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Abstract—Datacenters provide cost-effective and flexible access
to scalable compute and storage resources necessary for today’s
cloud computing needs. A typical datacenter is made up of
thousands of servers connected with a large network and usually
managed by one operator. To provide quality access to the
variety of applications and services hosted on datacenters and
maximize performance, it deems necessary to use datacenter
networks effectively and efficiently. Datacenter traffic is often
a mix of several classes with different priorities and require-
ments. This includes user-generated interactive traffic, traffic
with deadlines, and long-running traffic. To this end, custom
transport protocols and traffic management techniques have been
developed to improve datacenter network performance. In this
tutorial paper, we review the general architecture of datacenter
networks, various topologies proposed for them, their traffic
properties, general traffic control challenges in datacenters and
general traffic control objectives. The purpose of this paper is
to bring out the important characteristics of traffic control in
datacenters and not to survey all existing solutions (as it is
virtually impossible due to massive body of existing research).
We hope to provide readers with a wide range of options and
factors while considering a variety of traffic control mechanisms.
We discuss various characteristics of datacenter traffic control
including management schemes, transmission control, traffic
shaping, prioritization, load balancing, multipathing, and traffic
scheduling. Next, we point to several open challenges as well as
new and interesting networking paradigms. At the end of this
paper, we briefly review inter-datacenter networks that connect
geographically dispersed datacenters which have been receiving
increasing attention recently and pose interesting and novel
research problems. To measure the performance of datacenter
networks, different performance metrics have been used such
as flow completion times, deadline miss rate, throughput and
fairness. Depending on the application and user requirements,
some metrics may need more attention. While investigating
different traffic control techniques, we point out the trade-offs
involved in terms of costs, complexity and performance. We find
that a combination of different traffic control techniques may
be necessary at particular entities and layers in the network to
improve the variety of performance metrics. We also find that
despite significant research efforts, there are still open problems
that demand further attention from the research community.

Index Terms—Datacenters, traffic control, trade-offs, manage-
ment schemes, transmission control, traffic shaping, load bal-
ancing, flow prioritization, multipath routing, traffic scheduling.

I. INTRODUCTION

Datacenters provide an infrastructure for many online ser-
vices such as on-demand video delivery, storage and file
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Fig. 1. A typical datacenter cluster

sharing, web search, social networks, cloud computing, finan-
cial services, recommendation systems, and interactive online
tools. Such services may dynamically scale across a datacen-
ter according to demands enabling cost-savings for service
providers. Moreover, considering some degree of statistical
multiplexing, better resource utilization can be achieved by
allowing many services and applications to share datacenter
infrastructure. To reduce costs of building and maintaining dat-
acenters, numerous customers rely on infrastructure provided
by large cloud companies [1]–[3] with datacenters consisting
of hundreds of thousands of servers.

Figure 1 shows the structure of a typical datacenter cluster
network with many racks. A datacenter often hosts multiple
such clusters with thousands of machines per cluster. A cluster
is usually made up of up to hundreds of racks [4]–[6]. A rack
is essentially a group of machines which can communicate at
line rate with minimum number of hops. All the machines
in a rack are connected to a Top of Rack (ToR) switch
which provides non-blocking connectivity among them. Rack
size is typically limited by maximum number of ports that
ToR switches provide and the ratio of downlink to uplink
bandwidth. There is usually about tens of machines per rack
[4]–[6]. ToR switches are then connected via a large inter-
connection allowing machines to communicate across racks.
An ideal network should act as a huge non-blocking switch
to which all servers are directly connected allowing them to
simultaneously communicate with maximum rate.
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Datacenter network topology plays a significant role in
determining the level of failure resiliency, ease of incremental
expansion, communication bandwidth and latency. The aim is
to build a robust network that provides low latency, typically
up to hundreds of microseconds [7]–[9], and high bandwidth
across servers. Many network designs have been proposed
for datacenters [5], [10]–[16]. These networks often come
with a large degree of path redundancy which allows for
increased fault tolerance. Also, to reduce deployment costs,
some topologies scale into large networks by connecting many
inexpensive switches to achieve the desired aggregate capacity
and number of machines [4], [17]. Although the majority
of these topologies are symmetrical, in practice, datacenter
networks turn out to be often asymmetrical due to frequent
failures of network elements (switches, links, ports, etc.) [18]–
[20]. In contrast to fixed networks, reconfigurable topologies
involve optical circuit switching, wireless or a combination of
both to adapt to traffic demands [21]–[24]. These topologies
rely on fast algorithms that take into account the reconfigura-
tion latency.

Many applications may need to span over multiple racks to
access required volume of resources (storage, compute, etc.).
This increases the overall volume of traffic across racks. A
datacenter network with full bisection bandwidth allows for
flexible operation and placement of applications across clusters
and improves overall resource utilization and on-demand scale
out for applications [4], [5], [10], [15]. This allows resources
of any machine to be used by any application which is essential
for hyper-scale cloud providers [1]–[3].

Designing networks for full bisection bandwidth is costly
and unnecessary for smaller companies or enterprises. As a
result, many datacenters may be over-subscribed, meaning the
total inter-rack network capacity may be less than sum of intra-
rack capacities across all racks. The underlying assumption is
that applications are mostly rack local. Increasing the over-
subscription ratio affects performance of different topologies
differently. For instance, over-subscribed Fat-Trees provide
less flexible communication across machines compared to
over-subscribed Jellyfish networks [25].

There is growing demand for datacenter network bandwidth.
This is driven by faster storage devices, rising volume of user
and application data, reduced cost of cloud services and ease
of access to cloud services. Google reports 100% increase in
their datacenter networking demands every 12 to 15 months
[4]. Cisco forecasts a 400% increase in global datacenter IP
traffic and 2.6 times growth in global datacenter workloads
from 2015 to 2020 [26].

Applications running on datacenters determine their traffic
characteristics and the communication patterns across ma-
chines. Some popular applications include web services, cache
followers, file stores, key-value stores, data mining, search
indexing and web search. Many datacenters, especially cloud
providers, run a variety of applications that results in a
spectrum of workloads. Some applications generate lots of
internal datacenter traffic, such as scatter-gather (also known as
partition-aggregate) [27]–[30] and batch computing tasks [31],
[32]. As a result, the total traffic volume within a datacenter
is often much more than that of entering or leaving it. Cisco

reports this ratio to be greater than 3 which is expected to
increase further by 2020 [26]. Traffic control is necessary
to highly utilize network bandwidth, keep latency low, offer
quality of service, and fairly share resources among many
users and applications by managing flow of traffic across
the datacenter. There is a significant body of work on traffic
control for datacenters. In this tutorial paper, we aim to review
concepts in design and operation of traffic control schemes.

The rest of this paper is organized as follows. In §II,
we present some related work. In §III, we review a variety
of datacenter topologies, provide an overview of datacenter
traffic patterns, set forth the challenges of traffic control for
datacenter networks, and the objectives of datacenter traffic
control. In §IV, we review management schemes that can be
applied to datacenters and point to some research work that
use different management schemes. Next, in §V, we present a
variety of traffic control techniques, discuss them in detail and
explore the benefits and drawbacks associated with them. In
§VI, we discuss some general open traffic control problems.
In §VII, we point to rising paradigms related to datacenters.
In §VIII, we introduce a new research area that is a result of
global distribution of datacenters. Finally, in §IX, we conclude
the paper.

II. RELATED WORK

In this section, we briefly present some survey articles
related to datacenter traffic control. In [33], authors provide a
short survey of low latency datacenter networking by review-
ing approaches taken to achieve low latency, namely reduc-
ing queuing delay, accelerating retransmissions, prioritizing
mice flows and utilizing multi-path. In [34], authors survey
the methods used to address the transport control protocol
(TCP) incast problem (please see §III-C6). In [35], authors
survey bandwidth sharing in multi-tenant datacenters using
techniques of static reservation, minimum guarantees and no
guarantees (resources obtained in a best effort fashion). In [36],
authors point out datacenter transport problems namely TCP
incast, latency, challenges in virtualized environments, band-
width sharing in multi-tenant environments, under-utilization
of bandwidth, and TCP in lossless Ethernet environments
also known as Converged Enhanced Ethernet (CEE). In [37],
authors discuss TCP issues in datacenters pointing to TCP
incast, queue buildup and buffer pressure. In [38], authors
provide a comprehensive overview of datacenter networking
for cloud computing discussing cloud computing network
architectures, communication technologies used, topologies,
routing and virtualization approaches. In [39], authors discuss
various congestion notifications for datacenter networks. Fi-
nally, in [40], authors survey transport protocols proposed for
datacenter networks and briefly explain each one of the variety
of research efforts made in addressing the incast problem, out-
cast problem and in reducing latency for datacenter networks.

In this tutorial paper, we merely focus on traffic control
concepts that can be applied to a variety of transport protocols
including TCP. We also point to research efforts that use
different techniques as examples so that readers can elevate
their knowledge in case they are interested in further details.



DATACENTER TRAFFIC CONTROL TECHNIQUES AND TRADE-OFFS 3

We try to uncover the (not obvious) trade-offs in terms of
complexity, performance and costs. This paper is different
from prior work in that it covers a variety of aspects in traffic
control in a conceptual way while not focusing on any specific
transport, network or data link layer protocol. In addition, we
provide an overview of datacenter traffic properties, topologies
as well as traffic control challenges, objectives and techniques
and their relationships which has not been done in prior work
to our knowledge. Finally, at the end of this paper, we point
to a recent research direction that involves inter-datacenter
networks and offer three areas that demand further attention
from the research community.

III. DATACENTER NETWORKS

In this section, we dive deeper into specifics of datacenter
networks. We review a variety of topologies proposed and
general traffic properties of datacenter networks, point to traffic
control challenges in datacenters and explain several traffic
control objectives sought by various parties (i.e., operators,
tenants, etc.) involved in using datacenter networks.

A. Topologies

We shortly review popular physical datacenter topologies
proposed and used in the literature either in testbed or
simulation. Figure 2 shows examples of datacenter network
topologies reviewed in the following (notice the network
connecting ToR switches).

1) Fat-Tree: Fat-Tree [10], shown in Figure 2(a), is a multi-
rooted tree topology where every root is called a core switch.
It can be considered as a folded Clos [17] network [42].
By increasing the number of roots, one can reduce the over
subscription ratio (considering fixed capacity per link). This
topology allows for high bisection bandwidth using a large
number of less expensive switches allowing support for a large
number of hosts at much less cost. There is an aggregate layer
between the core and edge (ToR switches). The number of
hops between any two servers attached to the same ToR switch
is 2, to the same aggregate switch is 4 and otherwise is 6. A
Fat-Tree topology built with k-port switches supports up to k3

4
physical servers (assuming one physical port per server) and
k2

4 paths between any source and destination pair. As a result,
it is possible to scale to huge clusters by interconnecting many
inexpensive switches.

To effectively use a Fat-Tree, complex routing configura-
tions may need to be done on switches to avoid creation
of loops while using available paths for load balancing. For
example, Portland [43] is a custom routing and forwarding
protocol which works out of Layer 2 and improves on fault
tolerance (link failures), scalability, and ease of management
(e.g. moving VMs across physical servers). Portland uses a
Fabric Manager that holds information on address mappings
and a fault matrix that maintains per link health status.

2) Leaf-Spine: Leaf-Spine (or Spine-and-Leaf) [13], [44],
shown in Figure 2(g), is a two tier network topology where
leaf (i.e., ToR) switches are attached to servers and every spine
switch is directly connected to all leaf switches similar to a
bipartite graph. The links connected between the servers and

leaf switches may have a different capacity from the ones
connecting leaf switches to the spine. Leaf-Spine makes it
easier to expand on capacity and ports (by adding more spine
or leaf switches) and also allows straight-forward usage of
Layer 3 routing with load balancing support without creation
of loops. As a downside, in case high bisection bandwidth is
intended, scaling to more than hundreds of servers in a cluster
can lead to increased costs due to need for spine switches with
many high capacity ports.

3) VL2: VL2 [5], shown in Figure 2(c), implements a
complete routing and forwarding suite on top of 3-tier folded
Clos networks (a multi-rooted tree) but differs from Fat-Tree in
that switch-to-switch links are assigned much higher capacity
than server-to-switch links. This requires less number of cables
for connecting the aggregation and core layer. This topology
has an intermediate tier that is connected to the aggregation
trier in a bipartite graph topology. Each edge (ToR) switch
is connected to two aggregation switches in a way that each
aggregation switch gets connected to equal number of edge
switches.

4) JellyFish: JellyFish [16], shown in Figure 2(e), is a
topology where ToR switches are connected in a random
setting and according to some rules: first, ports are randomly
connected between switches until no more links can be added;
next, for any switch S with two or more free ports, an existing
link A−B is removed and two links are added between two of
S’s free ports and two ends of the removed network link (i.e.,
A− S and B− S), until no switch has more than one free port.
Since ToR switches are connected directly, the average path
length (number of hops) is considerably smaller compared to
3-tier folded Clos. In addition, this topology is much easier
to expand gradually. Authors show that with full bisection
bandwidth, JellyFish supports more servers at the same cost
compared to Fat-Tree. Also, with the same number of failed
links, JellyFish offers a higher average throughput per server
than Fat-Tree. One major problem with this topology is that
the existing routing schemes cannot effectively use all paths
since the number of hops across parallel paths changes by a
large degree. Authors propose usage of k-shortest path routing
for flows along with multipath TCP (MPTCP) [45].

5) DCell: DCell [12], shown in Figure 2(d), is a hierarchi-
cal datacenter topology where a higher level DCell is built by
putting together multiple lower level DCell structures. It can
be incrementally expanded and does not have a single point of
failure. DCell uses a custom routing algorithm that takes into
account failures (DCell Fault-tolerant Routing) while aiming
for near shortest path routing. Authors show that DCell offers
higher network capacity compared to conventional tree topolo-
gies; however, it can perform much worse than multi-rooted
trees such as Fat-Tree [41]. Implementing DCell requires
changes to the server networking protocol stack.

6) BCube: BCube [41], shown in Figure 2(b), is a leveled
structure where a higher level is built by recursively attaching
lower levels. Servers require multiple network ports to connect
to switches and they also act as forwarding elements for
other servers. BCube uses source routing and requires changes
to the server networking protocol stack which can be done
either in hardware (network card) or software. If forwarding is
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: Host/Machine : ToR switch : Aggregation switch : Core switch

(a) Fat-Tree [10]

: Host/Machine

: Level 1 switch

:Level 2 switch

(b) BCube [41]

: Host/Machine : ToR switch :Aggregation switch : Intermediate switch

(c) VL2 [5]

: Host/Machine

: ToR switch

(d) DCell [12]

: Host/Machine : ToR switch

(e) JellyFish [16]

: Host/Machine : ToR switch

(f) Xpander [14]

: Host/Machine

: ToR/Leaf switch

: Spine Switch

(g) Leaf-Spine [13]

Fig. 2. Several examples of datacenter topologies with two machines per rack
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implemented in software, it can add CPU overhead especially
at high rates. Authors show that BCube is more resilient to
switch failures compared to Fat-Tree and almost as resilient
to server failures.

7) Xpander: Xpander [14], shown in Figure 2(f), is a dat-
acenter topology based on expander graphs [46] which offers
all the performance improvements of JellyFish over Fat-Tree
topology with higher throughput as network is incrementally
expanded. This topology is made by connecting multiple meta
nodes based on the following rules: first, each meta node is
made up of equal number of ToR switches; second, no two
ToRs are connected within the same meta node; third, same
number of links is used to connect every pair of meta nodes.
Compared to JellyFish, Xpander offers the benefit of being
structured rather than random which improves implementation
predictability. Authors test Xpander topology with similar
routing and forwarding techniques used in JellyFish: k-shortest
paths routing and MPTCP for multi-path load distribution.

B. Traffic Properties

Traffic characteristics of datacenters is highly dependant
on applications and determines distribution of flow arrivals,
flow sizes, and flow durations. For example, flows generated
by web search queries are usually much smaller and shorter
than that of batch computing jobs. This variety of applications
could cause creation of long lived connections as well as short
microbursts on the same network [47]. There are limited pub-
lications on datacenter traffic characteristics. We review these
works briefly focusing on applications and flow properties.

In [27], authors collect a traffic dataset from a cluster
running query processing applications on large volumes of
data that run MapReduce like workloads under the hood to
respond to queries. Authors find that more than 50% of flows
last less than 100 ms, 80% of flows last less than 10 seconds,
and almost all flows last less than 100 seconds. They also find
that more than 50% of traffic is carried by flows that last less
than 25 seconds, less than 10% by flows that last less than
10 seconds, and almost 1% of traffic by flows that last less
than 1 second. In terms of flow arrivals, authors find periodic
short-term bursts of flows and periods of long silence.

In another work [48], authors collect and process datasets
from 19 datacenters with a wide range of workloads including
web services, instant messaging and MapReduce. This work
is focused on packet level traffic analysis and does not offer
statistics on a per-flow basis. Authors observed an ON/OFF
pattern for packet arrivals at ToR switches they monitored,
meaning there was varying periods with no packet arrivals
between bursts of packets.

In [49], authors study 10 datacenters categorized as ed-
ucational (storage, email, web, video), enterprise (custom
applications in addition to storage, web and email) and cloud
(instant messaging, web, search, indexing, video). They report
the number of active flows less than 10000 per second per rack
across all datacenters. More than 40% of flows were less than
1 KB, more than 80% of were less than 10 KB, and almost
all flows were less than 10 MB. According to their results,
durations are more dependant on the specific datacenter: the

smallest median flow duration was about 500 µs in one
datacenter while the largest median flow duration was 1 second
in a different datacenter. The largest flow duration was between
50 seconds and 200 seconds across all datacenters. This work
also confirms the ON/OFF behavior of packet arrivals.

In a recent paper [50], Facebook shares statistics on their
traffic characteristics. They report flow size distributions on
a per application basis for three major applications they run.
Median and tail flow sizes for Hadoop, Web Server and Cache
applications are reported to be between about 100 KB and
100 MB, 3 KB and 10 MB, 1 KB and 10 KB within racks
while 1 KB and 1 MB, 5 KB and 500 KB, 30 KB and
3 MB between racks, respectively. Regarding flow durations,
Hadoop flows had a median of about 300 ms and tail of less
than 1000 seconds, Web Server flows had a median of about
900 ms and a tail of about 200 seconds, and Cache flows
had a median of almost 400 seconds and a tail of almost 800
seconds, respectively. Per server, the median inter arrival time
of various flow types was between 1000 µs and 10000 µs
and the tail was between 10000 µs and 100000 µs. Finally,
authors did not observe an ON/OFF packet arrival pattern at
the switches which is suggested to be due to a large number of
concurrent destinations, since ON/OFF pattern was observed
on a per destination basis.

In addition to per-flow properties, since racks constitute a
main unit in datacenter networks, one may be interested in
how much traffic stays within racks. This could be helpful in
deciding the over subscription ratio of cluster interconnection.
The ratio of rack local to inter-rack traffic is dependent on
applications that run within the datacenter and how instances
of such applications are deployed on the servers. As a result,
some prior work report a highly rack local traffic pattern [49]
while some find traffic neither rack local nor all to all [50],i.e.,
for some applications (e.g. Hadoop) traffic is mainly rack local
while for others (e.g. Web Server and Cache) traffic is not at
all rack local.

In summary, traffic characteristics, such as packet sizes,
flow size distributions and flow inter-arrival times are highly
correlated with applications. In addition, locality of traffic to
racks is highly dependant on the way applications are deployed
across the network and how such applications communicate
with one another. For example, in [50], authors report that
servers of different types are deployed in separate racks and
since most communication occurs between Web Servers and
Cache Followers (different server types), there is less rack
locality for these clusters. Given such strong dependency on
applications, it is relatively hard to draw a general conclusion
about datacenter traffic. Some common findings include the
following. There is usually several orders of magnitude dif-
ference between median and maximum flow sizes (the actual
difference varies according to applications). In addition, there
can be a large number of flow arrivals per server (as many as
thousands per second) with many concurrent flows. Finally,
distributions of flow sizes and durations may be considerably
different due to possibly uneven distribution of traffic across
the network (flows may have to compete for bandwidth) and
application of techniques like connection pooling which leads
to long-lived connections that are not always transmitting.
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C. Traffic Control Challenges

We present some datacenter traffic control challenges fre-
quently pointed to in the literature. Table I provides a summary
of these challenges.

1) Unpredictable Traffic Matrix: A variety of applications
usually run on a datacenter creating many flows with different
properties. Most datacenter flows are short 1 (a few packets
at most) [5], [7], [27], [29], [48]–[50], [53] and many short
flows may be only one packet long [53]. However, most bytes
are delivered by large flows [5], [7], [29]. [5] reports 80% of
flows to be less than 10 KB and 99% of flows to be less than
100 MB.

Datacenter applications also determine the flow arrival rates
and distributions. The median flow inter-arrival time for a
single machine was reported between 2 ms to 10 ms (100
to 500 flows per second) for different servers in Facebook
datacenters [50] (this median is calculated by measuring
number of arriving flows per machine per second as samples
averaged over number of machines). [49] reports between 100
to 10000 flow arrivals per switch in a one second bin in
different educational and private datacenters. Finally, [27] finds
the median arrival rate of flows in a cluster to be 100 flows
per millisecond.

High flow arrival rate majority of which being short can
create an unpredictable and fluctuating traffic matrix which
makes it hard to perform traffic engineering or capacity
planning in longer time scales to improve performance [5],
[27], [54], [55].

2) Mix of various flow types/sizes: Traffic in datacenters
is a mix of various flow types and sizes [5], [29], [48],
[49], [51], [56]. Knowledge of various flow requirements and
characteristics can help us design and tune transport protocols
to more efficiently use network resources. Size and priority of
a flow are usually determined by the application that initiates
it. For some applications, flow sizes maybe unknown upon
initiation.

Interactive flows which are created as a result of user
interactions (for example generated by soft real time appli-
cations such as web search) can generate latency-sensitive
flows that are usually short and should be delivered with high
priority. Examples include queries (2 to 20 KB) and short
messages (100 KB to 1 MB) [29]. Size of these flows is usually
known apriori [51]. Responsiveness of online services depends
on how interactive flows are handled which can impact the
number of users for an online service in the long run. In a
study by Google, 400 ms increase in delay reduced the number
of searches by 0.6% per user per day [57]. Also, 100 ms added
latency could reduce Amazon sales by 1% [58].

Throughput-oriented flows are not as sensitive to delay, but
need consistent bandwidth [29]. They may range from moder-
ate transfers (1 MB to 100 MB) such as ones created by data
parallel computation jobs (e.g. MapReduce), to background
long-running flows that deliver large volumes of data such
as transfers that move data across datacenter sites for data
warehousing and geo-replication [59]. For these flows, it is
still preferred to minimize the transfer time.

1Short flows are usually considered to be less than 1 MB [29], [51], [52]

Deadline flows have to be completed prior to some dead-
lines. Their size is either known [56] or a good estimate can
typically be drawn [51]. Both latency sensitive and throughput
oriented flows might have deadlines. Deadlines can be either
soft or hard which implies how value of its completion drops
as time passes [60]. A soft deadline implies that it is still
profitable to complete the flow and that the value decreases
according to a utility function as we move past and away
from the deadline. A hard deadline means zero value once
the deadline has passed. For example, in interactive scatter-
gather applications, if a query is not replied by its deadline
(usually less than 300 ms [29], [61]), the final answer has to
be computed without it [62] (i.e., zero value for that flow),
while if a backup process is not completed in time, it is still
valuable to finish it, although it might increase the risk of user
data loss due to failures.

3) Traffic Burstiness: Several studies find datacenter traffic
bursty [9], [29], [48]–[50], [63]. Theoretically, bursty traffic
has been shown to increase packet loss and queuing delay
while deceasing throughput [64]. In bursty environments,
packet losses have been found more frequent at the network
edge due to higher burstiness [48]. Burstiness can also lead
to higher average queue occupancy in the network leading to
increased flow completion times (FCT) for many flows [9]
and increased packet drops due to temporary creation of full
buffers in the network [29], [65]. In addition, highly bursty
traffic can cause buffer space unfairness in shared memory
switches if a switch port exhausts shared memory due to
receiving long bursts [29].

Several causes can lead to creation of bursty traffic. Hard-
ware offloading features, such as Large Send Offload (LSO),
that reduce CPU load, can lead to higher burstiness. Interrupt
Moderation (Coalescing) [66], which reduces CPU load and
increases throughput by processing packets in batches, can
lead to bursty traffic at the sender. Transport control features
in software can create bursty traffic by scheduling a large
window of packets to be sent together such as TCP slow start.
Applications can increase burstiness by sending large pieces
of data at once [63].

4) Packet Reordering: Out of order arrival of packets can
increase memory and CPU utilization and latency at the
receiver especially at high rates [67], [68]. Some transport
protocol features, such as fast retransmit [69], may mistake
reordering with packet loss. Different hardware and software
features are involved in putting packets back in order including
Large Receive Offloading (LRO) [70], Receive Side Scaling
(RSS) [71] and Generic Receive Offloading (GRO) [72]. LRO
and GRO are usually implemented as part of driver software.
Some NICs provide hardware support for these features. LRO
focuses mostly on TCP/IPv4 stack while GRO is general
purpose.

To understand the extend to which reordering can affect
performance, we point to a prior work on improving the
performance of handling out of order packet arrivals [67].
Authors performed experiments with Vanilla Linux kernel and
realized that at high rates (e.g. gigabits), significant reordering
can increase CPU utilization to 100% and limit server interface
link utilization to 70%. Even after applying optimizations at
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TABLE I
SUMMARY OF DATACENTER TRAFFIC CONTROL CHALLENGES

Challenge Description Implications

Unpredictable Traffic Matrix
§III-C1

A traffic matrix represents the communication volume between pairs
of end-points in a computer network. In datacenters, traffic matrix is
varying and unpredictable.

Complicates traffic engineering and capacity
planning.

Mix of Flow Types and Sizes
§III-C2

Due to variety of applications that share the datacenter infrastructure,
a mix of various flow types and sizes are generated. Flows may have
deadline constraints or not and may be short latency-sensitive or large
throughput-oriented. Also, for specific applications, flow sizes may be
unknown.

Complicates flow scheduling to meet re-
quirements of different flows over a shared
medium.

Traffic Burstiness §III-C3 Burstiness has two different aspects. Traffic per flow could be highly
bursty and flow arrival itself could be bursty as well. Burstiness
intensity may change according to where traffic is measured, i.e., at
end-point interfaces, at ToR switch ports, and so on.

Large buffer space at the switches to absorb
bursts, careful and responsive traffic control
to minimize average buffer space usage and
react to bursts quickly.

Packet Reordering §III-C4 Can be caused while applying some traffic control schemes to improve
load balancing or increase throughput via using parallel paths at the
same time. At high rates, reordering can exhaust end-point CPU and
memory resources for buffering and putting segments back in order.

Efficient methods to put packets in order at
receivers with minimal memory and CPU
overhead and careful transmission methods
at senders to minimize reordering when
packets arrive at the receiver.

Performance Isolation §III-C5 In cloud environments with many tenants where network resources
are shared across tenants, mechanisms should be put in place to make
sure tenants’ use of resources cannot impact other tenants.

Allocation of bandwidth on a per tenant ba-
sis rather than per flow taking into account
possibility of selfish or malicious behavior
from tenants.

The Incast Problem §III-C6 A variety of applications, such as search, use the partition-aggregate
communication pattern which can lead to a large number of incoming
flows to end-points. If not properly handled, this can lead to conges-
tion, dropped packets and increased latency.

Larger available switch buffer space, re-
sponsive and careful traffic control to keep
switch buffer occupancy low and avoid
dropped packets.

The Outcast Problem §III-C7 Is observed in switches that use DropTail queues and when a dispro-
portionate number of flows arrive at different incoming ports and exit
the same switch output port. This problem is caused by synchronous
dropped packets under high utilization.

Responsive and careful traffic control to
keep switch buffer occupancy low and avoid
dropped packets.

the driver and network stack level, CPU load increased by
about 10% with server interface link utilization at 100%.

5) Performance Isolation: Performance isolation is nec-
essary in cloud environments where multiple tenants use
shared network resources [73]–[75]. Isolation prevents selfish
or malicious behavior that aims to either unfairly obtain
more resources, such as by creating many flows or using
custom aggressive transport protocols [76], [77], or to cause
disruptions.

Enforcing performance isolation over a shared infrastructure
is hard. To effectively isolate the effect of tenants and users,
mechanisms need to be put in place in various layers and
parts of the network. For example, a queue management
scheme will need to divide buffer space according to users and
tenants, bandwidth needs to be fairly divided, computational
and memory overheads due to network communication needs
to be controlled on a per user or per tenant basis, and all of
this need to be done according to service level agreements
between the operator, users and tenants.

6) The Incast Problem: When many end-hosts send traffic
to one destination concurrently, the link attached to the des-
tination turns into a bottleneck resulting in queue buildups,
large queuing delays, and dropped packets [29], [65], [78]–
[81]. This problem becomes more serious in high bandwidth
low latency networks [82] and with shallow buffer switches
[83].

For example, the incast problem could appear in clusters
running applications such as search and batch computing jobs

like MapReduce that follow the partition-aggregate processing
model. In search applications, a server may query a large
number of other servers the results to which may be returned
to that server at the same time creating sudden increase in
incoming traffic. In a MapReduce job, a Reduce instance may
download outputs of many Map instances for reduction which
can cause a similar situation. Both scenarios follow the many-
to-one communication pattern.

7) The Outcast Problem: This problem occurs due to
synchronized drops of packets from an input port of a switch
which is referred to as port blackout [84]. This eventually
leads to unfairness. For such synchronous drops to happen,
two predicates have to be present. First, there needs to be
contention between a large group of flows coming from one
input port and a small group of flows coming from a different
input port for access to the same output port. Second, the
output port uses queues that follow TailDrop policy (if queue
is full, the arriving packet is discarded). Port blackout occurs
for the small group of flows and is observed temporarily over
short periods of time. When the output queue is full, any
arriving packet (during this window) is dropped which leads to
consecutive drops for incoming flows. Such consecutive drops
affect the smaller set of flows more than they affect the larger
set (a smaller number of flows in the larger set are affected).
The intensity of this problem increases as the ratio of flows in
the larger over smaller group increases. This problem is called
the “outcast” problem because some flows are cast aside (they
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cannot obtain bandwidth).
This could simply occur in tree-based topologies such as

Fat-Tree and in partition-aggregate communication scenarios
where many flows from different servers could be returning
results to one server (many-to-one communication pattern). A
disproportionate number of flows from incoming servers may
end up on different input ports of the ToR switch attached to
the receiver which could lead to flows on some port receiving
less average throughput.

D. Traffic Control Objectives

Datacenter environments involve operators, tenants, and
end-users with different objectives. Operators would like to
use available resources as much as possible to provide higher
volume of services, accommodate more tenants and eventually
increase revenues. In addition, datacenter infrastructure may be
shared by several tenants running various types of applications
to offer different services. Tenants would like to receive a fair
share of resources according to their service level agreement
(SLA) which determines the cost of services. Finally, many
end-users may rely upon services offered by datacenter ten-
ants. They would like such services to be responsive and highly
available. These possibly conflicting objectives are presented
in the following. Table II provides a summary of traffic control
objectives in datacenters.

1) Minimizing Flow Completion Times: Flow Completion
Time (FCT) is the time from the initiation of a flow to its
completion. Depending on applications, FCT can directly or
indirectly affect the quality of experience and service offered
to end users [29], [62], [85]. Major factors that determine
FCT in datacenters include queuing and packet loss [7], [29].
Occasionally, retransmission of lost segments can significantly
increase latency due to the time it takes to identify and
retransmit the lost data. For some applications, it may be more
helpful to focus on minimizing mean or median latency (e.g.
static web applications) [29], [80], [85]–[87], while for other
applications tail latency may be more important (e.g. partition-
aggregate) [30], [62].

2) Minimizing Deadline Miss Rate or Lateness: Many
applications require timely delivery of data that can be viewed
as flows with deadlines. In such applications, as long as pieces
of data are delivered prior to the deadlines, customer SLAs
are satisfied. The quality of services decrease as the fraction
of missed deadlines increases. For some applications, delivery
after the deadlines is still valuable and necessary. As a result,
sometimes minimizing the amount by which we miss deadlines
is more important which is referred to as “lateness” (e.g.
synchronization of search index files).

3) Maximizing Utilization: Increasing resource utilization
can reduce provisioning costs and increase revenues. By better
utilizing network bandwidth, operators can accommodate more
tenants or improve the quality of service for existing ones.
Effectively utilizing the network depends partly on network
topology and design parameters, and partly on network traffic
control scheme.

4) Fairness: Many flows share datacenter resources such as
link bandwidth and buffer space. In multi-tenant datacenters, it

is necessary to make sure tenants receive fair share of network
resources according to their service level agreement (SLA).
Enforcing fairness also mitigates the starvation problem and
prevents malicious behavior.

There are several definitions of fairness in networking
context including max-min fairness, proportional fairness, and
balanced fairness [88], [89]. Fairness criteria determine how
link bandwidth or buffer space is divided among flows. Max-
Min Fairness (MMF) [90], which aims at maximizing the
minimum share, is the most widely used. In general, fairness
can be considered over multiple dimensions each representing
a different kind of resource (e.g., bandwidth, CPU cycles, and
memory) [91], [92]. We however focus on network bandwidth
fairness in this paper.

Fairness should be considered among proper entities as
defined by the fairness policy. For example, fairness may
be across groups of flows as opposed to individual flows to
prevent tenants from obtaining more resources by creating
many flows. Strict fairness across all flows can also lead to
increased number of missed deadlines [51] and sub-optimal
FCTs [86]. One approach is to first apply fairness across
tenants according to their classes of service and then across
flows of each tenant considering flow priorities.

In addition to the traffic control objectives we mentioned,
there are other objectives followed by many datacenter op-
erators. An important objective is reducing energy costs by
increasing energy efficiency. Since datacenter networks usually
connect a huge number of servers, they are made of a large
number of network equipment including fiber optics cables and
switches. Due to varying amount of computational and storage
load, average network load may be considerably less than its
peak. As a result, operators may reduce energy costs by turning
off a fraction of networking equipment at off-peak times
[93]–[95] or by dynamically reducing the link bandwidths
across certain links according to link utilizations [96]. There
are however several challenges doing so. First, the resulting
system should be fast enough to increase network capacity as
computational or storage load increases to prevent additional
communication latency. Second, it may be unclear where to
reduce network capacity either by turning equipment off or
by reducing link bandwidths (correlation between network
load and placement of computation/storage can be considered
for additional improvement [97]). Third, the effectiveness of
such systems depends on load/utilization prediction accuracy.
Further discussion on reducing datacenter power consumption
is beyond the scope of this paper.

IV. DATACENTER TRAFFIC CONTROL MANAGEMENT

To enforce traffic control, some level of coordination is
needed across the network elements. In general, traffic control
can range from fully distributed to completely centralized.
Here we review the three main approaches used in the lit-
erature namely distributed, centralized or hybrid. Table III
provides an overview of traffic control management schemes.

A. Distributed
Most congestion management schemes coordinate in a dis-

tributed way as it is more reliable and scalable. A distributed
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TABLE II
SUMMARY OF DATACENTER TRAFFIC CONTROL OBJECTIVES

Objective Description

Minimizing Flow Completion Times (FCT) §III-D1 Faster completion times reduces the communication delay for distributed applications and
improves their end-to-end responsiveness.

Minimizing Deadline Miss Rate or Lateness §III-D2 For time constrained applications, it is important to meet specific deadline requirements. For some
applications, only transactions that complete prior to their deadlines are valuable in which case
deadline miss rate is the right performance metric. For some applications transactions completed
past the deadlines are still valuable or even necessary in which case lateness (i.e., by how much
we miss deadlines), is the right metric.

Maximizing Utilization §III-D3 To maximize performance, it is desired to use available resources as much as possible.

Fairness §III-D4 Resources should be fairly divided across tenants and users while paying attention to their class
of service and service level agreements (SLAs).

TABLE III
SUMMARY OF DATACENTER TRAFFIC CONTROL MANAGEMENT

Scheme Benefits Drawbacks

Distributed §IV-A Higher scalability and reliability. Solutions can be completely
end-host based or use explicit network feedback. More infor-
mation in §IV-A1.

Access limited to local view of network status and flow
properties. Limited coordination complicates enforcement of
network-wide policies. More information in §IV-A2.

Centralized §IV-B Access to global view of network status and flow properties.
Central control and management can improve flexibility and
ease of enforcing network-wide policies. More information in
§IV-B1.

A central controller can become a single point of failure or
a network hotspot. Latency overhead of communicating with
a central entity and control plane inconsistencies are other
concerns. More information in §IV-B2.

Hybrid §IV-C Potentially higher reliability, scalability, and performance.
More information in §IV-C1.

Higher complexity. Also, the final solution may not be as good
as a fully centralized system. More information in §IV-C2.

scheme may be implemented as part of the end-hosts, switches,
or both. Some recent distributed traffic control schemes in-
clude those presented in [8], [78], [86], [98], [99].

Designs that can be fully realized using end-hosts are
usually preferred over ones that need changes in the de-
fault network functions or demand additional features at the
switches such as custom priority queues [53], in-network
rate negotiation and allocation [86], complex calculations in
switches [100], or per flow state information [101]. End-host
implementations are usually more scalable since every server
handles its own traffic. Therefore, popular transport protocols
rely on this type of implementation such as [29], [102].

As an example, the incast problem §III-C6, which is a
common traffic control challenge, can be effectively addressed
using end-host based approaches considering that incast con-
gestion occurs at receiving ends. Some approaches are Server-
based Flow Scheduling (SFS) [79], pHost [80], NDP [103] and
ExpressPass [104]. SFS uses the generation of ACKs to control
the flow of data towards receivers and avoid congestion. The
sender looks at the flows it is sending and schedules the higher
priority flows first, while the receiver controls the reception by
deciding on when to generate ACKs. pHost uses a pull-based
approach in which the sender decides on reception schedule
based on some policy (preemptive or non-preemptive, fair
sharing, etc). A source dispatches a Request To Send (RTS) to
a receiver. The receiver then knows all the hosts that want to
transmit to it and can issue tokens to allow them to send. NDP
limits the aggregate transmission rate of all incast senders by
maintaining a PULL queue at the receiver that is loaded with
additional PULL requests when new packets arrive from a

sender (a PULL request contains a counter which determines
number of packets its associated sender is allowed to send).
PULL requests are then sent to senders in a paced manner
to make sure the overall incoming transmission rate at the
receiver is not larger than per interface line rate. ExpressPass
manages congestion across the network by controlling the flow
of credit packets at the switches and end-hosts according to
network bottlenecks (a sender is allowed to send a new data
packet when it receives a credit packet).

Shifting more control to the network may allow for better
resource management due to ability to control flows from more
than a single server and availability of information about flows
from multiple end-hosts. For example, flows from many hosts
may pass through a ToR switch giving it further knowledge
to perform scheduling and allocation optimizations.

Some examples of this approach include RCP [85], PDQ
[86], CONGA [105], Expeditus [106], and RackCC [107].
RCP and PDQ perform in-network rate allocation and as-
signment by allowing switches and end-hosts to communicate
using custom headers, CONGA gets help from switches to
perform flowlet based load balancing in leaf-spine topologies,
Expeditus performs flow based load balancing by implement-
ing custom Layer 2 headers and localized monitoring of
congestion at the switches, and RackCC uses ToR switches
as means to share congestion information among many flows
between the same source and destination racks to help them
converge faster to proper transmission rates. To implement
advanced in-network features, changes to the network elements
might be necessary and switches may need to do additional
computations or support new features.
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1) Benefits: Higher scalability and reliability. Can be com-
pletely implemented using end-hosts. To further improve per-
formance, network (i.e., switches, routers, etc.) can be involved
as well. Completely end-host based approaches can operate
simply by controlling the transmission rate according to im-
plicit feedbacks from network (e.g. loss, latency). Network can
offer explicit feedbacks (e.g. network queues’ occupancy) to
improve transmission rate management by allowing senders to
make more accurate control decisions. For example, Explicit
Congestion Notification (ECN) allows network to commu-
nicate high queue occupancy to end-hosts [108], [109] or
trimming packet payloads in case of highly occupied network
queues (instead of fully discarding them) can help receivers
get a complete picture of transmitted packets [103], [110].

2) Drawbacks: Usually just access to local view of network
status and flow properties which allows for only locally
optimal solutions. For example, while every end-point may
strive to achieve maximum throughput for its flows by default
(locally optimal), it may lead to a higher network wide utility
if some end-points reduce their transmission rate in favor of
other end-points with more critical traffic (globally optimal).
Using distributed management, it may be harder to enforce
new network wide policies (e.g. rate limits in a multi-tenant
cloud environment) due to lack of coordination and limited
view of network condition and properties.

B. Centralized

In centralized schemes a central unit coordinates trans-
missions in the network to avoid congestion. The central
unit has access to a global view of network topology and
resources, state information of switches, and end-host de-
mands. These include flow sizes, deadlines and priorities
as well as queuing status of switches and link capacities.
Scheduler can proactively allocate resources temporally and
spatially (several slots of time and different links) and plan
transmissions in a way that optimizes the performance and
minimizes contentions. To further increase performance, this
entity can translate the scheduling problem into an optimiza-
tion problem with resource constraints the solution to which
can be approximated using fast heuristics. For large networks,
scheduler effectiveness depends on its computational capacity
and communication latency to end-hosts.

TDMA [111], FastPass [112] and FlowTune [113] are exam-
ples of a centrally coordinated network. TDMA divides time-
line into rounds during which it collects end-host demands.
Each round is divided into fixed sized slots during which hosts
can communicate in a contention-less manner. All demands are
processed at the end of a round and schedules are generated
and given to end-hosts. FastPass achieves high utilization and
low queuing by carefully scheduling traffic packet by packet
considering variation in packet sizes. FlowTune improves on
scalability of FastPass using centralized rate-assignment and
end-host rate-control.

There are several challenges using a fully centralized ap-
proach. The central controller could be a single point of failure
since all network transmissions depend on it. In case of a
failure, end-hosts may have to fall back to a basic distributed

scheme temporarily [112]. There will be scheduling overhead
upon flow initiation, that is the time it takes for the scheduler
to receive, process the request, and allocate a transmission
slot. Since majority of flows are short in datacenters, the
scheduling overhead has to be tiny. In addition, this approach
may only scale to moderate datacenters due to processing
burden of requests and creation of a congestive hot-spot around
the controller due to large number of flow arrivals. Bursts in
flow arrivals [27] can congest the controller temporarily and
create scheduling delays. It may be possible to apply general
techniques of improving scalability for central management of
larger networks such as using a hierarchical design.

1) Benefits: Can provide higher performance with a global
view of network status and flow properties. Such information
may include utilization of different network edges, their health
status as well as flows’ size, deadline and priority. With
this information, one can potentially direct traffic carefully
according to network capacity across a variety of paths while
allowing flows to transmit according to their priorities to
maximize utility. Central management can improve flexibility
and ease of managing network policies. For example, new
routing/scheduling techniques can be rolled out much faster
by only upgrading the central fabric. Centralized schemes
also increase ease of admission control in case strict resource
management is necessary for guaranteed SLAs.

2) Drawbacks: A central controller or management fabric
can be a single point of failure or it may become a network
hotspot in case of large networks. There is also latency
and computational overhead of collecting network status and
flow properties from many end-hosts (controller will have
to process and understand incoming messages at high speed
and act accordingly). Overhead of network resource allocation
and scheduling (if central rate allocation is used). Finally,
consistency of network updates can be an issue in large
networks. For example, some updates my not be applied
correctly at network elements (e.g. software bugs [20]) or
different updates may be applied with varying latency that
can lead to transient congestion or packet losses which may
hurt performance of sensitive services.

C. Hybrid

Using a hybrid system could provide the reliability and
scalability of distributed control and performance gains ob-
tained from global network management. A general hybrid
approach is to have distributed control that is assisted by
centrally calculated parameters.

Examples of this approach include OTCP [114], Fibbing
[115], Hedera [116] and Mahout [117]. OTCP uses a cen-
tral controller to monitor and collect measurements on link
latencies and their queuing extent using methods provided
by Software Defined Networking (SDN) [118] which we will
discuss further in §VII-A. For every new flow, the controller
calculates parameters such as initial and minimum retrans-
mission timeout and initial and maximum congestion window
size considering which path is taken by flows which allows
for fast convergence to steady state. Fibbing relies on a central
controller to manipulate the costs associated with routes in the
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network or insert fake nodes into the routing tables of routers
to force them to use or avoid some paths to control the distri-
bution of load across network. Hedera and Mahout operate by
initially allowing network to route all incoming flows using
a distributed approach, then monitoring and detecting large
flows that can be moved dynamically to different routes using
a central controller with a global view of network status which
allows for a more balanced distribution of load. While Hedera
uses readily available switch capabilities (flow counters) to
detect large flows, Mahout engineers and inserts a shim layer
at the end-hosts to monitor and detect large flows to improve
scalability.

1) Benefits: Reliability, scalability, and higher performance.
A central controller can offer coarse grained solutions while
fine-grained control is applied using a distributed scheme. Di-
vision of work between central and distributed components can
be done in a way that minimizes the effects of centralized and
distributed schemes’ drawbacks. For example, in multi-tenant
cloud datacenters, a hierarchical approach can be used where
aggregate bandwidth given per tenant is calculated centrally
while transmission control across flows per tenant is performed
in a distributed fashion reducing central management overhead
and increasing per tenant management scalability.

2) Drawbacks: Complexity may increase. Central con-
troller now has limited control; therefore, the final solution
may not be as good as a fully centralized system. Due to
presence of centralized control, there still exists a single
point of failure however with less impact in case of a failure
compared to a fully centralized scheme. Also, the distributed
component still operates on a locally optimal basis. For
example, in multi-tenant cloud datacenters, if bandwidth per
tenant is managed in a distributed fashion, due to limited
local information per network element, it may be challenging
to apply routing/scheduling policies that maximize utility
according to flow properties.

V. DATACENTER TRAFFIC CONTROL TECHNIQUES

Many design parameters and approaches can be consid-
ered in development of any traffic control scheme. Figure 3
provides a high level breakdown of major datacenter traffic
control techniques. In the following, we provide a list of these
techniques and discuss some research efforts made regarding
each. Figure 4 provides an overview of the relationships
between challenges, objectives and techniques. Details of each
relationship is further explained in Tables V and IV. More
detailed information is provided in the following sections.

A. Transmission Control

Transmission control is the mechanism that controls the flow
of data sent to the network. There is typically a window of
outstanding bytes for each flow at the sender determining the
volume of data that can be transmitted before data reception is
acknowledged. This allows for implicit rate control. A larger
window may increase the average transmission rate since it
allows for more bytes in flight towards receiver. A significant
body of work, including recent works, employ window-based
rate control. Table VI provides a summary of this section.

Some recent window-based approaches include DCTCP
[29], D2TCP [28], L2DCT [119], MCP [120], DAQ [121],
and PASE [122]. DCTCP uses explicit congestion signals
from switches that is piggybacked on ACKs to change the
window size according to the extent of congestion. Packets are
marked to convey congestion signal according to instantaneous
queue length upon their arrival at the queue. D2TCP modulates
window size based on flow deadlines: flows with closer
deadlines reduce window size less than others in response to
network congestion signals. L2DCT modulates window size
of a flow based on its estimated size which is dynamically
calculated by counting the number of packets it has seen

Traffic Control Techniques §V

Transmission Control §V-A

Window-Based

Rate-Based

Token-Based

Traffic Shaping §V-B

Rate Limiting

Packet Pacing

Prioritization §V-C

Load Balancing §V-D

Dynamic (Adaptive)

Static

Load Balancing Granularity

Flow

Flowlet

Flowcell

Packet

Data and Task Placement

Routing and Forwarding

Multipathing §V-E

Scheduling §V-F

Reservation

Redundancy

Deadlines

Policies

Preemption

Jittering

ACK Control

Fig. 3. High level breakdown of traffic control techniques
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Techniques

Transmission Control

Rate Limiting

Packet Pacing

Prioritization

Load Balancing

Multipathing

Scheduling

Objectives

Reducing Latency

Reducing Deadline
Miss Rate / Lateness

Maximizing Utilization

Fairness

Challenges
Unpredictable
Traffic Matrix

Traffic Burstiness

Mix of various
flow types/sizes

Packet Reordering

Performance Isolation

The Incast Problem

The Outcast Problem
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Fig. 4. How traffic control techniques interact with challenges and objectives, every line shows a direct relationship (indirect relationships may exist between
some blocks but they are not shown here)

from a flow up to current time. MCP changes window size
to approximate the solution to an stochastic optimization
problem that minimizes long term mean packet delay using
flow information and network state, such as queue length at the
switches. DAQ allows ToR switches to calculate initial sender
window for end-hosts to converge to proper transmission rates
faster. PASE also gets help from network elements to decide
on its initial coarse-grained window size, and then performs
fine-grained adjustments to the window size using congestion
signals received similar to DCTCP.

Although fairly simple, window-based approaches only al-
low for coarse-grained control of rate which can result in
considerable variations and create highly bursty traffic. For
example, a sender can release a full window of packets before
it has to wait for the receiver to acknowledge. This may
be followed by a batch of acknowledgements that move the
window forward and allow for another full window of packets
to be sent.

To decrease the transmission rate variations at the senders,
rate-based mechanisms that employ explicit rate control can
be used. Packets in the outstanding window are carefully
scheduled to achieve the proper bit rate which implies reduced
burstiness of the traffic. Rate-control is necessary when using
reservation based bandwidth control over shared links such as
in [113].

Examples of earlier rate-based protocols include TCP
Friendly Rate Control (TFRC) [123] and Rate Control Protocol
[85]. Several recent work also use rate-based methods in
datacenters including PDQ [86], D3 [51], TIMELY [99], and
RACKS [87]. TFRC calculates the allowed sending rate to
compete fairly with TCP using an equation which captures
various network parameters such as round trip time (RTT),
loss rate, retransmission timeout, and segment size. RCP uses
an equation based rate control to minimize average FCT with

the help of network switches that divide bandwidth according
to processor sharing policy. D3 uses flow deadlines as a factor
in the rate calculation equation to reduce deadline miss rate (a
closer deadline allows for a higher rate). RACS uses a similar
approach to RCP but assigns weights to flows according to
their priority, to emulate different scheduling algorithms at the
switches according to weight assignment. PDQ improves on
both RCP and D3 by rate allocation using switches and adding
support for preemption. TIMELY calculates the sending rate
as a function of network latency.

Explicit rate control can be applied both in hardware (e.g.
NIC) and software (e.g. OS Kernel). While the former provides
more precise rates, the latter is more flexible and allows for a
larger number of flows to be rate controlled as well as more
complex policies to be considered. Rate-control in software
can result in creation of occasional bursts due to challenges
of precise packet scheduling in OS kernel [123].

Complementary to these two approaches for rate control
at the sender, one can also apply token-based transmission
control which adds an extra control layer to make sure senders
only transmit according to some quota assigned to them (this is
sometimes referred to as pull-based or credit-based approach).
For example, such quota could be assigned according to
congestion status at receivers (to address the incast problem
discussed earlier in §III-C6) or to implement a form of receiver
based flow scheduling policy (more information in §V-F).

B. Traffic Shaping

We can improve network performance by making sure that it
conforms to required profile and policy rules. This can reduce
contention while using network resources. For example, traffic
shaping can prevent some flows from hogging others. Shaping
can be used to provide some level of resource isolation and
guarantees in cloud environments with many users. Finally,
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TABLE IV
DESCRIPTION OF RELATIONSHIPS BETWEEN TECHNIQUES AND CHALLENGES IN FIGURE 4

Relationship Description Some Related Works

1 2 Transmission control at senders determines number of packets given to network driver for transmission. If a
bunch of packets are sent to network interface for transmission, bursts may be created.

[124], [125]

1 4 If transmission is performed over multiple interfaces for multipath delivery, careful transmission control is
required to minimize packet reordering. This shall be done according to latencies of different paths to the
receiver.

[126], [127], [128],
[98]

2 2 Rate limiting can reduce burstiness by adding a protective layer after transmission control in case a large
number of packets are given to the network driver for transmission.

[129], [130], [131]

2 5 Rate limiting can improve performance isolation across tenants and users by preventing any tenant/flow from
taking too much bandwidth starving other tenants/flows (a tenant may initiate many flows).

[73], [132]

3 2 Packet pacing reduces burstiness by adding time spacing between consecutive packets prior to transmission. [124], [125]

4 3 Prioritization helps allocate resources to flows accordingly and can improve the performance while scheduling
a mix of flow types/sizes. For example, one could prioritize highly critical deadline flows over other flows.

[133], [134], [53],
[122], [135]

4 5 Prioritization can shield a tenant/application with high service guarantees from other tenants/applications
with lower service guarantees. Priorities shall be determined according to tenant/application service level
agreements (SLAs) or Quality of Service requirements (QoS).

[136], [137]

5 1 Datacenter topologies usually come with a large degree of path redundancy to provide low over-subscription
ratio for better inter-rack communication. With load balancing, this capacity can be used to a higher extent
giving the operators/tenants a better chance to handle any traffic matrix.

[5], [10]

6 4 Multipathing can increase packet reordering. To reduce reordering while using multiple paths, one can perform
careful packet scheduling according to path latencies at transmission control level so that packets arrive in
the right order at the receiver (it is nearly impossible to eliminate reordering). Assignment of data segments
to sub-flows is also an important factor in how well receivers can handle reordering.

[68], [126]

7 2 Transmission control, rate limiting, and packet pacing all depend on careful scheduling of packets at senders
which can mitigate burstiness.

[123], [129], [130],
[138]

7 3 When a mix of flow types is present, scheduling of packets according to flow priorities, deadlines, sizes and
arrival order can help us better meet traffic control objectives.

[86], [134], [53]

7 4 If multiple paths are used for a flow, scheduling can reduce reordering by determining when packets should
be sent at the sender over each path to arrive at the receiver with minimal reordering.

[126]

7 6 Scheduling can mitigate the incast problem by preventing all the incoming data (from many flows) from
arriving at a receiver at the same time. Various techniques can be used such as adding random delays while
initiating requests (jittering) and receiver based scheduling using either ACKs or receiver window size.

[79], [81]

7 7 Effective queuing disciplines which determine how packets in a switch queue are scheduled for transmission,
such as Stochastic Fair Queuing (SFQ), can mitigate port blackout §III-C7.

[84]

traffic shaping can be useful in resource scheduling where
senders follow rates specified in the schedule. A summary of
traffic shaping techniques has been provided in Table VII.

1) Rate Limiting: Rate limiting is usually applied by pass-
ing traffic through a Token Bucket filter. This ensures that
average transmission rate does not exceed the token generation
rate. Tokens are generated at a specific rate and an arriving
packet can only be sent if there is a token available. Tokens are
accumulated if there is no packet to be sent, but there is usually
a cap on how many. This cap is to limit traffic burstiness
in case the token bucket is idle for a while. Examples of
works employing rate-limiting to provide resource isolation
and guarantees include [51], [73], [113], [132], [135], [140],
[141].

Rate-limiting can be done in OS Kernel, as part of the hy-
pervisor in a virtualized environment, or via NIC. Scheduling
of packets in software (Kernel or Hypervisor) is generally
less precise and can be computationally intensive in high
bandwidths and with a large number of flows. To reduce CPU
utilization, OSes usually send packets to NIC in batches which
can further reduce the scheduling precision. For example,

Classful Queuing Disciplines (Qdisc) offered by Linux allows
for coarse grained rate-control by determining the time and
count of packets that NIC receives from RAM, however, the
actual schedule of packets on the wire is determined by NIC.

To improve software rate-limiting performance one can use
userspace packet processing tools some of which we point to
in §VII-D. For example, Carousel [130] is a rate-limiter that is
implemented as part of a software NIC in userspace. Carousel
uses a variety of techniques to reduce CPU and memory
usage and improve scalability including deferred completion
signalling (rate-limiter only signals completion to applications
when data is actually transmitted to offer backpressure and
minimize buffer space usage) and single queue shaping (using
a timing wheel and by assigning timestamps to packets over
the time horizon).

Using NIC to schedule and send packets given rate limits
reduces CPU load and traffic burstiness. Effective rate-limiting
in hardware demands support for multiple queues and classes
of traffic with hardware rate-limiters attached to them.

Hybrid rate-limiting approaches can be used to support a
large number of priority classes while reducing hardware com-



DATACENTER TRAFFIC CONTROL TECHNIQUES AND TRADE-OFFS 14

TABLE V
DESCRIPTION OF RELATIONSHIPS BETWEEN TECHNIQUES AND OBJECTIVES IN FIGURE 4

Relationship Description Some Related Works

1 1 Transmission control can impact overall end-to-end latency by affecting queue occupancies at the network
switches.

[124], [125]

1 2 Transmission control determines how many packets are sent by each flow which can be done according to
flow deadlines to reduce deadline miss rate and/or lateness.

[86], [28], [51]

1 3 Proper transmission control can maximize network bandwidth utilization while avoiding congestion (which
usually leads to dropped packets and wasted bandwidth).

[112], [113], [80]

1 4 Transmission control plays significant role in how fairly flows share the network. For example, if one of
two equally important flows is given higher transmission quota over longer periods of time, this can lead to
unfairness.

[85]

2 3 Rate limiting can prevent congestion and reduce dropped packets. As a result, it helps maximize utilization
and minimize wasted bandwidth.

[113]

2 4 Rate limiting can improve fairness by preventing selfish behavior of bandwidth hungry flows/tenants. [73], [132]

3 1 Packet pacing can reduce average queue occupancy in the network (switches/routers) and therefore reduces
end-to-end latency.

[124], [125], [9]

3 3 Packet pacing can increase effective utilization by preventing bursty behavior of flows which can lead to higher
buffer occupancy and dropped packets. It stabilizes transmission rates and reduces transmission spikes.

[125], [9]

4 1 Prioritization can reduce average latency and flow completion times by giving higher priority to shorter flows. [53], [134]

4 2 Prioritization according to flow deadlines can improve the overall deadline miss rate. For example, search
queries with critical deadlines (e.g. 300 ms after arrival) can be given high priority and can be addressed
before long running backup operations in a shared network environment.

[121]

5 3 Load balancing allows us to make best use of large path diversity in datacenters and maximize utilization
over all available paths.

[116], [105], [98],
[30]

6 3 Multipathing can increase utilization by allowing long running flows to use bandwidth of several available
paths.

[45], [68], [139]

7 1 Scheduling can reduce latency by applying scheduling disciplines that mimic Shortest Remaining Processing
Time (SRPT).

[87]

7 2 Deadline miss rate or lateness can be reduced by scheduling flows according to their deadlines such as by
allotting more capacity for flows with closer deadlines.

[28]

7 3 Scheduling can improve utilization by reducing contention within the network for using available bandwidth.
For example, by carefully deciding on when packets should be sent by end-hosts, we can avoid sudden arrival
of many packets at the switches which can lead to dropped packets.

[111], [112]

7 4 Scheduling can improve fairness by giving bandwidth to flows based on a fair sharing policy such as Max-Min
Fairness (MMF) [90].

[85], [87]

TABLE VI
OVERVIEW OF TRANSMISSION CONTROL TECHNIQUES

Scheme Input Benefits Drawbacks

Window-based Maximum
outstanding
window size.

Simplicity, no careful packet scheduling over-
head.

Coarse-grained control over transmission rate which can lead
to occasional bursts of packets (e.g. when a bunch of ACKs
arrive and suddenly the transmission window moves forward).

Rate-based Desired transmis-
sion rate (in bits
per second).

More accurate control over rate, reduced vari-
ations in rate, a more natural choice for better
management of network bandwidth.

Overhead of packet scheduling either in software (less ac-
curate, less costly) or in hardware (more accurate, requires
hardware support).

Token-based Transmission
quota towards a
specific receiver.

Receiver enforced quota prevents senders
from congesting receivers. Can be applied
complementary to window/rate-based control.

A sender needs to first coordinate with the receiver before
it embarks on transmission which can add some latency
overhead.

plexity and keeping scheduling precision high. NicPic [129]
classifies and stores packets in queues located in RAM and
labels them with proper rate limits by host CPU. Packets are
then fetched by NIC via DMA and scheduled using hardware
rate-limiters. NIC first decides on which flow’s packets to send
and then pulls them from RAM.

As the last option, rate-limits can also be applied at the
application layer. Applications can do this by limiting the

volume of data handed off to transport layer over periods
of time. This approach is simple but requires changes to
applications. Also, rate-limiting precision will be limited.
Finally, this may lead to bursty traffic as incoming application
data to transport layer may get buffered prior to transmission
on the wire, i.e., applications have no control over how data
is eventually sent.
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TABLE VII
OVERVIEW OF TRAFFIC SHAPING TECHNIQUES

Scheme Description Limitations

Rate Limiting §V-B1 Limits the transmission rate of outgoing packets from the rate
limiter. A token bucket is usually used to limit maximum
persistent packet transmission rate to token arrival rate.

Rate limiting has limited accuracy depending on how it is
enforced, in software (usually less accurate but cheaper) or
hardware (usually more accurate but needs hardware support).
Also, various implementation techniques in software lead to
different accuracy such as in the operating system kernel or
using kernel bypass modules (see §VII-D).

Packet Pacing §V-B2 Inserts time spacing between consecutive packs to spread
them uniformly across a window of round trip time (RTT).
This reduces traffic burstiness and average network buffer
occupancy, therefore improving end-to-end latency.

Packet pacing has limited accuracy and similar to rate-
limiting, its accuracy depends on the implementation tech-
nique used.

2) Packet Pacing: Packet Pacing is the process of adding
space between consecutive packets so that they do not arrive
at the network back to back which reduces traffic burstiness.
Burstiness can degrade network performance in several ways.
Long bursts can overload switch buffer and create consecutive
packet drops. Average latency of all packets then increases
since they have to wait in longer queues. In addition, it creates
transmission rate oscillations making it hard to do careful
bandwidth allocation [9], [29].

Earlier work [124] experimenting with pacing in a general
network setting has shown that it can considerably reduce
queuing delay. Combined with other types of congestion sig-
nals, pacing can improve the performance by evenly distribut-
ing traffic across the timeline [9]. In addition, pacing should
only be applied to long-running and throughput-oriented flows
to reduce their impact on short latency-sensitive flows [9]. The
benefit of pacing depends on the network bandwidth-delay
product, buffer size, and the number of flows. Having so many
flows that share a buffer can reduce the effectiveness of pacing
due to inter-flow burstiness and creation of synchronized drops
[125].

Pacing can be done in both hardware and software, but
hardware pacing can be more effective due to higher schedul-
ing precision, especially at high rates where spacing between
packets is tiny [9]. Software pacing may be performed by
end-hosts as part of a driver or a kernel module. In cloud
environments, due to widespread use of virtualization, packets
may be paced at the virtual interfaces in the hypervisor soft-
ware. Pacing in software may be overridden by NIC offloading
features such as LSO, if enabled, since NIC is the actual entity
that sends packets out on the wire. In hardware pacing, packets
are buffered at the NIC, each assigned a timer, and scheduled
to be sent when their timer goes off.

Pacing can also be done at the network edges (e.g. ToR
switches) as opposed to end-hosts. For example, Queue Length
Based Pacing (QLBP) [142] uses a pacing controller attached
to edge queues to determine when the next packet in the queue
is supposed to be sent as a function of queue length.

C. Prioritization
Table VIII provides an overview of this section. Classifying

flows based on their priorities and treating them accordingly
can improve performance. Such prioritization can be done in-
network by using multiple queues at the switches and allowing

higher priority traffic to go over lower priority traffic [53],
[122], [134], [135], and at the senders by performing rate-
control according to priorities [28], [51], [86], [119].

Priorities are usually assigned either based on flow size
to minimize mean latency (by mimicking SRPT scheduling
policy) [53], [134] or based on deadlines to minimize the
number of deadline missing flows [80], [122]. Control traffic
is naturally prioritized to improve the feedback timeliness and
quality (e.g. ACKs in TIMELY [99] and Trimmed Packets in
NDP [103]) or decrease control loop delay (e.g. RTS in pHost
[80]).

For many applications, flow sizes are either known or can
be roughly estimated upon initiation [51], [53], [86], [122]
making it easy to assign priorities by size to reduce mean
latency. In case flow sizes are unknown apriori, dynamic
prioritization can be used where packets of a flow first receive
the highest priority, but get demoted to lower priorities as more
of them is seen.

For example, dynamic Packet Prioritization (DPP) [133]
uses two queues, an express queue which has higher priority
and a normal queue. It reduces the priority of long running
flows by counting their packets against a threshold. Having
multiple queues allows for more precise classification of flows
[122], [134]. However, recent work shows that most benefit in
reducing mean FCT can be obtained using up to 8 queues
[53]. Finding proper threshold values based on which flows
are demoted to lower priorities may require solving an opti-
mization problem that takes into account the flow arrival rates
and flow size distribution. In datacenter environments with
known traffic characteristics and workloads, such thresholds
may be determined offline and applied in real-time [134]. It
is also possible to virtually emulate the behavior of having
infinite number of queues using only two actual queues per
switch port, a high and a low priority queue [143]. This can
be achieved by assigning flows with highest priority to high
priority queue while the rest of flows to low priority queue and
dynamically changing flows assigned to high priority queue
when other flows with a higher priority complete.

Prioritization can be performed fully at switches by keeping
state on flows passing through and using some priority assign-
ment criteria such as the total number of packets sent. This
simplifies end-hosts at the expense of higher computational
and memory burden on the switches.

Another approach is for the end-hosts to tag flows with
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TABLE VIII
OVERVIEW OF PRIORITIZATION TECHNIQUES

Property Scheme Description (Benefits/Drawbacks)

Classification
Static A flow’s priority is fixed once assigned. This approach can be applied when flow properties (e.g. size)

are known apriori.

Dynamic A flow’s priority may change over time according to its behavior, i.e., number of packets sent over time.
This approach can be used if flow properties are unknown apriori.

Criteria

by flow size Mimics the Shortest Remaining Processing Time (SRPT) scheduling discipline which aims at minimizing
mean flow completion times.

by flow deadline To minimize deadline miss rate or lateness by first satisfying flows with closer deadlines.

by class of service If an application or a tenant has a higher service level requirement or agreement, flows associated with
them can be prioritized accordingly to minimize the effect of other applications/tenants using the same
physical network.

Location
at the switches Switches can keep state information on flows passing through them and determine their priority according

to flows’ behavior. For example, in case of prioritization by flow size, switches can estimate flow sizes
by counting the number of packets they have sent (mimicking least attained service discipline). Keeping
state information at the switches may be costly when there are many flows.

at the end-hosts End-hosts can mark packets with priority tags allowing switches to simply enforce priorities according
to tags. This reduces switch complexity but requires changes to the end-hosts’ software or hardware
protocol stack.

Implementation

at Layer 2 Ethernet standard IEEE 802.1Q priority based forwarding.

at Layer 3 Differentiated Services (DiffServ) can be used at the IP layer.

Custom approaches Can be used by adding support to switches and/or end-hosts, may require changes in software/hardware
to switches and/or end-hosts.

Enforcement
Strict A lower priority flow is only sent when there are no packets available from any of the higher priority

flows. This minimizes the effect of lower priority flows on higher priority ones but can lead to starvation
of lower priority flows.

Non-strict A lower priority flow can be sent even if there are packets available from higher priority flows. This
occurs when a required volume of higher priority flows’ demand is satisfied (e.g. one low priority packet
is sent for every K ≥ 1 high priority packets sent) and mitigates the starvation problem of lower priority
flows.

priority tags while switches just process tags and put packets
in proper queues [134], [135]. End-host priority tagging can be
done at the NIC, OS kernel, hypervisor, or even by applications
before packets are sent to the network. In case of virtualization,
if end-host VMs cannot be trusted to assign priorities properly,
middleboxes can be used (e.g. at the hypervisor) that monitor
and tag packets (e.g. using OpenVSwitch [144]) which applies
to both static [53] and dynamic [122], [134] prioritization.

Priorities can also be assigned in different ways. Ethernet
standard IEEE 802.1Q priority based forwarding [145] that
provides 8 levels is supported by many switch vendors and
can also be used in datacenters [135]. At the IP layer, Differ-
entiated services (DiffServ) [146] can be used [147]. Custom
queuing techniques and headers can also be used which may
require changes to both switches and end-hosts [53].

Strictly prioritizing flows can lead to starvation where lower
priority flows cannot make progress due to large volume of
higher priority traffic. A simple solution is to use weighted
queuing instead of strict prioritization. For instance, DAQ
[121] uses a weighted round-robin between long and short
flows to make sure that throughput-oriented flows keep making
progress. Aging can also be used to address starvation while
minimally affecting critical flows. An aging-rate can be used
to increase the priority of low priority flows as a function of
their waiting time [86].

D. Load Balancing

Datacenter topologies typically provide a large degree of
path redundancy. Properly distributing load across these paths
reduces contention among flows while increasing overall re-
source utilization. Without effective load balancing many links
may not be utilized while some experiencing congestion [48],
[148]. Table IX provides an overview of general load balancing
concepts and their trade-offs.

Load balancing can be static or dynamic (adaptive). Static
approaches use a fixed criteria to assign traffic to available
paths such as by hashing specific fields from packet headers.
For example, ECMP [150] is a popular static load balancing
technique that only distributes load across equal cost paths.
Adaptive load balancing dynamically selects paths for traffic
according to distribution of load to minimize hot-spots. Vari-
ous criteria can be used for path assignment such as per-hop
or per-path queue occupancies [151]. After choosing the initial
path according to current load, some adaptive approaches keep
monitoring the network status and distribution of traffic. They
change direction of traffic to eliminate or reduce hot-spots.
These approaches are referred to as reactive. If not applied
with care, reactive load balancing might lead to oscillations.

Examples of reactive dynamic load balancing techniques
include Planck [152], Hedera [116], MPTCP [45], DIBS [83]
and CONGA [105]. Planck uses a controller that monitors
traffic and generates congestion events that include the trans-
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TABLE IX
OVERVIEW OF LOAD BALANCING TECHNIQUES

Property Scheme Description (Benefits/Drawbacks)

Classification

Static A new flow is assigned to any of the available paths using some fixed criteria such as by hashing parts of its
packets’ header. This approach is simple but inflexible. For example, in case two throughput oriented flows
are assigned to the same path, they cannot be moved to other less utilized paths later.

Dynamic (reactive) Flows can be moved across any of the available paths according to available bandwidth. Offers a better
performance in general but adds the complexity of measuring link utilizations, accounting for flows, and
calculating best flow assignments accordingly.

Dynamic (proactive) After a flow is assigned to one of the available paths according to some criteria, its assignment will remain
fixed. The initial assignment is performed according to network conditions such as available bandwidth. This
approach is somewhat between the previous two assignments above in terms of implementation overhead,
flexibility and performance.

Granularity

per packet Finest load balancing but can lead to high reordering.

per flow Coarse load balancing but achieves minimal reordering.

per flowlet A flowlet’s size dynamically changes according to differences of latencies of candidate paths. At high rates
and/or high latency difference between available paths, a flowlet can become significantly large. As a result,
this can result in both fine and coarse grained load balancing (it is always somewhere between per packet
and per flow). Flowlets have been found effective for load balancing over asymmetric (i.e., with different
available bandwidth) paths [149]. As a drawback, flowlets may cause reordering of small flows and hurt their
completion times.

per flowcell A flowcell has a fixed size that is usually about tens of packets. Using flowcells simplifies load balancing
compared to flowlets (no need to carefully measure path latencies and schedule accordingly) and reduces
possible reordering of small flows. It can however significantly increase reordering for larger flows that will
be broken into many flowcells.

mission rate of flows passing through the congested link. It
then routes traffic away from congested spots. Hedera initially
places flows via hashing, and then uses a central controller to
monitor the network, detect long running flows and reschedule
such flows on a lightly loaded path to balance the load.
MPTCP establishes multiple sub-flows from the beginning
and then shifts load between them according to the level
of congestion observed across each sub-flow. DIBS forwards
packets that arrive at a full queue to one of the nearby switches
instead of dropping them which will be forwarded towards the
destination through another path. CONGA proposes a tech-
nique for leaf-spine topologies [13] based on lazy evaluation.
A leaf switch has a table which holds the load seen along its
outgoing paths. Such load information is collected by receiving
switches and then piggybacked on traffic.

Some proactive adaptive approaches include DeTail [30],
Presto [98] and Expeditus [106]. DeTail uses a per-hop adap-
tive method and operates in lossless environments with layer 2
flow control [153]–[155]. At every hop, packets are forwarded
to the egress port with minimal queuing. Presto breaks flows
into small units called cells and sends them across all available
paths. This implies that small flows are kept intact as long as
they fit into one cell. Expeditus dynamically assigns flows
to paths in 3-tier Clos topologies. It uses dedicated packet
tags to communicate load information across switches for
path selection upon arrival of a new flow. For path election,
the upstream switch sends a message to its downstream peer
expressing congestion at its egress ports. The receiving switch
compares the upstream congestion metrics with the ones for its
ingress ports choosing the ports that minimize the maximum
congestion along the path.

Load balancing can be done per-packet, per-group of pack-
ets that belong to the same flow, and per flow. While con-

sidering these options, two important performance metrics are
packet reordering and distribution of load across the network.
Reordering is known to waste server resources and increase
latencies [67].

per flow load balancing minimizes packet re-ordering. Con-
gested spots might be created in case multiple large flows are
assigned to the same links. Even when carefully placing flows,
per flow load balancing provides limited benefit if there is a
large number of throughput-oriented flows [151]. To improve
performance, one might reroute flows from their initially
assigned paths according to network conditions. However,
moving flows from their initial paths might still result in
re-ordering. For example, Hermes [156] performs per flow
load balancing added that it can perform fast rerouting of
flows according to network conditions. It can potentially
reroute flows per packet in case conditions change rapidly
and continuously. One however needs to consider the stability
of such schemes, especially as load increases, since many
flows may be interacting in the network (in case of instability,
such schemes may keep changing routes, which increases re-
ordering, while not improving load balancing). Flier [157] is
another flow-level load balancing scheme that reroutes flows
according to level of congestion observed (via checking ECN
markings) and failures (by paying attention to timeouts).

Per-packet load balancing provides the finest balancing de-
gree but leads to packet re-ordering. For every new packet, one
of the available paths can be chosen either randomly, according
to usage history, or adaptively based on the distribution of load.
Valiant Load Balancing (VLB) [158] can uniformly distribute
packets across paths. Packet Spraying [159] (a.k.a. packet
scatter) uses a Round Robin approach to multiplex packets
of a flow across all possible next hops. Packet scatter can
greatly balance load at the network core [80], [139] and reduce
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latency [53], [160]. Another per-packet approach, DRB [127],
reduces network queuing and buffering required at the receiver
by choosing the forwarding paths that avoid clustering of
packets between same source-destination pairs. DRILL [161]
determines the forwarding path of every packet of a flow
independently by considering per port local queuing at the
switches sending an arriving packet to the least occupied
queue. It is argued that DRILL’s packet reordering is minimal
due to similar latencies across all the paths between every
source and destination pair due to well-balanced switch queue
occupancies.

Another option is to group several packets of a flow and
perform load balancing per-group of packets. Packets can
be grouped according to their inter-packet delay or their
accumulative size. In the former case, all packets of a flow
whose inter-packet delay is less than some timeout threshold
form a flowlet [126]. Flowlet scheduling essentially makes use
of natural traffic burstiness for load balancing §III-C3. In the
latter case, packets are grouped with a limit on total group
volume to form flowcells [98], [128]. Each flowlet or flowcell
can be sent over a different path to distribute load.

In flowlet scheduling, smaller timeout values allow for
finer load balancing while larger values reduce reordering.
To minimize reordering, one can choose the timeout value
to be greater than the difference between latencies of paths
with minimum and maximum latencies. Flowlets have been
found to effectively balance load while incurring minimal
reordering in datacenters [105], [113]. However, dependence
of flowlet switching on inter-packet intervals could lead to
creation of arbitrarily large flowlets at high rates, which could
lead to congestion in case they collide. Another drawback is
the possibility that small flows are split into several flowlets
which could lead to reordering and increased latency.

In flowcell scheduling, smaller flowcells balance load better
while larger ones reduce reordering. Flows shorter than the cell
size are guaranteed to be sent on a single path minimizing
their latency and reordering. Previous work has used grouping
thresholds of tens of kilobytes (10 KB at ToR switches [128]
and 64 KB at the hypervisor layer [98]) to effectively spread
the load across the network and reduce creation of random
hot-spots. As a drawback, this approach may lead to higher
reordering for long flows compared to flowlets.

1) Data and Task Placement: Many datacenter applications
need to access data stored on multiple servers to perform
computations or respond to queries. Therefore, placement of
data determines what options are available to access them.
Such data could be a value for a key in a distributed key-
value store or an object in a replicated or erasure coded store.
For example, any of the replicas in a replicated store can be
accessed or any of the k pieces out of n pieces of data would
allow data recovery in an (n, k) erasure coded storage system.

Pieces of data can be distributed across racks and servers
(depending on topology) to allow wider load balancing op-
tions. For example, Ceph [162] uses Selective Replication that
distributes copies of the original data across the cluster accord-
ing to their popularity. Ceph also distributes contents of large
directories and ones with lots of writes across many servers
to reduce hot-spots. HDFS [163] allows for similar features

but also considers the network topology while distributing
replicas. For example, there is better connectivity and usually
higher available bandwidth within a rack.

Placement of tasks (execution) could be as important as
placement of data. Task schedulers and resource managers
can place computation in accordance with placement of data
to reduce network usage, contention for network access and
queuing [164]–[169]. A task scheduler may consider the flow
scheduling policy of the network (FCFS, SRPT, Fair Sharing,
etc.) in addition to placement of data to improve overall task
completion times [170].

2) Routing and Forwarding: Switches forward packets ac-
cording to Forwarding Information Base (FIB) which contains
a set of rules that determine outgoing port(s) for incoming
packets. FIB rules can be installed proactively or reactively.
Proactive installation may result in a larger number of rules
as not all of them may be used at all times while reactive
installation of rules may incur setup time overhead. Such rules
can be installed either directly or by a routing protocol that
calculates the rules and installs them such as BGP, IS-IS or
OSPF. In case of routers, FIB usually reflects a subset of
Routing Information Base (RIB) which is a table of routes
learned or calculated by a router. For load balancing, various
forwarding techniques can be used to direct traffic across
several paths.

Standard distributed protocols can be used for load balanc-
ing. As a Layer 2 solution, VLAN based load balancing puts
same machines on several virtual networks allowing traffic
to be spread across paths via using different VLAN tags.
It however provides limited scalability due to creation of
large broadcast domains. Layer 3 routing for large networks
with support for load balancing can be used in case multiple
next hops are available for a destination. For example, Equal
Cost Multipathing (ECMP) statically selects the next hop by
hashing packet header fields. For fast convergence, IGP routing
protocols can be used such as IS-IS or OSPF. Load balancing
using these protocols is challenging since path costs need to
be exactly equal and the number of supported equal paths is
limited. BGP provides higher flexibility for this purpose [171]
and can be customized to converge fast [172].

Load balancing can be performed using centralized tech-
niques. In Layer 2, scalable forwarding can be built by
replacing the default MAC address broadcast and discovery
approach with a centralized one [173], [174]. A controller can
then setup Layer 2 forwarding that accounts for path diversity
[174]. Centrally implemented Layer 3 approaches allow FIBs
to be calculated centrally using free routing software stacks
such as Quagga [175], and installed on switches to implement
various protocol stacks such as OSPF and IS-IS with ECMP
support which provides much higher flexibility [5], [43], [176],
[177]. For example, to help BGP converge faster, a central
controller can calculate and update BGP tables in routers to
achieve desired forwarding behavior [4]. Simpler centralized
approaches in which new FIB rules are installed directly by
a controller upon arrival of a new flow can also be used.
Forwarding can be done in a way that distributes load, either
by hashing or adaptively selecting least loaded paths. Using
this approach, careful consideration of scalability is necessary.
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Previous approaches relied mostly on network for routing.
An end-host based approach is Source Routing which sim-
plifies the network by moving the forwarding information to
packets, and eliminating the need to disseminate updates of
forwarding state [178]. To properly encode paths in packets,
end-hosts need to be aware of network topology and paths.
In addition, a mechanism is needed to detect and disseminate
network status and failure information to the end-hosts. BCube
[41] uses probe packets to measure available bandwidth across
paths and assign new flows to least loaded ones. PSSR [136]
encodes a list of outgoing port numbers instead of addresses
for next hops to decouple addressing from forwarding.

3) Effect of Failures: The scale of datacenter networks
has made failures an important concept. Even using high
quality and expensive equipment, the probability that some
network element fails (e.g. a switch, a port or a link, etc.)
can be considerably large at any moment [19]. When some
network equipment fails, capacity in the network decreases
accordingly; however, since datacenter networks are usually
connected with large degrees of redundancy, network failures
rarely lead to complete inability to reach parts of the network.
However, the capacity loss due to failures in some parts
of network can lead to complications in load balancing by
affecting the effective capacity of different paths, i.e., creating
capacity asymmetries. This may not have a significant impact
on topologies that are inherently asymmetrical (e.g. JellyFish,
Xpander, etc.); however, more basic load balancing techniques,
such as ECMP, which are used in symmetric topologies (e.g.
Fat-Tree, Leaf-Spine, VL2, etc.), will have a hard time effec-
tively distributing load in case of failures [18], [105], [149].
This is noteworthy considering that many industry datacenters
are based on symmetric topologies.

A variety of solutions have been proposed to perform
better load balancing in case of capacity asymmetries across
paths examples of which include WCMP [18], CONGA [105],
HULA [179], Presto [98], LetFlow [149], DRILL [161] and
Hermes [156]. WCMP mitigates asymmetries by extending
ECMP and assigning weights to different paths proportional
to their capacity referred to as weighted traffic hashing. Using
WCMP, weights determine the number of hash entries per
outgoing port at the switch which are selected proportional
to capacity. CONGA and HULA operate by performing path-
wise congestion monitoring and shifting traffic accordingly.
As a result, if capacity of a path is reduced due to failures, its
congestion metric will increase faster and it will automatically
be assigned less traffic. Presto applies a weighted forwarding
mechanism in a way similar to WCMP where weights are
pushed to the end-host virtual switches. LetFlow is a simple
approach where flowlets are used as means to dynamically
adapt to varying path capacities. LetFlow relies on natural
property of flowlets which allows them to shrink or expand
(in size) according to available capacity over paths. DRILL
performs load balancing over asymmetric topologies by first
breaking them into groups of symmetric components and then
performing load balancing on them per switch. Symmetric
paths should have equal number of hops and their queues
should be shared by same flows at every hop from source to
destination. Hermes uses comprehensive sensing at the end-

hosts to monitor path conditions and reroute flows affected by
failures or congestion caused by asymmetries. Hermes con-
siders monitoring of latency and ECN markings for detection
of congestion while looking at frequent timeouts and retrans-
missions as signs of failures. In addition, to improve visibility
into path conditions, Hermes uses active probing by sending
small probe packets between end-host pairs periodically.

E. Multipathing
To improve the overall throughput for a single flow and

provide better reliability in case of failures, multi-path tech-
niques can be used [45], [68], [139], [180]. A flow is split
into multiple sub-flows each sent over a different path. To
receive traffic on multiple paths, the receiver needs to buffer
data received from each sub-flow and put them in order.
Buffering is proportional to sum of throughput across paths
times the latency of the longest path [68], [181]. Although
latencies are quite small in datacenters, link bandwidths can be
significantly high. Additional sub-flows can generally increase
both memory and CPU utilization [68].

Depending on flow sizes, the applications may decide
whether to use multiple sub-flows. Overhead of setup and tear-
down for multiple sub-flows may be considerable for short
flows. For long-running background flows, using every bit of
bandwidth available through multipathing may improve their
total average throughput.

Several examples of multipath transports include MPTCP
[139], XMP [182] and MMPTCP [183]. MPTCP leverages
ECMP to route sub-flows over various paths and increase
total throughput while balancing load across paths by moving
load across sub-flows. XMP approximates the solution to an
optimization problem that maximizes utilization. It uses RED
[184], [185] with ECN marking to keep the queue occupancies
low. XMP achieves most benefit by using two sub-flows.
MMPTCP aims to improve FCT for short flows by employing
a two phase approach. First phase uses packet scatter by
randomizing source port numbers and routing via ECMP to
minimize FCT for short flows and second phase uses MPTCP
to maximize throughput for long flows.

Although multipathing is generally helpful in increasing
utilization, the benefit it offers is limited under various condi-
tions. Under heavy workloads, multipathing may not improve
throughput if most paths are already highly utilized [86].
In addition, if paths have different characteristics, such as
latency or capacity, multipathing may offer marginal increase
(or even decrease) in throughput [180]. This may occur in
datacenters in case different communication technologies are
used across machines, such as a combination of wireless and
wired networks or if available paths have varying number of
hops or different capacities. Another complication is caused by
overlapping paths where a multihomed sender’s paths to the
receiver actually have common edges [186]. This can occur
in datacenters as well in case of link failures which reduce
available paths or if sub-flows are mistakenly hashed to the
the same links. Finally, multipathing may lead to unfairness
if multipath flows share a bottleneck with regular flows [187].
Unfairness may also arise when multipath flows with different
number of sub-flows compete for bandwidth over a bottleneck.
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F. Scheduling
Given a list of flows with their priorities and demands,

the scheduling problem aims to optimize an utility function
of several performance metrics such as utilization, fairness
or latency. The objective is usually to maximize throughput
for bandwidth-hungry flows and minimize FCT for latency-
sensitive flows considering fairness among flows in each class
of service. Different scheduling techniques can be used to
reduce FCT, provide better bandwidth guarantees to long-
running flows, and help deadline flows meet their deadlines. In
general, scheduling a mix of flow types requires formulation
of a complex optimization problem that is generally compu-
tationally expensive to solve. Table X offers an overview of
scheduling techniques presented here.

1) Reservation: To provide better bandwidth guarantees
and prevent creation of congestion spots resources may be
first checked for availability and then allocated before an end-
host can start transmitting a flow. Requesting resources can be
done in different units and such requests might be processed
centrally or in a distributed fashion.

In a fully centralized approach, end-hosts can report their
demands to a central scheduler and ask for transmission
slots or rates. Some examples are TDMA [111], FastPass
[112], FlowTune [113] and TAPS [188]. TDMA uses a
coarse-grained centralized approach in which end-hosts send
their demands to a fabric manager which then allocates
them contention-less transmission slots. The scheduling is
performed in a round by round basis where each round is
several slots during which different hosts can communicate
over the fabrics. FastPass allocates slices of time on a per-
packet basis to improve utilization and considers variations
in packet size. FlowTune performs centralized rate allocation
on a per-flowlet basis. TAPS uses a central SDN controller
(please refer to §VII-A) to receive and process flow requests
with known demands, verify whether deadlines can be met
on a per-task basis, allocate contention-less slices of time for
senders to transmit and install forwarding rules.

Distributed reservation can be done upon connection setup.
A sender can request the rate at which it would like to transmit.
This rate along with the available bandwidth is considered
by network fabrics to determine the rate and path of the
flow. Allocated rate can be piggybacked on ACKs. RCP [85]
and PDQ [86] perform the rate allocation at switches with
this approach. Receiver-based reservation can also be used.
Receivers view multiple incoming flows and determine their
transmission schedule. Senders can also communicate their
demands to the receiver which calculates the transmission
schedule [189]. In addition, token-based techniques can be
used where a receiver sends back tokens to allow senders to
transmit a unit of data (e.g. packet) per token. The token-based
approach has been found very effective in addressing the incast
problem which is achieved by controlling the rate at which
tokens are sent back to senders from the receiver to ensure that
data arriving at the receiver conforms with available capacity
[80], [103], [104].

2) Redundancy: Tail latency is an important quality metric
for many latency-sensitive applications, such as search, as it
determines quality of user experience. Late flows can take

much longer than median latency to finish [29], [62]. An
effective approach is to replicate flows, use the fastest re-
sponding replica and terminate the rest. For simplicity, creation
of replicates may be performed completely at the application
layer. The probability of more than one replica being late is
usually significantly small. Replicated flows can be scheduled
on different paths and can even target different servers to
reduce correlation.

One approach is to replicate every flow and then take the
one whose handshaking is finished earlier and terminate the
rest [190]. Another approach is to only replicate slow requests
by reissuing them [62]. It is necessary to judiciously decide on
the number of redundant requests to balance resource usage
and response time. Since only a tiny portion of all flows are
usually laggards, additional resources needed to allow large
improvements may be small [62].

3) Deadline-Awareness: For many applications, criticality
of flows can be captured as deadlines. Scheduling techniques
are expected to minimize deadline miss rate. In case of hard
deadlines, in which case delivery after deadline is pointless,
flows can be terminated early if their deadlines cannot be
met. D2TCP [28], D3 [51], PDQ [86], and MCP [120] are
examples of deadline-aware scheduling schemes that reduce
deadline miss rate by performing rate control according to
flow deadlines, either by explicit rate allocation (D3, PDQ)
or implicitly by adapting sender’s outstanding window size
(D2TCP, MCP). Tempus [59] formulates a complex optimiza-
tion problem to maximize the fraction of flows completed prior
to their deadlines while considering fairness among flows.
Amoeba [60] aims to guarantee deadlines by performing initial
admission control via formulating an optimization problem.
RCD [191] and DCRoute [192] aim to quickly determine
whether deadlines can be met by performing close to deadline
scheduling and guarantee deadlines via bandwidth reservation.
In addition, considering task dependencies in meeting dead-
lines can help reduce deadline miss rate of tasks [188], [193].

While it is important to meet deadlines, finishing deadline
flows earlier than necessary can hurt the FCT of latency-
sensitive traffic [56]. In general, we can form an optimization
problem for scheduling flows [120]. A study of how well-
known scheduling policies perform under mix flow scenarios
with varying fraction of deadline traffic can be found in [194].

4) Disciplines: The following are some well-known
scheduling disciplines. First Come First Serve (FCFS) is
a simple policy where a task has to be completed before
the next task can begin. FCFS provides bounded lateness
when scheduling flows with deadlines [195] and is close to
optimal for minimizing tail completion times given light-
tailed flow size distributions [196]. Processor Sharing (PS)
divides available resources equally among flows by giving
them access to resources in tiny time scales. Fair Queuing
(FQ) approximates PS within transmission time of a packet
and can be used to enforce max-min fairness. Earliest Deadline
First (EDF) minimizes deadline miss rate for deadline flows.
Shortest Job First (SJF) minimizes mean flow completion time
in offline systems where all flows and their demands are known
apriori. For online systems where requests can be submitted
at any time, Shortest Remaining Processing Time (SRPT)
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TABLE X
SUMMARY OF SCHEDULING TECHNIQUES

Scheme Description Limitations

Reservation §V-F1 Reserving bandwidth prior to a sender’s transmission mini-
mizes congestion and queuing latency.

Reservation adds the latency overhead of calculating a trans-
mission schedule before a flow is allowed to transmit. In
addition, it is challenging to enforce a transmission schedule
network wide. Inaccuracies in transmission rates may neces-
sitate continues updates to the schedule which is costly.

Redundancy §V-F2 A flow can be replicated multiple times to reduce the effect
of high tail latency. The fastest reply is obtained and then
replicas are terminated.

Effective if there is a considerable gap between tail and
median latency. In addition, it is less effective when network
is heavily loaded.

Deadline-Awareness
§V-F3

Scheduling can be done according to deadlines to minimize
deadline miss rate and lateness.

It may not be possible to meet all the deadlines in which
case it should be determined whether deadline miss rate is
more important (hard deadlines) or lateness (soft deadlines).
In presence of deadlines, it is unclear how to effectively
schedule traffic if flow sizes are not known apriori or cannot
be estimated.

Disciplines §V-F4 A variety of scheduling disciplines can be applied according
to desired traffic control objectives. For example, SRPT min-
imizes mean latency while Fair Queuing maximizes fairness.

Disciplines can usually optimize for only one performance
metric. A mix of scheduling policies can hierarchically opti-
mize for more than one objective. If a utility of objectives is
desired, well-known policies may provide solutions far from
optimal.

Preemption §V-F5 Allows the network to update current schedule (along with
already scheduled flows) according to new flow arrivals.

Preemption may offer limited benefit if all flows have similar
properties (i.e., size, deadline, etc.).

Jittering §V-F6 Prevents a sender from initiating many flows together. For
example, this helps mitigate the incast problem §III-C6.

This approach only offers very coarse grained control over
incoming traffic.

ACK Control §V-F7 By carefully controlling when ACKs are sent to senders, a
receiver can control the incoming flow of traffic.

This approach only offers coarse grained control over incom-
ing traffic.

which is preemptive, minimizes mean FCT [197]. SRPT also
offers close to optimal tail completion times while scheduling
flows with heavy-tailed size distributions [196]. Least Attained
Service (LAS) [198], which prioritizes less demanding flows,
can be used to approximate SJF without apriori knowledge of
flow demands [199].

Many works use policies that approximate or implement
well-known scheduling disciplines. RCP [85] performs explicit
rate control to enforce processor sharing across flows sharing
the same links. PDQ [86] combines EDF and SJF giving
higher priority to EDF to first minimize deadline miss rate
and then minimize FCT as much as possible. FastPass [112],
implements least recently allocated first giving each user at
least as much as their fair share to reach global user-level max-
min fairness. Also, across flows of a user, fewest remaining
MTUs first is used to minimize FCT by emulating SJF. pFabric
[53] and SFS [79] follow the shortest remaining flow first
which is essentially SRPT. PIAS [134] uses a dynamic priority
assignment approach which approximates LAS by counting
the number of packets sent by flows so far. RACS [87]
uses weighted processor sharing with configurable weights
to approximate a spectrum of scheduling disciplines such as
SRPT and LAS.

Aside from research, one may be interested in what dis-
ciplines can be enforced using industry solutions. Switches
by default provide support for FIFO queues per outgoing
port which enforce FCFS scheduling policy. Some switches
provide support for multiple levels of priority at the outgoing
ports (multiple FIFO queues with different priorities). Using
these queues, it is possible to mimic the SRPT scheduling

policy by putting smaller flows into higher priority queues. For
example, Cisco offers switches that support this feature using
dynamic packet prioritization (DPP) [133] which tracks flows
as their packets arrive (estimating a flow’s size according to
LAS policy) and assigns them to priority queues according to
their sizes. Weighted Fair Queuing (WFQ) is also supported by
many switch vendors per “class of service” or per flow where
weights determine the proportional importance of flows, i.e.,
a flow is assigned bandwidth proportional to its weight.

5) Preemption: Many practical systems have to address
arrival of requests in an online manner where requests can
arrive at any time and have to be addressed upon arrival.
Order of arrivals can impact the performance of scheduling
algorithms due to race conditions which can lead to priority
inversion. For example, in an online scenario with the objec-
tive of minimizing mean FCT, SJF might perform poorly if
many short flows arrive shortly after a large flow. Preemptive
scheduling policies (SRPT in this case) can be used to address
this problem [86].

6) Jittering: A server issuing many fetch requests can
use jittering to desynchronize arrival of traffic from various
flows and reduce peaks in traffic volume. Such peaks can
lead to temporary congestion, dropped packets and increased
latency. Jittering can be applied by adding random delays at
the application layer when initiating multiple requests at the
same time [29].

7) ACK Control: ACKs may be used as part of the network
traffic scheduling process since they determine how a sender
advances its outstanding window of bytes. They can be thought
of as permits for the sender to transmit more data. A receiver
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can stall a sender by intentionally holding back on ACKs or
limit sender’s rate by delaying them. For example, a receiver
can pause ACKs for low priority flows upon arrival of higher
priority traffic and can generate ACKs to control which flows
are assigned more bandwidth [79]. In addition, by reporting
a small receiver window in ACKs, a receiver may limit the
transmission rate of a sender [65], [78]. This approach has
considerable similarities with the token-based transmission
control applied in schemes such as pHost [80], NDP [103]
and ExpressPass [104].

VI. OPEN CHALLENGES

In this section, we point to a few open challenges with
regards to traffic control. To find an optimal solution, these
problems may be modeled as complex optimization scenarios
that are computationally expensive to solve (large number
of variables and constraints, presence of integer variables
and/or non-linear constraints, complex objective functions)
and practically hard to enforce (lack of hardware support,
slow response time of software implementations, presence of
failures and errors). Current approaches apply a variety of
heuristics and simplifying assumptions to come up with solu-
tions that are practical and attractive to industry. In addition,
such optimization scenarios may be infeasible due to presence
of contradictory constraints meaning it may not be possible to
optimize for all objectives given available resources. There-
fore, it becomes necessary to relax some requirements. In the
following, we do not provide any optimization models, rather
we point to cases where such complex models may appear.
Table XI offers an overview of open challenges in this section.

Handling Mix Workloads: Datacenter environments are
usually shared by a variety of applications that generate dif-
ferent network workloads with different performance metrics.
For example, two applications of search and backup may
be sharing the same network; while search network traffic
requires low communication latency, backup network traffic
demands high throughput. Some network workloads may have
deadlines, either soft or hard, which should be considered
along with non-deadline network traffic. Effectively scheduling
such mix of network workload is an open problem. As a
solution, one can formulate a complex optimization problem
for such scheduling that considers maximizing some utility
function. This utility could be a function of performance met-
ric variables such as deadline miss rate, average lateness, link
utilizations, and latency which represents the value achieved
by tenants and operators. For example, one can examine how
the objective presented in [56], i.e., to reduce per packet
latency, translates into utility.

Load Balancing vs. Packet Reordering: In datacenters,
there is usually a large number of paths between any two
end-hosts which according to topology, could have equal or
unequal lengths (number of hops and latency). To use all
available paths, one could apply load balancing techniques.
Per packet load balancing can provide the finest level of
balancing but in general leads to significant packet reordering.
In contrast, although per flow load balancing does not lead to
packet reordering, it may not be effective in using available
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Fig. 5. It may not be possible to optimize all performance metrics together
(mismatch between fairness and mean FCT)

bandwidth over many parallel paths. In general, effective load
balancing necessitates scheduling of packets over available
paths according to available bandwidth. One could consider
an additional constraint that allows sending packets on a path
only if such scheduling does not lead to out of order arrival
of packets at the receiver. But this might reduce utilization
by decreasing packet transmission opportunities. As a result,
effectively utilizing available bandwidth over all paths could
be at odds with minimizing packet reordering. One could
relax the no-reordering constraints by allowing reordering to
some extent. This relationship can be formulated as a utility
of reordering and bandwidth utilization maximizing which in
general is an open problem. For example, the works discussed
in §V-D and §V-E offer several possible approaches.

Achieving High Throughput and Low Latency: There
is a strong connection between traffic control and the control
theory. A traffic control scheme depends on concepts from
control theory in managing flow of traffic across the network:
transmission rate of senders is a function of feedback received
from the network, and the time it takes from when a sender
changes its rate until it receives a feedback of that change
constitutes the loop delay. Due to existence of this loop delay,
a network has limited responsiveness due to processing and
propagation latency as well as queuing delay. The former
two factors are usually much smaller in datacenters and
queuing delay determines responsiveness. When transmitting
at high rates, it is easy for senders to overload the network
(which increases queue occupancy and queuing delay) before
a feedback is provided to senders to reduce their rate (which
takes at least as much as response time of the network) [200].
As a result, in distributed traffic control, achieving maximum
throughput with minimal latency is an open problem. Using
centralized schemes that perform bandwidth reservation prior
to allowing senders to transmit is a candidate solution [112].
There is however several trade-offs as discussed in §III.

Objective Mismatch: In §II, we presented a few objectives
for traffic control. In practice, even for a single flow type, it
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TABLE XI
SUMMARY OF OPEN CHALLENGES

Open Challenge Description

Handling Mix Workloads Datacenter environments house a variety of applications that generate flows with different properties and requirements.
Effectively handling the mix of traffic workload requires clearly defining a utility function of performance metric variables
(delay, utilization, deadline miss rate, lateness, fairness) and formulating an optimization problem.

Load Balancing vs. Packet
Reordering

To minimize packet reordering, a sender needs to carefully schedule packets over all available paths while paying attention
to other traffic workload. Enforcing a no reordering constraint can result in lower network utilization. As a result, to
increase utilization while imposing acceptable level of reordering, one can consider a utility function of these factors and
formulate an optimization problem solving which provides a desirable transmission schedule.

Achieving High Through-
put and Low Latency

In distributed traffic control approaches, a feedback from network is provided to senders to adapt their transmission rate.
While transmitting at high rates, the network may not provide feedbacks fast enough leading to network overload and
congestion. Therefore, limited network responsiveness may increase average queuing delay and latency at high throughput.

Objective Mismatch Due to resource constraints, it may not be possible to come up with a transmission schedule where all performance
objectives are optimal. It then becomes necessary to define a utility of performance metric variables and aim to maximize
utility by formulating an optimization scenario.

Approach 1:

Approach 2:
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Fig. 6. It may not be possible to optimize all performance metrics together
(mismatch between average throughput of transfers and FCT of high priority
traffic)

may not be possible to optimize for all performance objectives
since improving one may negatively impact the others. For
example, maximizing fairness may be at odds with minimizing
average latency as shown in Figure 5: the first approach is
unfair but offers minimal FCT compared to second approach
which is fair. Next, as shown in Figure 6, flows may have dif-
ferent priorities which determine their relative importance. The

first approach only focuses on maximizing average throughput
increasing completion time of high priority flow while the
second approach minimizes FCT of high priority flow although
it reduces average throughput. As another example, as stated
in [86], fairness could be at odds with minimizing deadline
miss rate. As a result, it is desirable to define a utility of
these objectives and aim to maximize utility. In general,
maximizing a utility of objective variables such as latency,
utilization, deadline miss rate, lateness, and fairness is an open
problem. Current research efforts mostly focus on maximizing
performance with regards to one or two of these metrics.
For example, the approach presented in [59] formulates an
optimization scenario that considers both fairness and meeting
deadlines.

VII. RELATED PARADIGMS

We review a few networking paradigms that have affected
the design and operation of datacenter networks. Essentially,
networks have become more flexible and controllable giving
operators more room for performance optimizations.

A. Programmable Forwarding Planes

Programmable forwarding planes offer significant room for
efficient control and management of datacenter networks. They
make it possible to develop and implement custom policies and
algorithms for network control and management. Forwarding
plane can be programmed centrally using a controller that
takes into account policies and resource constraints through
some interface provided by forwarding elements. This is con-
sidered as part of Software Defined Networking (SDN) [201].
A comprehensive survey of SDN architecture and applications
can be found in [202].

The dominant framework in this realm is OpenFlow [118],
[203] where forwarding elements, such as switches, can be
managed via an open interface. An important benefit of an
open interface is that switches built by different vendors can be
operated in the same way allowing for cost effective expansion.
Rolling out new updates to the network also becomes much
easier as only controllers need to be patched. In general, there
could be multiple controllers each managing a part of the



DATACENTER TRAFFIC CONTROL TECHNIQUES AND TRADE-OFFS 24

network while coordinating together which is most applicable
to large networks. There is two-way communication between
switches and controllers: a controller can register for specific
events at the switches and perform changes to the switches’
forwarding table by adding new rules, modifying existing rules
or removing them.

The forwarding process begins when a packet enters a
switch from any port. The switch tries to match the packet
to a forwarding rule according to its header fields and will
forward it to the correct outgoing port. It is also possible to
modify the packet contents (packet rewrite) before forwarding
it. If the packet cannot be matched to any rule, it can be sent
to the controller (if forwarding table is configured with the
right table-miss entry) for further inspection and if necessary
the controller will update the forwarding plane accordingly
for forwarding of this packet and the rest of packets from
the same flow. If there are multiple matches, the highest
priority rule will be executed. More complex operations can
be executed using Group Tables which allow for forwarding
to multiple outgoing ports, selection of the outgoing port
according to some hash of the packet (e.g. for load balancing),
and switching to a connected output port for failover. Group
Table features have been added since version 1.1 of OpenFlow
[204] and currently version 1.5 has been released [205].

By centrally managing forwarding rules, one can implement
different routing protocol stacks in a centralized manner. For
example, BGP protocol stack can be deployed on top of SDN
[206]. In addition, one can implement a more sophisticated
control plane protocol that understands and communicates
with a variety of other protocols, such as legacy BGP routers,
while running a custom protocol stack itself [4].

B. Programmable Data Planes

Generally, data plane operations are implemented using
Application-Specific Integrated Circuits (ASICs) at the hard-
ware layer allowing for forwarding at maximum rate but only
offering a set of fixed switch functions that can only be
changed by replacing the ASICs. This introduces a few issues
namely being prone to bugs as well as long and unpredictable
time to implement new functions [207], [208]. Programmable
data planes (PDPs) allow the packet processing functions to
be changed at the forwarding devices, i.e., switches can apply
new forwarding functions at the line rate. This is orthogonal to
programmable forwarding planes (e.g., SDN) where different
forwarding rules can be selectively applied to packets. PDPs
make it easier to deploy traffic control schemes that depend on
custom in-network processing or feedback. For example, [9],
[53], [86] rely on custom packet headers and feedback from
switches.

PDPs can be realized using Protocol-Independent Switch
Architecture (PISA) using which new features can be intro-
duced to switches or bug fixes can be applied in a short time
[209]. There are emerging proposals for hardware designs that
allow for PISA [210], [211]. Hardware prototypes (switch
chips) have also been built that have made this possible
[209]. P4 [212], [213] is a high level language to program
PISA switches which is vendor independent, and protocol

independent (i.e., operates directly on header bits and can
be configured to work with any higher layer protocol). P4
compiler can also compile P4 code to run on a general purpose
processor as software switches.

C. Advanced NICs

NICs have been providing basic offloading features to OSes,
such as segmentation offloading, for many years. Several
vendors have been developing NICs with advanced offloading
features that perform complex transport tasks and deliver
the results without minimal involvement from OS and CPU.
These features allow complex operations at high line rates of
datacenters (40 Gbps and more) doing which at the OS may
incur significant CPU overhead and additional communication
latency.

Examples of offloading features include cryptography, qual-
ity of service, encapsulation, congestion control, storage ac-
celeration, erasure coding, and network policy enforcement.
Examples of such NICs include Mellanox ConnectX [214]
and Microsoft SmartNIC [215], [216] developed as part of
Open Compute Project (OCP) [217]. SmartNIC relies on
FPGA accelerators and can be used to apply SDN/Networking
policies. It also makes low latency transport possible using
Lightweight Transport Layer (LTL) that creates end-to-end
transport connection between NICs (FPGA does all processing
of segmentation, ordering, and ACKs).

D. Userspace Packet Processing

By default, packets pass through the Operating System
networking stack before they are received by applications.
When packets arrive at the NIC, interrupts are generated to
invoke the Operating System routines that read and process
them. Processing of packets is usually done in batches to
reduce CPU utilization at high rates, for example by enabling
Interrupt Moderation [66].

To improve the packet processing performance (decrease
packet processing latency and increase throughput), a different
approach would be to bypass Operating System’s networking
stack and use polling instead of interrupts. This can be realized
using kernel bypass modules, such as Netmap [218], [219],
Vector Packet Processing (VPP) [220], [221] and Data Plane
Development Kit (DPDK) [222], which have been shown to
reduce the number of required cycles to process a packet by
up to 20× on average [218]. These modules allow userspace
programs to directly access NIC buffers to read incoming
packets or write packets for transmission.

Userspace networking stacks have been developed on top
of kernel bypass modules. Sandstorm [223] and mTCP [224],
implement TCP in userspace and rely on Netmap and VPP,
respectively. SoftNIC [225] is built on top of DPDK and
allows developers to program custom NIC features in software.
RAMCloud [226] distributed key-value store and FastPass
[112] make use of kernel bypass and polling to speed up
Remote Procedure Calls (RPC). NDP [103] is a datacenter
transport protocol that is designed for ultra-low latency and
operates on top of DPDK.
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E. Lossless Ethernet and RDMA

TCP has been the dominant transport protocol across data-
centers for the majority of applications. Since implemented as
part of OS protocol stack, using TCP at high transmission
rates can exhaust considerable CPU resources and impose
notable amount of communication latency. Remote Direct
Memory Access (RDMA) is a transport protocol that allows
delivery of data from one machine to another machine without
involving the OS networking protocol stack. RDMA operates
on the NICs of machines communicating. Compared to TCP,
RDMA offers higher bandwidth and lower latency at lower
CPU utilization [8], [99], [227]. RDMA can also be used for
seamless offloading of large datasets to nearby machines (as
opposed to using pagefiles) [228].

To use RDMA, the underlying network has to be lossless
since RDMA does not support recovery from lost data by
default. Ethernet which is the favorite choice of transport
in datacenters, however, does not support reliability by de-
fault. Lossless Ethernet, also known as Converged Enhanced
Ethernet (CEE), supports per-hop flow control at Layer 2.
Backpressure is used as the mechanism to stop senders in
case of a full buffer in the network. PAUSE messages are sent
to previous hops, pausing the output ports that are connected
to inputs with full buffers, until the ultimate senders receive a
PAUSE message. The flow control mechanism used by lossless
Ethernet is referred to as Priority Flow Control (PFC) and
offers 8 priority levels for various classes of traffic [154],
[155].

For Layer 2 networks, RDMA can be deployed using
RDMA over Converged Ethernet (RoCE) [229] which is based
on lossless Ethernet and works across a single Layer 2 domain.
For larger networks that span across Layer 3, RDMA can be
deployed on top of IP and UDP using version 2 of RoCE
(RoCEv2) [230]. It can also be deployed on top of IP and
TCP using iWARP [231] which implements a full TCP stack
on end-host NIC to provide a lossless end to end transport.
iWARP does not require a lossless infrastructure and can work
on top of usual Ethernet, but is less performant and has limited
capabilities compared to RoCE [232].

Using lossless Ethernet can lead to a few performance
issues in general. Some hindering issues include Layer 2 Head
of Line (HOL) Blocking, unfairness (because Layer 2 has
no understanding of upper layer notions such as flows), and
deadlocks (due to per-port/class PAUSE feature and possible
circular dependency of routes). HOL blocking might occur
since pausing happens on a per-port/class basis. Therefore, a
flow can overflow a port causing it to be blocked stopping
other flows going through that port as well. As a result, it is
necessary to prevent formation of full buffers. Furthermore,
loss-based congestion control approaches are rendered useless
since there is no packet loss in case of full buffers.

Quantized Congestion Notification (QCN) [233], which is
fully implemented in Layer 2, can be used to reduce PAUSE
messages by signaling senders before buffers are full. It sends
notifications back to the sender’s NIC from switches. Packets
need to be tagged with a flow ID at the senders which will
be used at the switches when notifications are generated to

determine which flows should be slowed down. QCN is limited
to boundaries of a single Layer 2 domain and therefore is
insufficient for datacenters with large networks.

TCP Bolt [234] and DCQCN [8] operate across Layer
3 using RoCEv2. Both of these schemes use DCTCP [29]
like ECN marking to reduce buffer occupancy and minimize
PAUSE signals. To prevent deadlocks, TCP Bolt creates edge
disjoint spanning trees (EDSTs) across the network with
different PFC classes to prevent cyclic dependencies as flows
are routed in the network. TIMELY [99] can also be used on
lossless networks which uses a delay-based approach to detect
increased buffer occupancy and manages its rate accordingly
to reduce it.

VIII. BROADER PERSPECTIVE

Cloud companies and content providers, such as Google
[1], Microsoft [2], Facebook [235] and Amazon [3], have built
multiple datacenters in different continents and countries. Mul-
tiple datacenters offer a variety of benefits for distributed appli-
cations with geographically wide range of users such as email,
multimedia (e.g., YouTube), social networks (e.g., Facebook,
Instagram, and Google Plus) and online storage. These benefits
include increased availability and fault-tolerance, global or
regional load balancing, reduced latency to customers and
reduced global bandwidth usage via caching. For example,
to minimize user access latency, data can be placed on local
datacenters close to users via replication.

To further improve reliability, load balancing and data
availability, large datacenter operators (such as Amazon and
Microsoft) operate in two hierarchies of zones and discrete
datacenters. Each availability zone is usually made up of a few
discrete datacenters that are close enough to communicate with
negligible latency (e.g. less than 2 ms for Microsoft Azure, i.e.,
few tens of miles), while far enough to allow them to operate
as distinct failure domains. Datacenters usually have rich con-
nectivity within zones which themselves are connected using
long haul fiber optics (usually hundreds of miles) [236]. These
links are either owned by datacenter operators or leased from
a provider with existing backbone infrastructure. These links
that connect multiple datacenters within regions and across
them are referred to as inter-datacenter networks. Maintaining
and operating inter-datacenter networks requires significant
capital investment from datacenter companies which makes
it imperative to efficiently use them [59], [177], [237].

In general, we can categorize traffic that goes within and
across datacenters into traffic that is a result of direct interac-
tion with users and the business internal traffic that is a result
of backend data processing or migration. Recent work points
to significant increase in the overall business internal traffic
(which includes both intra and inter-datacenter traffic) that is
growing at a much faster pace than user generated traffic [4],
[177], [238]. Such increase not only demands higher inter-
connection bandwidth across servers within datacenters, but
also higher network capacity across datacenters. Over the past
decade, significant attention has been given to intra-datacenter
networks to improve their performance and efficiency which
was the topic of discussion in previous sections. However,
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similar attention has not been paid to increasing efficiency
and performance of connectivity across datacenters.

To communicate across datacenters, many companies pur-
chase bandwidth from ISP networks with present WAN in-
frastructure and are billed according to some usage criteria.
A widely used pricing scheme calculates traffic costs by
looking at 95 percentile of network bandwidth usage over
some period of time [239]. A variety of research efforts focus
on minimizing inter-datacenter traffic transit costs considering
a similar pricing scheme by aiming to not increase the peak
bandwidth usage or minimally increase it if necessary [240]–
[248].

Large datacenter operators take advantage of dedicated
inter-datacenter connections over long haul optical networks.
Google operates their own backbone network referred to as B4
[20], [177]. Microsoft Global WAN [249] connects Microsoft
datacenters over their private (dark) fiber network. Facebook
has also developed their cross datacenter backbone network
referred to as Express Backbone [238]. These private dedicated
networks offer a unique opportunity for further optimization of
network resource management. Considering that all end-points
of such networks are managed by one organization, we can
improve efficiency by coordinating transmission across such
end-points. In addition, despite their huge geographical scale,
these networks are usually made up of tens to hundreds of
links (that connect distant locations) making such coordination
practically feasible. For example, B4 is currently managed
centrally by a system called Bandwidth Enforcer [250], Mi-
crosoft Global WAN is managed by SWAN [237] and Express
Backbone is also managed centrally by a traffic engineering
controller [238].

A. Private Dedicated Inter-datacenter Networks

Bandwidth allocation is an effective approach for global
traffic engineering over private dedicated networks [237],
[250]. To take into account latency overhead of bandwidth
allocation, a hybrid approach is usually taken where an aggre-
gate bandwidth is set aside for short latency-sensitive flows
(mostly user generated) per link or such flows are assigned
strictly higher traffic priority. Large long-running flows which
we refer to as transfers will then become the focus of per
flow bandwidth allocation. In addition, since the network
environment is continuously changing as new transfers arrive
or due to varying volume of higher priority traffic (from
latency-sensitive flows), a slotted timeline is considered where
transmission rates can be updated on a per timeslot basis.

Figure 7 shows an example architecture for this purpose
which is based on similar concepts as [237], [250]. One way
ro realize this architecture is using SDN. An inter-datacenter
network that can be operated using SDN is sometimes referred
to as Software Defined WAN (SDWAN). This allows data
transmission and routing to be managed centrally according to
transfer properties and requirements as well as network status
and topology [251].

A central Traffic Engineering Server (TES) calculates trans-
mission rates and routes for submitted transfers as they arrive
at the network. Rates are then dispatched to local agents

that keep track of local transfers (initiated within the same
datacenter) called site brokers. Senders first communicate with
local site broker which in turn forwards transfer requests
to TES. The local site broker then receives TES’s response
with the transmission rates and forwards it to the sender.
Local site brokers add a level of indirection between senders
and TES which can help in several ways. It reduces the
request response overhead for TES by maintaining a persistent
connection with brokers and possibly aggregating several
transfer requests before relaying them to the server, which can
be useful for hierarchical bandwidth allocation that is done
by locally grouping many transfers and presenting them to
TES as one (trading some traffic engineering accuracy for
scalability). Site broker may also inform TES of network
conditions within datacenters for more careful rate allocation
and routing. Finally, site broker may modify TES’s response
according to varying local network conditions or allow senders
to switch to a standby backup TES in case it goes offline. Other
tasks in this system setup include the following.

Rate-limiting: We earlier discussed a variety of techniques
for rate-limiting in §V-B1. TES can calculate transmission
rates on a per transfer basis in which case end-hosts (e.g.
virtual machines initiating the transfers) should comply with
such rates by limiting rates before traffic is transmitted on
the wire. In addition, applications that initiate the transfers
can themselves apply rate-limiting by carefully controlling the
amount of data handed off to the transport layer. Although
simple, this approach demands changes to the applications.
TES can also compute rates per groups of transfers which can
improve scalability [250]. Rate-limiting can then be applied at
some intermediate network element via traffic shaping/policing
[252]. Transfers in a group will then have to use a bandwidth
sharing policy among themselves such as Fair Sharing.

Routing: Upon arrival of a transfer, forwarding routes are
calculated for it by TES. Such routes are then installed in
the network by adding proper forwarding rules to network’s
switching elements. To reduce setup overhead or save network
forwarding state, TES can also reuse existing forwarding rules
or aggregate several of them as one if possible. Per transfer,
senders may have to attach proper forwarding labels to their
packets so that they are correctly forwarded (like a Virtual
LAN ID). Such labeling may also be applied transparent to
the sender at an intermediate network entity (e.g. hypervisor
virtual switches, backbone edge, etc).

B. Research Directions

In this section, we provide an overview of several research
directions considering the scenario mentioned above.

1) Inter-datacenter Global Rate-allocation and Routing:
The majority of inter-datacenter related research is on global
optimization of inter-datacenter networks. Metrics similar to
ones we discussed in §II can be considered as objectives. For
example, B4 [177] and SWAN [237] focus on maximizing
utilization, Tempus [59] aims to meet transfer deadlines and
maximizes minimal fraction of transfers that complete prior
to deadlines in case there is not enough capacity, Amoeba
[60] performs admission control for incoming traffic and
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only admits new transfers if their deadlines can be guar-
anteed and DCRoute [192] performs fast admission control
to guarantee deadlines while minimizing packet reordering.
The majority of prior work related to this problem either
focus on delay tolerant transfers or aim at meeting deadlines
while not considering completion times as a metric. For many
long-running data transfer operations, completion times are
important in increasing overall utility. For example, faster
completion of backup operations may reduce the chance of
data loss due to failures or speedy replication of data objects
can improve average user’s quality of experience. In addition,
most prior work formulate complex optimization problems that
are computationally expensive and slow especially if need be
solved as transfers arrive and can increase scheduling latency.
Further research is then necessary in developing global rate
computation and routing algorithms that lead to solutions
quickly and also consider completion times of transfers.

2) Inter-datacenter One-to-Many Transfers: Many services
run across several datacenters close to regional users to offer
a better quality of experience by minimizing customer access
latency (e.g. CDNs cache objects for local viewers [50], [240],
[246], [253], [254]). This approach also reduces overall inter-
datacenter bandwidth consumption by keeping a copy of pop-
ular objects close to users. There is also need for propagating
application state to multiple locations for synchronization (e.g.
search index databases [177]) or making multiple distant data
copies for higher reliability and availability [251]. All of these
lead to data delivery from one datacenter to multiple datacen-
ters referred to as Point to Multipoint (P2MP) transfers [255].
P2MP data delivery over private dedicated inter-datacenter

networks can be considered as a special case of multicasting
for which a significant body of work is available including in-
network multicasting [256], [257] and using overlay networks
[258], [259]. However, there is need for coordinated schemes
that improve performance by carefully selecting multicast
forwarding trees and assigning transmission slots to transfers.
One should also note that centralized multicasting solutions
proposed for intra-datacenter networks, such as [260], [261],
may not work for inter-datacenter networks due to significant
differences in topology (former is usually structured and
regular while latter is not). New objectives can be considered
in addition to ones proposed in §II for P2MP transfers, such
as maximizing number of receivers per transfer that complete
reception in a given period of time.

3) Inter-datacenter Failure-aware Routing: Given their
scale, inter-datacenter networks may be exposed to a variety
of physical conditions and natural environments. As a result,
different inter-datacenter links may have significantly different
link failure probabilities (possibly by as much as three orders
of magnitude [262]). In addition, inter-datacenter traffic in
general is made up of a variety of classes with different
quality of service requirements and priorities [20], [50]. In
general, transfers can be rerouted and rescheduled in reaction
to failures. This however leads to possible service disruptions
which can more seriously affect services that are sensitive to
loss or latency. Given unique properties of private dedicated
inter-datacenter networks, steps can be taken proactively as
new transfers arrive to mitigate the effect of failures on
overall utility. Several objectives can be considered per failure
event including minimizing number of affected transfers upon
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failures considering their class of service, minimizing the
amount by which latency increases across a variety of services,
or maximizing utilization while leaving off spare capacity to
perform quick in-network failover rerouting [263]. The latter
could be applied only to a fraction of inter-datacenter traffic
(i.e., more important traffic). In addition, one could study
these objectives for both one-to-one and one-to-many transfer
scenarios (or a mix of them).

IX. CONCLUSIONS

Many online services today depend on datacenter infras-
tructures to provide high availability and reliability along with
scalable compute at minimal costs. Datacenter environments
may be shared by many tenants and applications offering dif-
ferent services to their consumers (end-users). Traffic control
is a necessary task in datacenter networks to efficiently use
the resources and fairly share them.

In this tutorial paper, we reviewed several challenges op-
erators, tenants and applications are faced with in datacenter
traffic control. We discussed different elements of traffic con-
trol explaining the problems, challenges, proposed solutions
and their trade-offs. Despite significant research efforts, the
majority of traffic control proposals are in the state of research
and far from adoption in the industry considering metrics
of complexity, performance and cost altogether. Further re-
search efforts are required to reach solutions that offer higher
performance at same or lower costs while maintaining low
complexity.

More broadly, at the end of this paper, we also pointed
to inter-datacenter communication as an evolving research
area that requires further attention. We proposed a centralized
architecture that captures the essence of existing solutions
and discussed how efficient traffic control can be realized
using it. We also pointed to three major active research areas
regarding inter-datacenter communication that need further
attention from the research community.
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