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Abstract

In this paper, we consider the problem of finite-alphabet source separation in

both determined and underdetermined large-scale systems. First, we address

the noiseless case and we propose a linear criterion based on `1-minimization

combined with box constraints. We investigate also the system conditions

that ensure successful recovery. Next, we apply the approach to the noisy

massive MIMO transmission and we propose a quadratic criterion-based de-

tector. Simulation results show the efficiency of the proposed detection meth-

ods for various QAM modulations and MIMO configurations. We mention

that there is no change in the computational complexity when the constella-

tion size increases. Moreover, the proposed method outperforms the classical

Minimum Mean Square Error (MMSE)-based detection algorithms.

Keywords: Compressed sensing, source separation, underdetermined

system, sparsity, simplicity, massive MIMO.

1. Introduction

Source separation problems in digital signal processing deal with the re-

covery of original source signals from the observed mixture signal [1, 2].
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In the overdetermined case, the number of observations exceeds the num-

ber of sources and the recovery is possible without making strong assump-

tions about the sources or the mixing parameters [3]. However, the sepa-

ration problem becomes more difficult if the number of underlying sources

is larger than the number of observations. Separation of such underdeter-

mined mixtures requires the separation algorithm to exploit additional in-

formation about the source signals and the mixing parameters compared to

the overdetermined case. Compressed sensing (CS) technique [4, 5] has at-

tracted considerable attention as it promises to surpass the traditional limits

of sampling theory [6]. It is a signal processing technique to efficiently ac-

quire and reconstruct signals, by finding solutions to underdetermined linear

systems. It exploits the sparsity of the signal to recover it and thus, it uses

far fewer samples than required by the sampling theorem [7, 8]. A source is

sparse in a given representation domain if most of its elements are close to

zero. The CS technique requires the sparsity of the sources which restricts its

application [9]. In [10], the authors proposed to apply the CS technique to

solve underdetermined real-valued finite-alphabet source recovery problems.

They introduced a suitable sparse decomposition to derive a sparse recovery

problem solvable by CS techniques. In [11], Mangasarian et al. treated the

binary alphabet case and showed that the source can be successfully recov-

ered by resolving a linear program with higher detection probability as the

number of observations exceeds half the number of sources. Mangasarian

analysis remains true for all size-2 alphabets [10]. The recovery problem is

especially important in data communications which is the field of interest of

this paper and in image processing.
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In this paper, we address the problem of finite-alphabet signal recovery

for large-scale MIMO systems involving high-dimensional problems. We first

consider the noiseless general case as in [10, 11]. However, contrary to the

aforementioned references, we study the case of complex-valued alphabets

with any cardinality and complex-valued mixing matrices. We then propose

a linear program for CS technique based on signal simplicity. Simplicity was

first introduced by Donoho et al. in [12]. A signal is considered simple if most

of its elements are equal to the extremes of the finite alphabet. We then prove

that this proposed scheme provides the same efficient recovery performance

as the schemes in [10, 13, 14] with lower computational complexity especially

when the alphabet cardinality is high. We also show that the recovery scheme

performs better when the dimensions of the mixing matrix increase.

In a second step, we propose to apply the principle to noisy massive

MIMO transmission, which can be considered as a particular case of large-

scale MIMO systems. Massive MIMO technology has been selected in the

5G standard definition as a solution to provide higher throughput under

spectrum limitations [15]. It promises significant gains and offers the ability

to serve more users at higher data rates with better reliability. Large number

of antennas and/or users is involved, which makes receiver design critical from

complexity point of view.

Research for high-performance receiver design that can lead to practical

realization of massive MIMO systems is both nascent as well as promising.

Sphere decoders [16], which are based on maximum likelihood (ML), require

an exhaustive search within an hypersphere whose dimensions remain high

in the massive MIMO case, yielding computationally-unsolvable detection.
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Usual linear equalizers such as minimum mean square error (MMSE) [17, 18]

and zero-forcing (ZF) [19] have lower computational complexity but degraded

error rate performance compared to ML detectors, especially in the undeter-

mined uncoded case. Successive interference cancellation (SIC) schemes were

proposed such as MMSE-SIC in [20] to enhance the linear equalizer perfor-

mance at the expense of higher complexity. Further error rate decrease was

achieved by combining SIC and lattice reduction (LR) schemes as done for

instance in the MMSE-SIC-LR studied in [21]. In this paper, we address

the problem of detection in both determined and underdetermined systems.

Underdetermined configuration is expected in future 5G system uplink, as

the number of connected users times their transmit antenna number could

be much higher than the base station receive antenna number. To carry out

this study, we first extend the noiseless detection algorithm to the noisy case

to design a low-complexity detector which exploits the simplicity of sources

and we show its efficiency compared to existing detection techniques by in-

vestigating the error rate performance and the computational complexity.

In this paper, we deal with the problem of recovery of finite-alphabet

signals in both determined and underdetermined large-scale systems by ex-

ploiting the simplicity property of the alphabet. Compared to previous work

[10, 11, 13, 14], the proposed criterion applies whatever the alphabet size

or domain (real or complex-valued) and achieves the best performance with

computational cost independent of the alphabet size. The efficiency of the

proposed simplicity-based technique can be explained by the added con-

straints. These constraints ensure that some estimated output are highly

reliable and will not contribute to the error propagation. Thus, the error
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propagation is reduced compared to iterative MMSE-based techniques.

Our contributions are: (i) a new criterion based on the simplicity prop-

erty of finite-alphabet signals (ii) the necessary condition of successful recov-

ery in the noise-free case (iii) the extension of the proposed criterion to the

noisy case (iv) the theoretical probability density function of the proposed

algorithm output (v) the theoretical symbol error probability in the case of

M-QAM modulations.

This paper is organized as follows. Section 2 describes the system models

considered in the following and provides an overview of state-of-the-art com-

pressed sensing techniques. Section 3 deals with source separation problem

in noise-free systems. Section 4 describes how the proposed source separation

scheme is extended to be applied in massive MIMO systems. Finally, Section

5 concludes the paper.

Notations: Boldface upper case letters and boldface lower case letters

denote matrices and vectors, respectively. For transpose, transpose conjugate

and conjugate operations we use (.)T , (.)H and (.)∗, respectively. ⊗ is the

Kronecker product. Ik is the k × k identity matrix and 1k is the all-one

size-k vector. Let z ∈ Ck be a complex-valued vector of size k. We denote

by z ∈ R2k its real-valued transformed vector which can be defined by z =(
Re (z) Im (z)

)T
. Let also H ∈ Cn×N a complex-valued matrix with size

n × N , we denote by H ∈ R2n×2N its real-valued matrix version, which is

defined by H =

Re (H) − Im (H)

Im (H) Re (H)

. erfc(·) is the complementary error

function. It is defined as erfc(x) = 2√
π

∫∞
x
e−t

2
dt. δ(·) is the Dirac delta

function and 1A(·) is the indicator function of the subset A.
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2. System model and overview

2.1. Noise-free large-scale systems

We first consider the noise-free mixing model, which can be described by

the following linear system:

y = Hx, (1)

where x ∈ CN is the N×1 complex-valued source vector, y ∈ Cn is the n×1

complex-valued observation vector and H ∈ Cn×N is an n × N complex-

valued random matrix. We assume that the components of H are indepen-

dent and circularly symmetric Gaussian with zero mean and unit variance.

The vector x belongs to a complex-valued finite alphabet. It can be decom-

posed from its real and imaginary parts as x = a+jb where (a, b) ∈ FN×FN

and F = {α1, α2, .., αp}. The equivalent real-valued linear system can then

be written as:

y = Hx, x ∈ F2N . (2)

We assume that the elements of F are equiprobable under the realization of

x. Then, our problem is the recovery of x from y given H and F.

A special case was introduced by Mangasarian et al. in [11]. They con-

sidered the real-valued problem withH an n×N real-valued generic random

matrix1 and the vector x belonging to the real-valued finite alphabet {−1, 1}.

In this case, x can be recovered by solving the `∞-norm minimization

(P∞) : arg min
x
‖x‖∞ subject to y = Hx. (3)

1AmatrixH is a generic random matrix if all sets of ` columns are linearly independent

with probability 1 and each column is symmetrically distributed about the origin.[11]
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This optimization system was reformulated by a linear programming problem

and the authors proved that the probability of successful recovery equals the

probability that all of the columns of the generic random matrix lie in the

same hemisphere. This probability is determined by the following theorem.

Theorem 2.1. Wendel [22] Let H an n×N real-valued generic random

matrix. The probability that all of its columns lie in the same hemisphere is

precisely equal to

Pn,N = 2−N+1

n−1∑
i=0

(
N − 1

i

)
. (4)

As an extension of this work, the authors in [10] generalized the problem

to all size-2 constellations [α1, α2] thanks to a simple translation.

In the complex case given by Eq. (1), we demonstrate in the Appendix

A that given the properties of the complex-valued matrix H , its real-valued

matrix version H is random generic. Then, the probability of successful

recovery is equal to the probability that all of the columns of H lie in the

first quadrant of the complex plane, that is to say the probability that all

of the columns of H lie in the same hemisphere. According to Wendel’s

theorem, this probability denoted by Qn,N equals P2n,2N :

Qn,N = P2n,2N = 2−2N+1

2n−1∑
i=0

(
2N − 1

i

)
. (5)

In the context of underdetermined systems where the number of observations

is less than the number of sources, the CS is a good candidate to separate

the sources, provided the source vector is sparse. In the case of interest, the

source vector isn’t sparse and the symbols belong to a finite constellation

with non-null elements. In order to apply recovery techniques similar to
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the Basis Pursuit (BP), the authors proposed in [13] a solution based on a

suitable sparse transform to benefit from the combination of sparsity and

finite-alphabet constraints. They succeeded in decomposing any element of

the set F2N as a sparse vector in R2Np. The sparse vector is composed

of 2N consecutive p-uples, such that each p-uple contains one 1 and p − 1

zeros. By proceeding so, the problem of detection becomes equivalent to a

problem of sparse recovery from incomplete measurements. This problem

can be seen as minimization of the `0-norm of the sparse-transformed vector

subject to two constraints. The first is y = HBfs where s is the sparse-

transform of x and Bf = I2N ⊗ fT is the transformation matrix which

is defined as the Kronecker product of the identity matrix and the real-

valued alphabet vector f = [α1, α2, ..αp]
T . The second is the uniqueness

constraint which reads B1s = 1N where B1 = I2N ⊗ 1Tp . It imposes the

sparse reconstruction of the searched vector. However, an `0-minimization

problem is NP-hard. Therefore, to exploit the sparsity to solve the recovery

and to have a problem with feasible complexity, the `0-minimization is relaxed

to an `1-minimization, by mimicking literature on sparse reconstruction [23].

The optimization problem now reads

(PSA,1) : arg min
s

‖s‖1 subject to y = HBfs, B1s = 12N , (6)

where s is the resulted sparse vector which contains 2N p-tuples, each with

a single element different from zero.

The main drawback of (PSA,1) is its complexity which highly depends on the

alphabet size. This makes it less interesting for higher sizes. To address the

complexity issue, the authors proposed another sparse decomposition which

is done in two steps [24]. The first is a binary decomposition as proposed
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in [25] which transforms the elements of a vector in F into a size-4N log2(p)

vector of binary elements {−1, 1}. The second step is the application of the

previous sparse decomposition to the resulting binary vector. The problem

becomes the recovery of a half-sparse vector with half of null elements. The

resulting problem, denoted by (PHSA,1), reads

(PHSA,1) : arg min
s

‖s‖1 subject to y = HBβBp s, B1s = 12`N , (7)

where ` = log2(M) = 2k, B1 = I`N ⊗ 1T2 , Bβ = IN ⊗ β with β =

[2k−1, ..., 21, 20] and Bρ = I`N ⊗ ρ with ρ = [−1, 1]. Bβ defines the bi-

nary decomposition and Bρ the half-sparse decomposition.

(PHSA,1) is less complex than (PSA,1) while achieving the same successful re-

covery probability. It reduces by about
(

2 log2 (p)

p

)2

the computation cost

[24].

2.2. Noisy massive MIMO systems

Let us study the case of noisy massive MIMO transmission. We consider

a K-user system over a flat fading channel, where each user has Nt transmit

antennas and let N = K × Nt. No user cooperation for transmission nor

precoding scheme is taken into account. At the base station side, we assume

n equivalent receive antennas (base station cooperation through the base

station controller is possible). We assume a perfect channel state information

(CSI) at the base station. In this paper, we focus on the uplink of the

communication system. The received signal reads

y = Hx+ ζ, (8)

whereH is an n×N random channel matrix, x is the N×1 data vector, and

ζ is the n × 1 complex circularly symmetric additive Gaussian noise vector
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with zero mean and covariance matrix equal to 2σ2In. We assume that

the components of x belong to an M -QAM modulation alphabet such that

M = p2 (square QAM constellation). The modulation alphabet, denoted by

Q, is defined by Q = {q1, q2, ..., qM}. We associate to Q the symbol vector

q = [q1, q2, ..., qM ] where qi = ai+jbi, i ∈ {1..M} with (ai, bi) ∈ F×F. Then,

the system model is equivalent to the following real-valued one:

y = Hx+ ζ, x ∈ F2N . (9)

The main objective is to estimate x from y given H and F by exploiting

the sparse decomposition of x. This objective can be achieved by an `1-

minimization problem that involves ε as a variable parameter depending on

the current signal-to-noise ratio (SNR) value to ensure that the estimated

vector is close to the emitted one.

The authors proposed in [14] to apply the sparse decomposition and

solve the noisy MIMO recovery problem by the following constrained `1-

minimization:

arg min
s

‖s‖1 subject to ‖y −HBfs‖2≤ ε, B1s = 12N . (10)

The efficiency of the algorithm depends on the choice of ε. To counterbal-

ance the critical choice of the parameter, they proposed another quadratic

optimization system which can be seen as relaxation of the (ML) in another

quadratic system with `0-equality as a constraint to ensure the sparsity of

the searched vector. The `1 constraint is equivalent to a positivity constraint.

The result is a quadratic programming model with linear equality constraints

and non-negative variables. It can be resolved by polynomial-complexity al-
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gorithms. In the end, the optimization problem reads

(PSA,2) : arg min
s
‖y −HBfs‖2 subject to B1s = 12N , s ≥ 0. (11)

Like (PSA,1), the complexity of (PSA,2) highly depends on the constellation

size. The same decomposition as used in (PHSA,1) can be applied to obtain

the reduced-complexity problem (PHSA,2) which reads [24]

(PHSA,2) : arg min
s
‖y −HBβBρs‖2 subject to B1s = 12lN , s ≥ 0.

(12)

In this paper, we present a new method for compressive sensing that does

not require the sparsity of the signal to be recovered. It exploits the alphabet

properties and looks for a solution in a convex space containing the alphabet

elements. Compared to previously described methods (PHSA,i) and (PSA,i),

it brings further complexity reduction to adapt to high finite-alphabet size

with recovery performance conservation.

3. Simplicity property exploitation to solve the noise-free recovery

3.1. Proposed method definition and theoretical study

In this section, we consider the noise-free system y = Hx,x ∈ F2N

and we propose a recovery scheme. The maximum likelihood (ML) detector

requires an exhaustive search over all possible mixed symbol vectors and

selects the solution that corresponds to the closest point to the searched

signal in the known alphabet [26]. In other words, it selects the vector with

elements in the alphabet that satisfies the equality y = Hx.

(PML,1) : arg min
x

1T2Nx subject to y = Hx, x ∈ F2N . (13)
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The main drawbacks of this detector are twofold: first, the (PML,1) criterion is

not convex and second, it suffers from high computational complexity caused

by the exhaustive search over the set F2N . Herein, we propose a new detection

scheme which is based on a relaxation of the ML detector constraint. We

relax the solution space {x ∈ F2N |y = Hx} by substituting it with the

convex set {x ∈ [α1, αp]
2N |y = Hx}. Exploiting this relaxation, the new

resulting optimization problem can be resolved by polynomial algorithms for

convex optimization using the following proposition.

Proposition 3.1. x ∈ [α1, αp]
2N is the unique solution to the problem

arg min
x

1T2N x subject to y = Hx, x ∈ F2N

if and only if its corresponding vector r ∈ R4N is the unique solution to the

optimization problem:

arg min
r

1T4N r subject to y = HBαr, B1 r = 12N , r ≥ 0, (14)

where Bα is defined as Bα = I2N ⊗ [α1, αp].

Proof of Proposition 3.1. Let G = {x ∈ R2N |y = Hx,x ∈ [α1, αp]
2N}

and H = {x ∈ R2N |y = Hx,x = Bα r; r ∈ R4N , B1r = 12N and r ≥ 0}.

H stands for the feasible set of the problem defined in (14). Then, it suffices

to show the equality between G and H.

Suppose that x ∈ G. Then the i-th element of x can be written as xi =

r2iα1 + r2i+1αp where r2i + r2i+1 = 1, 0 ≤ r2i, r2i+1 ≤ 1. Thus x ∈ H.

Reciprocally H ⊂ G. We deduce that G = H.

It is important to mention that due to the positivity constraint and the

fact that the `1-norm of a vector is the sum of the absolute values of its
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elements, the proposed optimization system is equivalent to the following

`1-minimization problem:

(PSI,1) : arg min
r

‖r‖1 subject to y = HBαr, B1r = 12N . (15)

The new optimization problem (PSI,1) is a linear programming model

with linear equality constraints. It can be solved by the simplex [27] or

the interior point methods [28]. In this paper, we take an interest in the

algorithms based on the interior point methods. These algorithms start by

finding an interior point of the polytope defined by the constraints and then

proceed to the optimal solution by moving inside the polytope.

In order to study the necessary and sufficient conditions of the solution

uniqueness of the proposed optimization problem, we exploit the geometry of

the system model and we utilize a face counting technique [12]. The following

theorem gives the solution uniqueness probability from which we can derive

the conditions of successful recovery.

Theorem 3.1. (i) Given the alphabet size p ≥ 2, if H is an 2n × 2N

generic random complex matrix, the probability that (PSI,1) has a unique

solution is given by:

Qn,N(p) =
2n−1∑
k=0

(
2N

k

)(
2

p

)2N−k (
p− 2

p

)k
P2n−k,2N−k. (16)

(ii) By assuming that (n,N) grows proportionally, Qn,N(p) tends to 0 when
n
N
< p−1

p
and tends to 1 when n

N
> p−1

p
.

Proof of Theorem 3.1. The proof of Statement (i) of Theorem 3.1 re-

quires the introduction of the simplicity concept defined herinafter.
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Definition 3.1. Simplicity [29] A given vector x ∈ [α1, αp]
2N is called

k-simple if it has exactly k entries different from α1 and αp.

According to Theorem 3.1, calculating the solution uniqueness probability

of the optimization problem amounts to calculating the probability that the

equation y = Hx;x ∈ [α1, αp]
2N has only one root. It can also be formulated

as: y = Hx,x ∈ P with P = {x ∈ R2N |x = Bα r; r ∈ R4N , B1r =

12N and r ≥ 0} where Bα = I2N ⊗α, α = [α1, αp] and B1 = I2N ⊗ 1T2 . The

convex hull of this polytope which is the minimal convex set containing all

the elements of P is the set {h ∈ R2N |hi = α1 or hi = αp, 1 ≤ i ≤ 2N}. It

contains all the vectors with entries equal to the bounds. Let x ∈ R2N be a

k-simple vector in P, in other words, with exactly k entries strictly different

from the elements of the vectors of the convex hull of P. Let F denote the

associated k-face of P. Given the system y = Hx,x ∈ P, it is showed in

[29, Lemma 5.2] that the condition of solution unicity is equivalent to the

condition that HF is a k-face of HP. In [29, Theorem 1.10], exploiting the

fact that H is completely general2, it is demonstrated that this condition

is satisfied with probability 1− P2(N−n),2N−k = P2n−k,2N−k. As the elements

of x take on values with equal probability in the set F = {α1, α2, . . . , αp},

the probability that it is k-simple is
(

2N
k

) (
2
p

)2N−k (
p−2
p

)k
. According to

Bayes’ axiom the probability that x is the unique k-simple solution is equal

to
(

2N
k

) (
2
p

)2N−k (
p−2
p

)k
P2n−k,2N−k. Hence, the proof of Statement (i). Now

that Statement (i) is established, the proof of Statement (ii) can be obtained

by following the same reasoning as in [10, Proof of Theorem 3, page 2012].

2For definition and proof see Appendix A
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Dimension Cost per iteration Total

(PSA,1) MN O(M2N2(N + n)) O(M2N2(N + n)3/2)

(PHSA,1) log2(M)N O((log2(M))2N2(N + n)) O((log2(M))2N2(N + n)3/2)

(P∞) 2N O(N2(N + n)) O(N2(N + n)3/2)

(PSI,1) 2N O(N2(N + n)) O(N2(N + n)3/2)

Table 1: Computation cost with the interior point method.

3.2. Complexity Analysis

The interest of the proposed detection scheme comes from its complexity

order. The CVX toolbox relies on the interior point method whose com-

plexity is a function of the number of constraints and the dimension of the

searched vector [30, 31]. A convex optimization problem defined over Rm

subject to d constraints requires, in the worst case, O(
√
d) iterations for a

computation cost order of O(m2d) per iteration and yields a total compu-

tation cost order equal to O(m2d3/2) [32]. Applied to the different convex

optimization problems dealt with in this section, we obtain the computation

costs reported in Table I. According to these estimations, the half-sparse de-

composition enables to reduce the computation cost by
(

p
log2(p)

)2

. However,

in the case of binary alphabets, (P∞) is the most interested because its com-

plexity order is the lowest. For higher-size alphabets, (P∞) does not apply

and (PSI,1) becomes the most relevant problem to solve. Its computation

cost is the same as (P∞) and keeps constant whatever the alphabet size.

3.3. Simulation results
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Parameters Value

Mixing matrix H Hij ∼ CN(0, 1) i.i.d for ∀i, j

Mixing matrix knowledge Perfect

Alphabet size p p ∈ {2, 4, 8}

Alphabet construction F = {±(2k − 1) : k = {1, 2, ..., p/2}}

Number of sources N N ∈ {64, 128, 256}

Monte Carlo iteration number 1000

Matlab toolbox CVX toolbox

Table 2: Simulation setup for Section 3.3.

The following simulation results illustrate the theoretical framework ex-

posed above. The experimental setup is common to all simulations. We

use even values of p and choose F = {±(2k − 1) : k = {1, 2, ..., p/2}}. For

each simulation, we fix N ∈ {64, 128, 256} and make n vary so as to assess

a significant number of values for ratio n/N . For each pair (n,N), 1000

iterations are carried out. For each iteration, we generate a realization of

the complex-valued generic random matrix of size n×N . The matrix coeffi-

cients are independent and identically Gaussian distributed with zero mean

and unit variance. We then transform it in a real-valued formulation with

size 2n× 2N . We generate x with 2N entries drawn uniformly from F. We

solve the optimization problem by using the Matlab CVX toolbox [30]. The

simulation results are obtained by using a PC equipped with Linux Ubuntu

14.04 OS, Intel Core i3-2350M processor (2.3 GHz) and 8GB RAM. A solu-

tion x̂ is returned and we assume that the recovery is correct if the relative
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error
||x̂− x||2
||x||2

is less than 10−6. The simulation setup is summarized in

Table 2.

Fig. 1 is the phase diagram in the case p = 2 for the proposed simplicity-

based approach. The simulated successful recovery probability corroborates

Theorem 3.1 and it coincides with the analytical expression. In particular,

we observe that the breakpoint occurs when n/N = 1/2 with a successful

recovery probability equal to one half, as established theoretically. We also

recall that the proposed simplicity-based recovery method performs the same

as Mangasarian approach.
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Figure 1: Phase diagrams of the proposed method, for p = 2 and N ∈ {64, 128, 256}.

17



0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n/N

S
u

c
c
e

s
s
 p

ro
b

a
b

ili
ty

 

 

N=64

N=128

N=256

Figure 2: Phase diagrams of the proposed method, for p = 4, p = 8 and N ∈ {64, 128, 256}.

We now address the case p > 2, for which the Mangasarian et al. ap-

proach is not applicable. Fig. 2 provides the phase diagrams of the proposed

approach (PSI,1) for p = 4 and p = 8 and different values of N . The simu-

lated successful recovery probability coincides with the analytical expression.

The simulation results confirm the theoretical study presented above. The

breakpoint occurs when n
N

equals the value p−1
p
, that is to say 3

4
for p = 4

and 7
8
for p = 8.
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4. Application of the simplicity principle to noisy massive MIMO

transmission

4.1. Proposed method definition and theoretical analysis

We consider in this section the noisy version of the problem that is to say

y = Hx+ ζ. We propose to recover the vector x thanks to the previously

introduced decomposition that exploits the fact that the real and imaginary

parts of the symbols belong to the interval [α1, αp].

Considering the proposed real-valued formulation, the Maximum Likelihood

[ML] problem reads

(PML,2) : arg min
x
‖y −Hx‖2 subject to x ∈ F2N .

As mentioned above this problem is NP-hard with high order of complexity.

To circumvent this problem, we proceed in the same way as in the noise-

free case and based on the Theorem 3.1 we propose to solve the following

optimization problem:

(PSI,2) : arg min
r
‖y −HBαr‖2 subject to B1r = 12N , r ≥ 0.

To evaluate its performance, we search for the conditions for a stationary

point and we investigate the statistical distribution of the detection output.

Let us define the necessary sets used to establish the analytical results.

Definition 4.1. Let Ω the set of active constraints defined by Ω = {i|xi = α1

or xi = αp} and Λ the set of binding constraints defined by Λ = {i|xi = α1

and {HT (Hx̂ − y)}i ≥ 0 or xi = αp and {HT (Hx̂ − y)}i ≤ 0}. The

cardinality of Λ defines the simplicity order of the searched vector.

19



The complementary set Λ̄ corresponds to the non-binding constraint set. Its

cardinality is denoted by C = Card(Λ̄).

The following theorem gives the conditions for a solution to be a station-

ary point for (PSI,2).

Theorem 4.1. Stationary point condition [33]

r̂ is a stationary point for (PSI,2) (a point satisfying the first order necessary

conditions for optimality) if and only if x̂ = Bαr̂ is feasible and {HT (Hx̂−

y)}Λ̄ = 0.

The output solution verifies the stationary point condition. In order to

define the theoretical performance and to enhance the recovery performance

either by an iterative scheme or by the addition of a forward error correction

code soft-decision decoder, we need the probability density function of the

detector output. The following theorem defines its theoretical statistical

distribution.

Theorem 4.2. Statistical distribution of the detection output

Let r̂ the solution of (PSI,2). Then the components of x̂ = Bαr̂ follow a

censored normal distribution given by

fx̂k(x) =
1

p

p∑
j=1

fx̂k|xk=αj(x), (17)

with

(18 )

fx̂k|xk=αj(x) =

(
1

2
erfc

(
αj − α1√

2σx̂

)
δα1(x)

+
1

2
erfc

(
αp − αj√

2σx̂

)
δαp(x)

+
1√

2πσx̂
exp

(
−(x− αj)2

2σ2
x̂

)
1[α1,αp](x)

)
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and

σ2
x̂ =

2n−2∑
k=0

(
2N

k

)(
1

p

)2N−k (
p− 1

p

)k
2nσ2

2n− k − 1
, (19)

where σ2 = E[ζ2

i
], ∀i = 1, . . . , 2n.

Proof of Theorem 4.2. Let us consider r̂ a stationary point of problem

(PSI,2). Then x̂ = Bαr̂ is feasible and {HT (Hx̂ − y)}Λ̄ = 0 (see Theo-

rem 4.1). Let H Λ̄ = [H :,k]k∈Λ̄ with H :,k the kth column of H . We first

assume that C = Card(Λ̄) satisfies C < 2n − 1 so that the Moore-Penrose

pseudo-inverse of H Λ̄ exists and equals H†
Λ̄

= (HT
Λ̄H Λ̄)−1HT

Λ̄. Therefore,

the restriction of x̂ to the index set Λ̄ reads

x̂Λ̄ = H†
Λ̄
(y −HΛx̂Λ). (20)

From Eq. (20) and exploiting the property that the set of binding constraints

Λ can be seen as the set of indexes of entries of x which were correctly

estimated, according to the central limit theorem, given x and C, x̂Λ̄ is

normally distributed with mean xΛ̄. To compute the covariance matrix Σx̂Λ̄

we exploit the fact that the number of non-binding constraints C is a random

variable. Therefore, Σx̂Λ̄
is given by:

Σx̂Λ̄
= E

[
E[(x̂Λ̄ − E[x̂Λ̄])(x̂Λ̄ − E[x̂Λ̄])T |C = k]

]
, (21)

with

E[(x̂Λ̄ − E[x̂Λ̄])(x̂Λ̄ − E[x̂Λ̄])T |C = k] = σ2E[(HT
Λ̄H Λ̄)−1|C = k] (22)

= σ2 2n

2n− k − 1
Ik,

where we have used that, given C = k, the matrix (HT
Λ̄H Λ̄)−1 follows an

inverse Wishart distribution and then E[(HT
Λ̄H Λ̄)−1|C = k] = 2n

2n−k−1
Ik (see

[34]). The distribution of C is provided by the following Proposition 4.1.

21



Proposition 4.1. The number of non binding constraints introduced in

Definition 4.1 follows the binomial distribution with parameters 2N and p−1
p
:

C = Card(Λ̄) ∼ B(2N,
p− 1

p
)

The proof of Proposition 4.1 is given in Appendix B. From Proposition

4.1, we observe that the probability of event C ≥ 2n − 1 is not significant

and these events will thus be neglected in the computation of Σx̂Λ̄
. We then

obtain

Σx̂Λ̄
= σ2

x̂ IC, (23)

with

σ2
x̂ =

2n−2∑
k=0

Pr (C = k)
2nσ2

2n− k − 1
=

2n−2∑
k=0

(
2N

k

)(
1

p

)2N−k (
p− 1

p

)k
2nσ2

2n− k − 1
.

Finally, the constraints of (PSI,2) impose that x̂i ∈ [α1, αp] and we deduce

that, given x, the components of x̂ corresponding to the non-binding con-

straints follow a truncated normal distribution with mean x and variance

σ2
x̂.

As for the components of x̂ corresponding to the binding constraints, they

satisfy either xi = α1 and {HT (Hx̂− y)}i ≥ 0, or xi = αp and {HT (Hx̂−

y)}i ≤ 0}. We thus conclude that they follow a binary distribution with

probability 1
2p

(see Appendix B for the justification of Pr({HT (Hx̂−y)}i ≥

0) = 1
2
).

Consequently, the conditional distribution of x̂k given xk reads

fx̂k|xk=αj(x) =

(
1

2
erfc

(
αj − α1√

2σx̂

)
δα1(x) +

1

2
erfc

(
αp − αj√

2σx̂

)
δαp(x)

+
1√

2πσx̂
exp

(
−(x− αj)2

2σ2
x̂

)
1[α1,αp](x)

)
.
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As demonstrated, we can see the distribution of the output vector as a

mix of a binary distribution due to the simplicity of the vector and a trun-

cated normal distribution with variance depending on the system dimensions

and the noise variance. Depending on the system dimensions, the exact vari-

ance computation may be too complex in practice. The following lemma

provides an approximation of the variance which can be simply calculated.

Its accuracy will be studied in the simulation section.

Lemma 4.1. Variance approximation

Let r̂ the solution of (PSI,2). The variance of the output vector x̂ = Bαr̂ can

be approximated for n ≥ N
(
p−1
p

)
+ 1 as

σ2
x̂ ≈

2nσ2

2n− 2N
(
p−1
p

)
− 1

. (24)

From the statistical distribution of the detection output and by exploiting

the general results available in [35], a lower bound of the symbol error proba-

bility can be obtained. This bound is asymptotically reached when the SNR

gets high, which provides an approximation of the symbol error probability.

It can be used to predict performance without simulating the whole system

and its accuracy will be checked in the simulation part.

Theorem 4.3. Symbol Error Probability upper-bound

The symbol error probability in the case of a M-ary QAM constellation can

be upper-bounded by:

Ps ≤
1

2p

p∑
k=1

p∑
j=1
j 6=k

erfc

(
αj − αk
2
√

2σx̂

)
+
p− 1

2p

p∑
i=1

erfc

(
αp − αi√

2σx̂

)
. (25)
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This upper bound can be used as a tight approximation of the symbol er-

ror probability. For high SNR, the symbol error probability can be further

approximated by:

Ps ≈
p− 1

p
erfc

(
α2 − α1

2
√

2σx̂

)
. (26)

4.2. Complexity Analysis

Table II summarizes the complexity order of the decomposition-based

detectors including the proposed one referred to as (PSI,2), the MMSE, the

MMSE-SIC, the MMSE-SIC-LR, and the SD detector. The SD detector

is a high-complexity detector especially when the modulation order or the

number of antennas increase, it is the least cost efficient. The MMSE-based

detector consists of one matrix inversion and some matrix multiplications

and additions. The MMSE-SIC adds some order of complexity. According

to the complexity analysis in [36], the additional complexity order involved

in the MMSE-SIC-LR due to lattice reduction is equal to O(N2 logB) where

B is is the norm of the longest basis vector. In the case of determined

MIMO systems, (PSI,2) achieves the same order of complexity compared to

the MMSE-based methods. As (PSI,2) and (PSA,2) are optimized with the

same algorithm (interior point method) and in order to show the complexity

reduction, we plotted the run-time of both detectors for high-order modula-

tions. In Fig. 3, the 16-QAM modulation is considered with N = 64. We

show that for n
N

= 0.8 (underdetermined system), the complexity is divided

by two. In Fig. 4 the run-time is plotted for 64-QAM and N = 64. We

observe that the gain is even higher than for 16-QAM and the complexity

order of the proposed algorithm is similar in both modulation cases. These

results are in accordance with Table 3.
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Iteration number Cost per iteration Total

MMSE 1 O(N3) O(N3)

MMSE-SIC 1 O(N3) + O(MN2) O(N3) + O(MN2)

+O(M2N) +O(M2N)

MMSE-SIC-LR 1 O(N3) + O(MN2) O(N3) + O(MN2)

+O(M2N) + O(N2 logB) +O(M2N) + O(N2 logB)

(PSI,2) O(
√
N) O(N2.5) O(N3)

(PHSA,2) O(
√
2 log2 (M)N) O(N2.5) O(

√
2 log2 (M)N3)

(PSA,2) O(
√
MN) O(N2.5) O(

√
MN3)

SD 1 O(
√
MN ) O(

√
MN )

Table 3: Computational cost with the interior point method.

4.3. Simulation results: perfect channel estimation assumption

In this section, we assume perfect channel state information and we eval-

uate the error rate achieved by the proposed detector based on (PSI,2). We

consider n×N MIMO systems, where N and n are the number of symbols to

be recovered and the number of observations, respectively. H is a complex

valued generic random matrix of size n×N . We transform it in a real-valued

formulation H with size 2n× 2N . The channel coefficients are independent

and identically Gaussian distributed with zero mean and unit variance, and

the data symbols belong to a finite QAM alphabet. We use the Matlab CVX

toolbox again. The quadratic minimization problem (PSI,2) is solved by the

Gurobi optimizer [37]. The simulation setup is summarized in Table 4.
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Figure 3: Run-time Comparison for 16-QAM, N = 64 and SNR=25dB.

4.3.1. Comparison of the simulation results with the theoretical analysis

We first check that the simulated histogram of detection output is in

accordance with the theoretical statistical distribution given in Theorem 4.2

and Lemma 4.1. Fig. 5, Fig. 6, Fig. 7 and Fig. 8 give the results for a 64×64

system (n = N = 64) and 16-QAM with SNR = 15dB and SNR=30dB and

64-QAM with SNR=20dB and SNR=35dB respectively. From these figures,

we observe that the theoretical distribution (exact as well as approximate)

coincides with the simulated histogram for both low and high SNRs and

different modulation orders.
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Figure 4: Run-time Comparison for 64-QAM, N = 64 and SNR=35dB.

In Fig. 9, both simulated SER and theoretical symbol error probability

approximations are plotted for n = N = 32 and 16-QAM. We observe that

the approximation given by Eq. (25) coincides with the simulated SER. The

other one given by Eq. (26) is slightly more optimistic than simulated SER

for very low SNR values. These observations validate the theoretical analysis.

4.3.2. Comparison with the SD (underdetermined case)

Fig. 10 shows the performance of the proposed scheme (PSI,2) for the

underdetermined MIMO system of size 24 × 18 with 4-QAM. We observe
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Parameters Value

Mixing matrix H Hij ∼ CN(0, 1) i.i.d for ∀i, j

Mixing matrix knowledge Perfect

QAM modulation order M M ∈ {4, 16}

Number of sources N N ∈ {24, 32, 64}

Number of observations n n ∈ {18, 32, 64}

Matlab toolbox CVX toolbox

Table 4: Simulation setup for Section 4.3.
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Figure 5: Output statistics for 64× 64 systems with 16-QAM and SNR=15dB (low SNR).
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Figure 6: Output statistics for 64×64 systems with 16-QAM and SNR=30dB (high SNR).

that it achieves a BER under 10−3 for the SNR values higher than 20dB.

Beyond 8dB, the sphere decoder [26] outperforms the proposed scheme, e.g.,

at BER 10−3, the gain is about 6.3dB. However as the MIMO system dimen-

sions increase, the SD computation cost will rapidly become too high to be

implemented in practice, making the SD inadequate for large-scale MIMO

applications.

4.3.3. Comparison with MMSE-based detection schemes (determined case)

Fig. 11 considers a determined system with N = n = 64 and 4-QAM.

We compare simplicity-based detection (PSI,2) to MMSE, MMSE-SIC and
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Figure 7: Output statistics for 64× 64 systems with 64-QAM and SNR=20dB (low SNR).

MMSE-SIC-LR in terms of BER. We observe that the proposed detector

outperforms both MMSE and MMSE-SIC over the whole SNR region and

better exploits the receive diversity thanks to joint detection and box con-

straint effect which reduce the error propagation. At BER 10−3, the pro-

posed detector outperforms the MMSE by about 7 dB and the MMSE-SIC

by about 1.5 dB. This gain increases with the growth of the SNR values to

achieve about 2 dB at BER 10−4 compared to the MMSE-SIC. (PSI,2) out-

performs the MMSE-SIC-LR for medium SNR values (a gain of 0.6 dB is

observed for BER 10−3). The advantage over the MMSE-SIC-LR decreases
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Figure 8: Output statistics for 64×64 systems with 64-QAM and SNR=35dB (high SNR).

with increasing SNR and both schemes perform the same for high SNR val-

ues. In Fig. 12, we also show that the gain of the proposed scheme (PSI,2)

over MMSE-based schemes is maintained for higher order modulation. For

16-QAM, the proposed detector outperforms the MMSE-SIC by about 2 dB

for BER 10−4.

4.4. Impact of channel estimation inaccuracy

Channel estimation is a challenging problem in massive MIMO systems as

the conventional techniques applicable to MIMO systems cannot be employed

owing to an exceptionally large number of unknown channel coefficients. In
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Figure 9: SER performance for 32× 32 systems with 16-QAM.

order to study the effect of the channel estimation inaccuracy in the deter-

mined case, we solve (PSI,2) using an estimate of the channel matrix given

by Ĥ = H +Hε where the estimation error matrix Hε is a real Gaussian

random matrix such that Hε ∼ N(0, σ2
H I2N) where σ2

H is the theoretical

Mean Square Error (MSE). The simulation setup is summarized in Table 5.

In the determined case, we refer to [38] to compute σ2
H as a function

of the SNR and the system dimensions. The method presented in [38] is

an MMSE-based method called O-MMSE. In Fig. 13 we have plotted the

performance of the proposed algorithm in the determined case with imperfect
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Figure 10: BER performance comparison for 24× 18 systems ( n
N = 0.75) with 4-QAM.

CSI estimation compared to the perfect CSI knowledge case. We observe that

the (PSI,2) algorithm is not very sensitive to channel estimation errors and

the loss doesn’t exceed 0.4dB on the whole SNR range.

Unfortunately, the O-MMSE method can not be applied in the under-

determined case. As a consequence, we propose to evaluate the impact of

channel estimation errors by providing both lower and upper bounds of the

performance obtained by the best and the worst MSE for the considered SNR

range. To that purpose we fix the worst and the best MSE to the MSE ob-

tained by O-MMSE for SNR=5dB and SNR=18dB respectively in the case
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Figure 11: BER performance comparison for 64× 64 systems and 4-QAM.

of 64× 64 systems. The bit error rate is plotted in Fig. 14 where we observe

that the imperfect CSI introduces a slight performance degradation.

We can conclude that the proposed detection is quite robust to CSI in-

accuracy.

5. Conclusions

This paper focused on finite-alphabet source signal recovery in large-scale

MIMO systems. We first proposed a simplicity-based `1-minimization com-

bined with box constraints to solve the noise-free case. For the proposed cri-

34



10 12 14 16 18 20 22 24 26 28 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
it
 E

rr
o
r 

R
a
te

(B
E

R
)

 

 

MMSE

MMSE-SIC

MMSE-SIC-LR

(PSI,2)

Figure 12: BER performance comparison in 64× 64 systems and 16-QAM.

terion, we investigated the necessary condition of uniqueness and existence

of a solution which is given by n
N
> p−1

p
(see Statement (ii) of Theorem 3.1).

This condition covers the determined case and partially the underdetermined

case. Compared to previous existing sparsity-based techniques, we obtained

a sufficient computation cost reduction with recovery success rate preserva-

tion. Simulation results corroborated the theoretical analysis. By exploiting

the necessary condition of successful recovery on the problem parameters,

we studied performance of the proposed criterion in a more practical case by

considering the noisy massive MIMO system with both perfect and imper-
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Parameters Value

Mixing matrix H Hij ∼ CN(0, 1) i.i.d for ∀i, j

Mixing matrix knowledge MMSE estimation or model error

QAM modulation order M M = 4

Number of sources N N = 64

Number of observations n n ∈ {62, 64}

Matlab toolbox CVX toolbox

Table 5: Simulation setup for Section 4.4.
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Figure 13: BER performance comparison in 64× 64 systems and 4-QAM.
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Figure 14: BER performance comparison in 64× 62 systems and 4-QAM.

fect CSI knowledge. The low-complexity resulting algorithm is well-adapted

to such applications and its computation cost doesn’t depend on the con-

stellation size. The theoretical distribution of the detector output was then

validated through simulations. In the future we expect to use the analyti-

cal results to introduce the proposed algorithm to define an iterative shadow

area-based detection to further improve the performance or to define a turbo-

like iterative receiver to take into account an outer forward error corrcetion

code.
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Appendix A. Generic random matrix H

We assume that the components ofH are independent, complex circularly-

symmetric Gaussian random variables with zero mean and unit variance. We

aim to prove that H is a generic random matrix. The assumption on the

distribution of the components of H ensures that the columns of H are

symmetrically distributed about the origin. We thus have to prove that H

is completely general with probability 1, that is to say whatever `, any `× `

submatrix of H has full-rank. This result is given by the following Theorem

A.1.

Theorem A.1 : Given a complex-valued matrix H and its real-valued

transform H , if H is a generic random matrix with independent circularly-

symmetric Gaussian-distributed components, then H is completely general

with probability 1.

Let us prove the theorem by induction. Let H be a complex-valued matrix

with independent circularly-symmetric Gaussian-distributed components. Let

us define the property P` by "any ` × ` submatrix of H has full-rank with

probability 1". Let ` = 1. Then any 1 × 1 submatrix of H is a real-valued

Gaussian variable, that is to say a continuous random variable and the prob-

ability that it equals zero is null. P1 is true. Let us suppose that P` is true

and let us prove that P`+1 is also true. Let S an (`+ 1)× (`+ 1) submatrix

of H . Then as P` is true, all minors of S have non-zero determinant with

probability 1. Let us compute the determinant of S according to a given

row (or column). It corresponds to the linear combination of minors, where

due to the independence of the components of H (the components of H are

circularly-symmetric Gaussian and independent) the weights and the minors
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form a family of random variables that are mutually independent, continu-

ously distributed and different from zero with probability equal to one. Thus

the determinant of S is a continuous random variable different from zero

with probability equal to one.

Appendix B. Proof of Proposition 4.1

The number of non binding constraints of (PSI,2) can be seen as the sum of

the inactive constraint number and the non binding active constraint number.

The probability that a constraint is inactive is denoted by pin and corresponds

to the probability that xi /∈ {α1, αp}, that is to say pin = p−2
p
. The probability

that a constraint is non binding and active is denoted by pnba and corresponds

to the probability that either xi = α1 and {HT (Hx̂− y)}i < 0, or xi = αp

and {HT (Hx̂ − y)}i > 0}. As a constraint cannot be active and inactive,

the probability that a constraint is non binding equals pnb = pin + pnba.

It remains to find the value of pnba = Pr(i ∈ Ω\Λ). To that purpose we

focus on the sign of {HT (Hx̂−y)}i = {HT (H(x̂−x)−ζ)}i, i ∈ Λ. As the

elements in the set F = {α1, α2, .., αp} are equiprobable and the real-valued

matrix channel H as well as the noise are Gaussian, we can affirm that

the estimated vector x̂ is a symmetrically erroneous version of the original

vector x. Then the sign of {(x̂ − x)}i, i ∈ Λ takes on equiprobable values.

Consequently exploiting the same hypothesis for the channel matrix and the

noise we deduce that the sign of {HT (Hx̂−y)}i can be negative or positive
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with probability 1/2. Then pnba can be decomposed as:

pnba = Pr(xi = α1) Pr({H̃T (Hx̂− y)}i ≤ 0|xi = α1)

+ Pr(xi = αp) Pr({HT (Hx̂− y)}i ≥ 0|xi = αp)

=
1

p
× 1

2
+

1

p
× 1

2
=

1

p
. (B.1)

Consequently pnb = pin+pnba = p−2
p

+ 1
p

= p−1
p
, Hence card(Λ̄) ∼ B(2N, p−1

p
).

Appendix C. Symbol error probability upper-bound

Proof of Theorem 4.3. Let us denote by x̃k the hard decision taken on xk
from the detection output x̂k. Then the symbol error probability is defined

by

Ps = Pr(xk 6= x̃k). (C.1)

Considering the assumptions (alphabet and equiprobability), Ps reads

Ps =
1

p

p∑
i=1

p∑
q=1
i 6=q

Pr(x̃k = αq|xk = αi). (C.2)

This probability can be computed by considering a maximum-likelihood de-

cision rule applied on x̂k:

Ps =
1

p

p∑
i=1

p∑
q=1
i 6=q

Pr

 p⋂
j=1
j 6=q

(
(x̂k − αq)2 ≤ (x̂k − αj)2

)
|xk = αi

 (C.3)

≤ 1

p

p∑
i=1

p∑
q=1
i 6=q

Pr
(
(x̂k − αq)2 ≤ (x̂k − αi)2|xk = αi

)

≤ 1

p

p∑
i=1

p∑
q=1
i 6=q

Pr

(
x̂k ≤

αi + αq
2
|xk = αi

)
.
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Using Theorem 4.2, we can write

(C.4)
Pr

(
x̂k ≤

αi + αq
2
|xk = αi

)
=

1

2
erfc

(
αi − α1√

2σx̂

)

+
1

2
erfc

(
αp − αi√

2σx̂

)
+

∫ αi+αq
2

α1

1√
2πσx̂

exp

(
−(x− αi)2

2σ2
x̂

)
dx.

After computation, we get

Pr

(
x̂k ≤

αi + αq
2
|xk = αi

)
=

1

2
erfc

(
αp − αi√

2σx̂

)
+

1

2
erfc

(
αi − αq
2
√

2σx̂

)
. (C.5)

Therefore Ps can be upper-bounded by

Ps ≤
1

2p

p∑
i=1

p∑
q=1
i6=q

erfc

(
αi − αq
2
√

2σx̂

)
+
p− 1

2p

p∑
i=1

erfc

(
αp − αi√

2σx̂

)
. (C.6)

At high SNR, due to the decreasing rate of erfc, the terms depending on

differences between adjacent symbols are predominant and the following ap-

proximation is asymptotically tight

Ps ≈
p− 1

p
erfc

(
α2 − α1

2
√

2σx̂

)
. (C.7)
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