological models, then (14) may provide effective unobserved wetted areas (Ar,0)r.

Also Q = (Qr,p) ∈ RR(P+1) may be provided by the VDA process containing a bias
(Section 3) too, then (14) may provide a the effective unobserved wetted areas (Ar,0)r
corresponding to Low-Froude flows at equilibrium.

6.3. Inferences of (Q(t), b(x),K) by VDA using one in-situ measurement

The impact of a prior bathymetry value on the inversions accuracy is presented in this
section. For each river, the infered inflow hydrograph starting from a “Low Froude
bathymetry” prior, see Section 6.1 and Fig. 5, is shown on Fig. 6. For the Sacramento
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a) b)

c)

Figure 6. infered inflow discharge with the bathymetry priors infered using the Low-Froude model and one
(1) in-situ point (b(0) “Low Froude”). Daily SWOT-like observations (noise σZ = 0.25) (a, b) and SWOT-HR

observations (c).

river, both VDA runs C.3 and C.4, performed either with “Manning” or “Low Froude”
bathymetry priors, result in comparable errors (rRMSEQ ∼ 20%). The bathymetry
is slightly degraded but the inversion remains robust. For the Garonne River the
inversions performed with the 3 different bathymetry first guesses result in comparable
errors (rRMSEQ = 8.5% and 9.1%, runs C.3 and C.4). The finest bathymetry infered
by VDA results from the use of “Manning” or “Low Froude” bathymetry first guesses
- that provide fairly accurate priors in that case. For the Po River, using a “Low
Froude” bathymetry results in the best error (rRMSEQ = 18.3%, run B.6) compared
to other bathymetry first guesses (runs B.4 and B.5). This bathymetry is also slightly
improved by the VDA process.

7. Real-time estimations of Q given (A0,K)

The inversion method based on VDA is based on SWOT dataset measurements. Such
a VDA approach may be viewed as an optimal estimation in a least-square sense with
respect to the observations datasets; therefore it is highly advisable to perform it on a
complete hydrological cycle (a year). The method provides an estimation of the rivers
bathymetry therefore an intrinsic feature of the observed rivers (intrinsic generally at
years time scale at least). The method setup is not obvious; moreover it is a bit CPU-
time consuming. For all these reasons, this inversion method cannot be performed in
real-time. Then a good strategy in the context of SWOT mission is the following.
The inversion method based on VDA is performed on a complete year SWOT obser-
vation set; it is the calibration (or ”learning”) period and relatively accurate values
of (Ar,0) ∈ RR and (Qr,p) ∈ RR(P+1) are estimated. Given these (Qr,p, Ar,0)r,p values,
an effective space-time dependent friction coefficient (Kr,p)r,p corresponding to the
Low-Froude algebraic flow model (14) is straightforwardly obtained. Recall that the
friction parameter K is fully model dependent; it is not an intrinsic feature of the flows
we may keep. This low Froude - low complexity system (4) is quite accurate, see e.g.
Fig. 7. Moreover it can be performed in real-time. Therefore given new observations
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Table 5. Scores of the inversions performed from different priors defining the bathymetry first guess b(0), see

Section 4.3.

Case River σobsZ bprior
RMSEb(0) RMSEQ rRMSEQ RMSEb

(m) (m3/s) (%) (m)

A.1 Garonne 0 Manning 0.18 13.4 5.1 0.27

A.2 Garonne 0 Manning-multi 0.17 10.0 4.2 0.16

A.3 Garonne 0 Low Froude 0.16 11.9 5.2 0.22

A.4 Garonne 25 cm Manning 0.39 24.0 10.3 0.31

A.5 Garonne 25 cm Manning-multi 0.42 17.9 8.5 0.38

A.6 Garonne 25 cm Low Froude 0.35 19.4 9.1 0.27

B.1 Po 0 Manning 0.61 83.9 8.5 0.75

B.2 Po 0 Manning-multi 0.73 91.2 10.2 0.88

B.3 Po 0 Low Froude 0.48 76.4 7.8 0.45

B.4 Po 25 cm Manning 0.92 185.9 24.8 1.04

B.5 Po 25 cm Manning-multi 0.83 183.7 24.3 1.07

B.6 Po 25 cm Low Froude 0.64 144.8 18.3 0.60

C.1 Sacramento 0 Manning 2.29 30.1 11.5 2.33

C.2 Sacramento 0 Low Froude 1.95 54.5 15.9 2.01

C.3 Sacramento 34 cm Manning 2.45 124.7 19.3 2.49

C.4 Sacramento 34 cm Low Froude 1.84 141.2 20.2 1.82

(Zr,Wr)R, typically satellite observations acquired after the “learning period”, the
corresponding discharge values Qr can be computed in real-time simply by evaluat-
ing the Manning-Strickler equation (4). Such real-time estimations are presented in
Section 7.

7.1. Friction coefficient re-calibration

Given (Qr,p, Ar,0)r,p by the VDA process, a new (effective) friction coefficient corre-
sponding to the low Froude - low complexity model is computed (”re-calibration” of
K). It is done following one of the following two methods.

1) Space-time dependent values Kr,p are obtained by solving (4). Next we set:
Kr = meanp(Kr,p). This mean value is computed on a subset of the WS obser-
vations e.g. by considering the 2nd - 8th deciles of the flow profiles (20 overpasses
were selected in this study). Indeed this corresponds to a relatively wide and
representative range of flow regimes without the extremes.

2) Space-time dependant values Kr,p are obtained by solving (4) as in Method 1)
above. Water depth hr,p are straightforwardly obtained as (Zr,p − br), with the
bathymetry values infered by VDA. Finally for each reach r, we make fit the
power-law K̂r(h) = αrh

βr with the values previously obtained.

These two methods are adequate in the present river cases since no over-bank flow
occurs. However they are applied to the Garonne and Po rivers only since for Sacra-
mento River the number of observations is not sufficient to select reliable deciles of the
flow profiles, see Fig. 7. To mimic a real calibration/validation setup, data of the Po
and Garonne rivers were divided in two sets. The first set corresponds to the Cal/Val
period (90 days) considered for the VDA inversion method. The second set ( 9 months)
were then used for the validation.
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Figure 7. Discharge computations from the low complexity relations obtained after the re-calibration of the

friction K obtained by the VDA process; Plot Qtrue vs Qinfered using (4) on the complete observations set.

(Top). Discharge Garonne River; (Bottom) Po River. (Left) With K(h) hence Kp; (Right) With Kr.

7.2. Real-time estimations of Q

Given the re-calibrated friction coefficients (Kr)1..R, the discharge is computed by
solving the Manning-Strickler equations system (4) with its coefficients provided by
the newly acquired SWOT observations. The obtained values in the case of the Po
and Garonne Rivers are plotted on Fig. 7 (for all flow lines). For both rivers, using a
friction coefficient Kr constant in time provides the best results. The resulting errors
are: rRMSEQ = 6.3% for the Garonne River and rRMSEQ = 10.6% for the Po
River. Note that these performances are evaluated at all observation times and all
nodes whereas for the VDA inference (Section 5) the performances were evaluated
only for the upstream node of the river domain i.e. only for r = 0.

The second method for re-calibrating the friction Kr,p provides a lower accuracy
but still acceptable; the errors are: rRMSEQ = 9.1% for the Garonne River and
rRMSEQ = 25.3% for the Po River.

Recall that the flow model is calibrated from the observed flow lines hence presenting
a minimal and a maximal WS elevation. The re-calibrated friction coefficient K is
related to this flow lines range (hence regime range). If K is defined as a power-law
Kr,p and if the newly acquired WS elevation is greater than the previously observed WS
than the friction power-law is prone to an over-estimation. That is the reason why we
encourage to prefer the first method (considering Kr) to the second one (power-law).

Finally the proposed approach based on the low complexity systems employed after
a re-calibration of the friction coefficient turns out to be very promising to perform
the discharge in real-time, that is in an operational way.
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8. Conclusion

This study proposes a new hierarchical computational inversion method to infer the
discharge Q(t), an effective bathymetry b(x) with a corresponding friction coefficient
K from altimetry Water Surface (WS) measurements, more specifically data from the
forthcoming SWOT satellite [1]. The inversion method is based on a combination of
an advanced Variational Data Assimilation (VDA) formulation applied to the classical
Saint-Venant equations (1D shallow-water) and original algebraic systems (low-Froude,
locally permanent flows). The VDA formulation takes into account adequate scale de-
pendency and a-priori error measurement amplitudes. The algebraic systems natively
integrate the measured quantities; they may be differently employed depending on the
fields that are not known. They enable to exploit in a consistent manner databases
to define the first guesses (prior information) of the iterative VDA process. More-
over they enable to compute in real-time the discharge past the “calibration-learning
period” (i.e. the assimilation of a complete hydrological year dataset).

Three rivers, ∼ 100 km long each, have been considered with two scenarios of
observation: the SWOT Cal-Val orbit with ∼ 1 day period (or any equivalent multiple-
sensor measurements) and SWOT like data with ∼ 21 days period (with 1 to 4 passes
at mid-latitudes). The corresponding inversions are highly challenging since relying
on relatively sparse observations (both in space and time) compared to the potential
flow dynamics. Indeed the flows present low identifiability indexes as defined in [28].
Preliminary analyses based on the identifiability maps introduced in [28] enable to
define adequate time grids for the identification process.

For ungauged rivers and/or in total absence of good prior information on the flow,
the inversion algorithm provides accurate space-time variations of Q with an effective
bathymetry b(x) and a corresponding friction coefficient K(h) (K function of the water
depth h). However if the prior mean value of one of the three infered fields (typically
those of Q) is far from reality, a bias on the infered hydrograph Q(t) may remain. But
as soon as a good mean value is provided (e.g. a mean discharge value from a database
or from a large scale hydrological model), or a single reference value of bathymetry,
the bias vanishes: the discharge Q(t) is perfectly recovered even in terms of amplitudes
(RMSE of a few percent at observation times are obtained).

Past the calibration period by VDA, the estimated values of Q(t) and b(x) obtained
by the VDA process are kept and a new (effective) friction coefficient K(x) corre-
sponding to the low complexity flow model is computed. Next, this low complexity
(algebraic) model can provide estimations of the discharge Q in real-time from newly
acquired satellite data.

This new and complete inverse method fulfil the conditions of an operational solu-
tion to the estimations of rivers discharge at global scale from the forthcoming SWOT
satellite mission (launch planned in 2021).

All the present equations and algorithms are implemented into the open-source
computational software DassFlow [32]. On-going investigations focus on inversions
applied to larger rivers portions presenting lateral fluxes and complete river networks.
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