Zahran Hajji 
  
Abdeldjalil Aïssa-El-Bey 
  
Karine Amis 
  
Simplicity-based recovery of finite-alphabet signals for large-scale MIMO systems

Keywords: Compressed sensing, source separation, underdetermined system, sparsity, simplicity, massive MIMO

In this paper, we consider the problem of finite-alphabet source separation in both determined and underdetermined large-scale systems. First, we address the noiseless case and we propose a linear criterion based on 1 -minimization combined with box constraints. We investigate also the system conditions that ensure successful recovery. Next, we apply the approach to the noisy massive MIMO transmission and we propose a quadratic criterion-based detector. Simulation results show the efficiency of the proposed detection methods for various QAM modulations and MIMO configurations. We mention that there is no change in the computational complexity when the constellation size increases. Moreover, the proposed method outperforms the classical Minimum Mean Square Error (MMSE)-based detection algorithms.

Introduction

Source separation problems in digital signal processing deal with the recovery of original source signals from the observed mixture signal [START_REF] Mourad | Majorization minimization for blind source separation of sparse sources[END_REF][START_REF] Chenot | Blind separation of sparse sources in the presence of outliers[END_REF].

In the overdetermined case, the number of observations exceeds the number of sources and the recovery is possible without making strong assumptions about the sources or the mixing parameters [START_REF] Rambhatla | Semi-blind source separation via sparse representations and online dictionary learning[END_REF]. However, the separation problem becomes more difficult if the number of underlying sources is larger than the number of observations. Separation of such underdetermined mixtures requires the separation algorithm to exploit additional information about the source signals and the mixing parameters compared to the overdetermined case. Compressed sensing (CS) technique [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Karahanoglu | Compressed sensing signal recovery via forward-backward pursuit[END_REF] has attracted considerable attention as it promises to surpass the traditional limits of sampling theory [START_REF] Liu | Nonlinear regression A*OMP for compressive sensing signal reconstruction[END_REF]. It is a signal processing technique to efficiently acquire and reconstruct signals, by finding solutions to underdetermined linear systems. It exploits the sparsity of the signal to recover it and thus, it uses far fewer samples than required by the sampling theorem [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Liu | Sparse signal reconstruction via concave continuous piecewise linear programming[END_REF]. A source is sparse in a given representation domain if most of its elements are close to zero. The CS technique requires the sparsity of the sources which restricts its application [START_REF] Cui | Sparse bayesian learning using correlated hyperparameters for recovery of block sparse signals[END_REF]. In [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF], the authors proposed to apply the CS technique to solve underdetermined real-valued finite-alphabet source recovery problems.

They introduced a suitable sparse decomposition to derive a sparse recovery problem solvable by CS techniques. In [START_REF] Mangasarian | Probability of unique integer solution to a system of linear equations[END_REF], Mangasarian et al. treated the binary alphabet case and showed that the source can be successfully recovered by resolving a linear program with higher detection probability as the number of observations exceeds half the number of sources. Mangasarian analysis remains true for all size-2 alphabets [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF]. The recovery problem is especially important in data communications which is the field of interest of this paper and in image processing.

In this paper, we address the problem of finite-alphabet signal recovery for large-scale MIMO systems involving high-dimensional problems. We first consider the noiseless general case as in [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF][START_REF] Mangasarian | Probability of unique integer solution to a system of linear equations[END_REF]. However, contrary to the aforementioned references, we study the case of complex-valued alphabets with any cardinality and complex-valued mixing matrices. We then propose a linear program for CS technique based on signal simplicity. Simplicity was first introduced by Donoho et al. in [START_REF] Donoho | Counting faces of randomly-projected polytopes when the projection radically lowers dimension[END_REF]. A signal is considered simple if most of its elements are equal to the extremes of the finite alphabet. We then prove that this proposed scheme provides the same efficient recovery performance as the schemes in [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF][START_REF] Fadlallah | New iterative detector of MIMO transmission using sparse decomposition[END_REF][START_REF] Fadlallah | New decoding strategy for underdetermined MIMO transmission using sparse decomposition[END_REF] with lower computational complexity especially when the alphabet cardinality is high. We also show that the recovery scheme performs better when the dimensions of the mixing matrix increase.

In a second step, we propose to apply the principle to noisy massive MIMO transmission, which can be considered as a particular case of largescale MIMO systems. Massive MIMO technology has been selected in the 5G standard definition as a solution to provide higher throughput under spectrum limitations [START_REF] Panzner | Deployment and implementation strategies for mas-sive MIMO in 5G[END_REF]. It promises significant gains and offers the ability to serve more users at higher data rates with better reliability. Large number of antennas and/or users is involved, which makes receiver design critical from complexity point of view.

Research for high-performance receiver design that can lead to practical realization of massive MIMO systems is both nascent as well as promising.

Sphere decoders [START_REF] Hassibi | On the sphere-decoding algorithm I. expected complexity[END_REF], which are based on maximum likelihood (ML), require an exhaustive search within an hypersphere whose dimensions remain high in the massive MIMO case, yielding computationally-unsolvable detection.

Usual linear equalizers such as minimum mean square error (MMSE) [START_REF] White | MMSE precoder design for diversity systems with temporal correlation[END_REF][START_REF] He | Low-complexity approximate iterative LMMSE detection for large-scale MIMO systems[END_REF] and zero-forcing (ZF) [START_REF] Mehana | Performance of MIMO single-carrier frequency domain zero-forcing equalizer[END_REF] have lower computational complexity but degraded error rate performance compared to ML detectors, especially in the undetermined uncoded case. Successive interference cancellation (SIC) schemes were proposed such as MMSE-SIC in [START_REF] Hassibi | An efficient square-root algorithm for BLAST[END_REF] to enhance the linear equalizer performance at the expense of higher complexity. Further error rate decrease was achieved by combining SIC and lattice reduction (LR) schemes as done for instance in the MMSE-SIC-LR studied in [START_REF] Wubben | MMSE-based lattice-reduction for near-ML detection of MIMO systems[END_REF]. In this paper, we address the problem of detection in both determined and underdetermined systems.

Underdetermined configuration is expected in future 5G system uplink, as the number of connected users times their transmit antenna number could be much higher than the base station receive antenna number. To carry out this study, we first extend the noiseless detection algorithm to the noisy case to design a low-complexity detector which exploits the simplicity of sources and we show its efficiency compared to existing detection techniques by investigating the error rate performance and the computational complexity.

In this paper, we deal with the problem of recovery of finite-alphabet signals in both determined and underdetermined large-scale systems by exploiting the simplicity property of the alphabet. Compared to previous work [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF][START_REF] Mangasarian | Probability of unique integer solution to a system of linear equations[END_REF][START_REF] Fadlallah | New iterative detector of MIMO transmission using sparse decomposition[END_REF][START_REF] Fadlallah | New decoding strategy for underdetermined MIMO transmission using sparse decomposition[END_REF], the proposed criterion applies whatever the alphabet size or domain (real or complex-valued) and achieves the best performance with computational cost independent of the alphabet size. The efficiency of the proposed simplicity-based technique can be explained by the added constraints. These constraints ensure that some estimated output are highly reliable and will not contribute to the error propagation. Thus, the error propagation is reduced compared to iterative MMSE-based techniques. This paper is organized as follows. Section 2 describes the system models considered in the following and provides an overview of state-of-the-art compressed sensing techniques. Section 3 deals with source separation problem in noise-free systems. Section 4 describes how the proposed source separation scheme is extended to be applied in massive MIMO systems. Finally, Section 5 concludes the paper.

Notations: Boldface upper case letters and boldface lower case letters denote matrices and vectors, respectively. For transpose, transpose conjugate and conjugate operations we use (.) T , (.) H and (.) * , respectively. ⊗ is the Kronecker product. I k is the k × k identity matrix and 1 k is the all-one size-k vector. Let z ∈ C k be a complex-valued vector of size k. We denote by z ∈ R 2k its real-valued transformed vector which can be defined by z = Re (z) Im (z) T . Let also H ∈ C n×N a complex-valued matrix with size n × N , we denote by H ∈ R 2n×2N its real-valued matrix version, which is

defined by H =   Re (H) -Im (H) Im (H) Re (H)   . erfc(•) is the complementary error function. It is defined as erfc(x) = 2 √ π ∞ x e -t 2 dt. δ(•)
is the Dirac delta function and 1 A (•) is the indicator function of the subset A.

System model and overview

Noise-free large-scale systems

We first consider the noise-free mixing model, which can be described by the following linear system:

y = Hx, (1) 
where x ∈ C N is the N × 1 complex-valued source vector, y ∈ C n is the n × 1 complex-valued observation vector and H ∈ C n×N is an n × N complexvalued random matrix. We assume that the components of H are independent and circularly symmetric Gaussian with zero mean and unit variance.

The vector x belongs to a complex-valued finite alphabet. It can be decomposed from its real and imaginary parts as x = a+jb where (a, b) ∈ F N ×F N and F = {α 1 , α 2 , .., α p }. The equivalent real-valued linear system can then be written as:

y = Hx, x ∈ F 2N . (2) 
We assume that the elements of F are equiprobable under the realization of

x. Then, our problem is the recovery of x from y given H and F.

A special case was introduced by Mangasarian et al. in [START_REF] Mangasarian | Probability of unique integer solution to a system of linear equations[END_REF]. They considered the real-valued problem with H an n×N real-valued generic random matrix1 and the vector x belonging to the real-valued finite alphabet {-1, 1}.

In this case, x can be recovered by solving the ∞ -norm minimization

(P ∞ ) : arg min x x ∞ subject to y = Hx. (3) 
This optimization system was reformulated by a linear programming problem and the authors proved that the probability of successful recovery equals the probability that all of the columns of the generic random matrix lie in the same hemisphere. This probability is determined by the following theorem.

Theorem 2.1. Wendel [START_REF] Wendel | A problem in geometric probability[END_REF] Let H an n × N real-valued generic random matrix. The probability that all of its columns lie in the same hemisphere is precisely equal to

P n,N = 2 -N +1 n-1 i=0 N -1 i . (4) 
As an extension of this work, the authors in [START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF] generalized the problem to all size-2 constellations [α 1 , α 2 ] thanks to a simple translation.

In the complex case given by Eq. ( 1), we demonstrate in the Appendix A that given the properties of the complex-valued matrix H, its real-valued matrix version H is random generic. Then, the probability of successful recovery is equal to the probability that all of the columns of H lie in the first quadrant of the complex plane, that is to say the probability that all of the columns of H lie in the same hemisphere. According to Wendel's theorem, this probability denoted by Q n,N equals P 2n,2N :

Q n,N = P 2n,2N = 2 -2N +1 2n-1 i=0 2N -1 i . (5) 
In the context of underdetermined systems where the number of observations is less than the number of sources, the CS is a good candidate to separate the sources, provided the source vector is sparse. In the case of interest, the source vector isn't sparse and the symbols belong to a finite constellation with non-null elements. In order to apply recovery techniques similar to the Basis Pursuit (BP), the authors proposed in [START_REF] Fadlallah | New iterative detector of MIMO transmission using sparse decomposition[END_REF] a solution based on a suitable sparse transform to benefit from the combination of sparsity and finite-alphabet constraints. They succeeded in decomposing any element of the set F 2N as a sparse vector in R 2N p . The sparse vector is composed of 2N consecutive p-uples, such that each p-uple contains one 1 and p -1 zeros. By proceeding so, the problem of detection becomes equivalent to a problem of sparse recovery from incomplete measurements. This problem can be seen as minimization of the 0 -norm of the sparse-transformed vector subject to two constraints. The first is y = HB f s where s is the sparsetransform of x and B f = I 2N ⊗ f T is the transformation matrix which is defined as the Kronecker product of the identity matrix and the real-

valued alphabet vector f = [α 1 , α 2 , ..α p ] T .
The second is the uniqueness constraint which reads B 1 s = 1 N where B 1 = I 2N ⊗ 1 T p . It imposes the sparse reconstruction of the searched vector. However, an 0 -minimization problem is NP-hard. Therefore, to exploit the sparsity to solve the recovery and to have a problem with feasible complexity, the 0 -minimization is relaxed to an 1 -minimization, by mimicking literature on sparse reconstruction [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF].

The optimization problem now reads

(P SA,1 ) : arg min s s 1 subject to y = HB f s, B 1 s = 1 2N , ( 6 
)
where s is the resulted sparse vector which contains 2N p-tuples, each with a single element different from zero.

The main drawback of (P SA,1 ) is its complexity which highly depends on the alphabet size. This makes it less interesting for higher sizes. To address the complexity issue, the authors proposed another sparse decomposition which is done in two steps [START_REF] Hajji | Lowcomplexity half-sparse decomposition-based detection for massive MIMO transmission[END_REF]. The first is a binary decomposition as proposed in [START_REF] Fan | Universal binary semidefinite relaxation for ml signal detection[END_REF] which transforms the elements of a vector in F into a size-4N log 2 (p) vector of binary elements {-1, 1}. The second step is the application of the previous sparse decomposition to the resulting binary vector. The problem becomes the recovery of a half-sparse vector with half of null elements. The resulting problem, denoted by (P HSA,1 ), reads

(P HSA,1 ) : arg min s s 1 subject to y = H B β B p s, B 1 s = 1 2 N , (7) where = log 2 (M ) = 2k, B 1 = I N ⊗ 1 T 2 , B β = I N ⊗ β with β = [2 k-1 , ..., 2 1 , 2 0 ] and B ρ = I N ⊗ ρ with ρ = [-1, 1]. B β
defines the binary decomposition and B ρ the half-sparse decomposition.

(P HSA,1 ) is less complex than (P SA,1 ) while achieving the same successful recovery probability. It reduces by about 2 log 2 (p) p 2 the computation cost [START_REF] Hajji | Lowcomplexity half-sparse decomposition-based detection for massive MIMO transmission[END_REF].

Noisy massive MIMO systems

Let us study the case of noisy massive MIMO transmission. We consider a K-user system over a flat fading channel, where each user has N t transmit antennas and let N = K × N t . No user cooperation for transmission nor precoding scheme is taken into account. At the base station side, we assume n equivalent receive antennas (base station cooperation through the base station controller is possible). We assume a perfect channel state information (CSI) at the base station. In this paper, we focus on the uplink of the communication system. The received signal reads

y = Hx + ζ, (8) 
where H is an n × N random channel matrix, x is the N × 1 data vector, and ζ is the n × 1 complex circularly symmetric additive Gaussian noise vector with zero mean and covariance matrix equal to 2σ 2 I n . We assume that the components of x belong to an M -QAM modulation alphabet such that M = p 2 (square QAM constellation). The modulation alphabet, denoted by Q, is defined by Q = {q 1 , q 2 , ..., q M }. We associate to Q the symbol vector q = [q 1 , q 2 , ..., q M ] where

q i = a i +jb i , i ∈ {1..M } with (a i , b i ) ∈ F ×F. Then,
the system model is equivalent to the following real-valued one:

y = Hx + ζ, x ∈ F 2N . (9) 
The main objective is to estimate x from y given H and F by exploiting the sparse decomposition of x. This objective can be achieved by an 1minimization problem that involves as a variable parameter depending on the current signal-to-noise ratio (SNR) value to ensure that the estimated vector is close to the emitted one.

The authors proposed in [START_REF] Fadlallah | New decoding strategy for underdetermined MIMO transmission using sparse decomposition[END_REF] to apply the sparse decomposition and solve the noisy MIMO recovery problem by the following constrained 1minimization:

arg min s s 1 subject to y -HB f s 2 ≤ , B 1 s = 1 2N . ( 10 
)
The efficiency of the algorithm depends on the choice of . To counterbalance the critical choice of the parameter, they proposed another quadratic optimization system which can be seen as relaxation of the (ML) in another quadratic system with 0 -equality as a constraint to ensure the sparsity of the searched vector. The 1 constraint is equivalent to a positivity constraint.

The result is a quadratic programming model with linear equality constraints and non-negative variables. It can be resolved by polynomial-complexity al-gorithms. In the end, the optimization problem reads

(P SA,2 ) : arg min s y -HB f s 2 subject to B 1 s = 1 2N , s ≥ 0. (11) 
Like (P SA,1 ), the complexity of (P SA,2 ) highly depends on the constellation size. The same decomposition as used in (P HSA,1 ) can be applied to obtain the reduced-complexity problem (P HSA,2 ) which reads [START_REF] Hajji | Lowcomplexity half-sparse decomposition-based detection for massive MIMO transmission[END_REF] (P HSA,2 ) : arg min

s y -HB β B ρ s 2 subject to B 1 s = 1 2lN , s ≥ 0. (12) 
In this paper, we present a new method for compressive sensing that does not require the sparsity of the signal to be recovered. It exploits the alphabet properties and looks for a solution in a convex space containing the alphabet elements. Compared to previously described methods (P HSA,i ) and (P SA,i ), it brings further complexity reduction to adapt to high finite-alphabet size with recovery performance conservation.

3. Simplicity property exploitation to solve the noise-free recovery

Proposed method definition and theoretical study

In this section, we consider the noise-free system y = Hx, x ∈ F 2N and we propose a recovery scheme. The maximum likelihood (ML) detector requires an exhaustive search over all possible mixed symbol vectors and selects the solution that corresponds to the closest point to the searched signal in the known alphabet [START_REF] Cui | An efficient generalized sphere decoder for rankdeficient MIMO systems[END_REF]. In other words, it selects the vector with elements in the alphabet that satisfies the equality y = Hx.

(P M L,1 ) : arg min

x 1 T 2N x subject to y = Hx, x ∈ F 2N . ( 13 
)
The main drawbacks of this detector are twofold: first, the (P M L,1 ) criterion is not convex and second, it suffers from high computational complexity caused if and only if its corresponding vector r ∈ R 4N is the unique solution to the optimization problem:

arg min r 1 T 4N r subject to y = HB α r, B 1 r = 1 2N , r ≥ 0, ( 14 
)
where B α is defined as

B α = I 2N ⊗ [α 1 , α p ]. Proof of Proposition 3.1. Let G = {x ∈ R 2N |y = Hx, x ∈ [α 1 , α p ] 2N } and H = {x ∈ R 2N |y = Hx, x = B α r; r ∈ R 4N , B 1 r = 1 2N and r ≥ 0}.
H stands for the feasible set of the problem defined in [START_REF] Fadlallah | New decoding strategy for underdetermined MIMO transmission using sparse decomposition[END_REF]. Then, it suffices to show the equality between G and H.

Suppose that x ∈ G. Then the i-th element of x can be written as

x i = r 2i α 1 + r 2i+1 α p where r 2i + r 2i+1 = 1, 0 ≤ r 2i , r 2i+1 ≤ 1. Thus x ∈ H.
Reciprocally H ⊂ G. We deduce that G = H.

It is important to mention that due to the positivity constraint and the fact that the 1 -norm of a vector is the sum of the absolute values of its elements, the proposed optimization system is equivalent to the following 1 -minimization problem:

(P SI,1 ) : arg min r r 1 subject to y = HB α r, B 1 r = 1 2N . ( 15 
)
The new optimization problem (P SI,1 ) is a linear programming model with linear equality constraints. It can be solved by the simplex [START_REF] Karloff | The Simplex Algorithm[END_REF] or the interior point methods [START_REF] Nesterov | Interior-Point Polynomial Algorithms in Convex Programming, Path-Following Interior-Point Methods[END_REF]. In this paper, we take an interest in the algorithms based on the interior point methods. These algorithms start by finding an interior point of the polytope defined by the constraints and then proceed to the optimal solution by moving inside the polytope.

In order to study the necessary and sufficient conditions of the solution uniqueness of the proposed optimization problem, we exploit the geometry of the system model and we utilize a face counting technique [START_REF] Donoho | Counting faces of randomly-projected polytopes when the projection radically lowers dimension[END_REF]. The following theorem gives the solution uniqueness probability from which we can derive the conditions of successful recovery.

Theorem 3.1. (i ) Given the alphabet size p ≥ 2, if H is an 2n × 2N generic random complex matrix, the probability that (P SI,1 ) has a unique solution is given by:

Q n,N (p) = 2n-1 k=0 2N k 2 p 2N -k p -2 p k P 2n-k,2N -k . ( 16 
)
(ii ) By assuming that (n, N ) grows proportionally, Q n,N (p) tends to 0 when 

= {x ∈ R 2N |x = B α r; r ∈ R 4N , B 1 r = 1 2N and r ≥ 0} where B α = I 2N ⊗ α, α = [α 1 , α p ] and B 1 = I 2N ⊗ 1 T 2 .
The convex hull of this polytope which is the minimal convex set containing all the elements of P is the set 

{h ∈ R 2N |h i = α 1 or h i = α p , 1 ≤ i ≤ 2N }. It

Dimension

Cost per iteration T otal

(P SA,1 ) M N O(M 2 N 2 (N + n)) O(M 2 N 2 (N + n) 3/2 ) (P HSA,1 ) log 2 (M )N O((log 2 (M )) 2 N 2 (N + n)) O((log 2 (M )) 2 N 2 (N + n) 3/2 ) (P ∞ ) 2N O(N 2 (N + n)) O(N 2 (N + n) 3/2 ) (P SI,1 ) 2N O(N 2 (N + n)) O(N 2 (N + n) 3/2 )
Table 1: Computation cost with the interior point method.

Complexity Analysis

The interest of the proposed detection scheme comes from its complexity order. The CVX toolbox relies on the interior point method whose complexity is a function of the number of constraints and the dimension of the searched vector [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF][START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF] I. According to these estimations, the half-sparse decomposition enables to reduce the computation cost by

p log 2 (p) 2
. However, in the case of binary alphabets, (P ∞ ) is the most interested because its complexity order is the lowest. For higher-size alphabets, (P ∞ ) does not apply and (P SI,1 ) becomes the most relevant problem to solve. Its computation cost is the same as (P ∞ ) and keeps constant whatever the alphabet size. The following simulation results illustrate the theoretical framework exposed above. The experimental setup is common to all simulations. We use even values of p and choose F = {±(2k -1) : k = {1, 2, ..., p/2}}. For each simulation, we fix N ∈ {64, 128, 256} and make n vary so as to assess a significant number of values for ratio n/N . For each pair (n, N ), 1000 iterations are carried out. For each iteration, we generate a realization of the complex-valued generic random matrix of size n × N . The matrix coefficients are independent and identically Gaussian distributed with zero mean and unit variance. We then transform it in a real-valued formulation with size 2n × 2N . We generate x with 2N entries drawn uniformly from F. We solve the optimization problem by using the Matlab CVX toolbox [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF]. The simulation results are obtained by using a PC equipped with Linux Ubuntu We now address the case p > 2, for which the Mangasarian et al. approach is not applicable. Fig. 2 provides the phase diagrams of the proposed approach (P SI,1 ) for p = 4 and p = 8 and different values of N . The simulated successful recovery probability coincides with the analytical expression.

Simulation results

Parameters

The simulation results confirm the theoretical study presented above. The breakpoint occurs when n N equals the value p-1 p , that is to say 3 4 for p = 4 and 7 8 for p = 8.

Application of the simplicity principle to noisy massive MIMO transmission

Proposed method definition and theoretical analysis

We consider in this section the noisy version of the problem that is to say

y = Hx + ζ.
We propose to recover the vector x thanks to the previously introduced decomposition that exploits the fact that the real and imaginary parts of the symbols belong to the interval [α 1 , α p ].

Considering the proposed real-valued formulation, the Maximum Likelihood

[ML] problem reads

(P M L,2 ) : arg min x y -Hx 2 subject to x ∈ F 2N .
As mentioned above this problem is NP-hard with high order of complexity.

To circumvent this problem, we proceed in the same way as in the noisefree case and based on the Theorem 3.1 we propose to solve the following optimization problem:

(P SI,2 ) : arg min r y -HB α r 2 subject to B 1 r = 1 2N , r ≥ 0.
To evaluate its performance, we search for the conditions for a stationary point and we investigate the statistical distribution of the detection output.

Let us define the necessary sets used to establish the analytical results. The following theorem gives the conditions for a solution to be a stationary point for (P SI,2 ).

Theorem 4.1. Stationary point condition [START_REF] Stark | Bounded-variable least-squares: an algorithm and applications[END_REF] r is a stationary point for (P SI,2 ) (a point satisfying the first order necessary conditions for optimality) if and only if x = B α r is feasible and {H T (H x -

y)}Λ = 0.
The output solution verifies the stationary point condition. In order to define the theoretical performance and to enhance the recovery performance either by an iterative scheme or by the addition of a forward error correction code soft-decision decoder, we need the probability density function of the detector output. The following theorem defines its theoretical statistical distribution.

Theorem 4.2. Statistical distribution of the detection output

Let r the solution of (P SI,2 ). Then the components of x = B α r follow a censored normal distribution given by

f xk (x) = 1 p p j=1 f xk |x k =α j (x), (17) 
with ( 18)

f xk |x k =α j (x) = 1 2 erfc α j -α 1 √ 2σ x δ α 1 (x) + 1 2 erfc α p -α j √ 2σ x δ αp (x) + 1 √ 2πσ x exp - (x -α j ) 2 2σ 2 x 1 [α 1 ,αp] (x)
and

σ 2 x = 2n-2 k=0 2N k 1 p 2N -k p -1 p k 2nσ 2 2n -k -1 , ( 19 
)
where 

σ 2 = E[ζ 2 i ], ∀i = 1, . . . ,
H † Λ = (H T ΛH Λ) -1 H T Λ.
Therefore, the restriction of x to the index set Λ reads

xΛ = H † Λ(y -H Λ xΛ ). (20) 
From Eq. ( 20) and exploiting the property that the set of binding constraints Λ can be seen as the set of indexes of entries of x which were correctly estimated, according to the central limit theorem, given x and C, xΛ is normally distributed with mean xΛ. To compute the covariance matrix Σ xΛ we exploit the fact that the number of non-binding constraints C is a random variable. Therefore, Σ xΛ is given by:

Σ xΛ = E E[( xΛ -E[ xΛ])( xΛ -E[ xΛ]) T |C = k] , (21) 
with

E[( xΛ -E[ xΛ])( xΛ -E[ xΛ]) T |C = k] = σ 2 E[(H T ΛH Λ) -1 |C = k] (22) = σ 2 2n 2n -k -1 I k ,
where we have used that, given C = k, the matrix (H T

ΛH Λ)

-1 follows an inverse Wishart distribution and then E[(H T ΛH Λ) [START_REF] Mardia | Multivariate analysis[END_REF]). The distribution of C is provided by the following Proposition 4.1. 

-1 |C = k] = 2n 2n-k-1 I k (see
C = Card( Λ) ∼ B(2N, p -1 p )
The proof of Proposition 4.1 is given in Appendix B. From Proposition 4.1, we observe that the probability of event C ≥ 2n -1 is not significant and these events will thus be neglected in the computation of Σ xΛ . We then obtain

Σ xΛ = σ 2 x I C , (23) 
with

σ 2 x = 2n-2 k=0 Pr (C = k) 2nσ 2 2n -k -1 = 2n-2 k=0 2N k 1 p 2N -k p -1 p k 2nσ 2 2n -k -1 .
Finally, the constraints of (P SI,2 ) impose that xi ∈ [α 1 , α p ] and we deduce that, given x, the components of x corresponding to the non-binding constraints follow a truncated normal distribution with mean x and variance σ 2

x.

As for the components of x corresponding to the binding constraints, they satisfy either x i = α 1 and {H T (H xy)} i ≥ 0, or x i = α p and {H T (H xy)} i ≤ 0}. We thus conclude that they follow a binary distribution with probability 1 2p (see Appendix B for the justification of Pr({H

T (H x -y)} i ≥ 0) = 1 
2 ). Consequently, the conditional distribution of xk given x k reads

f xk |x k =α j (x) = 1 2 erfc α j -α 1 √ 2σ x δ α 1 (x) + 1 2 erfc α p -α j √ 2σ x δ αp (x) + 1 √ 2πσ x exp - (x -α j ) 2 2σ 2 x 1 [α 1 ,αp] (x) .
As demonstrated, we can see the distribution of the output vector as a mix of a binary distribution due to the simplicity of the vector and a truncated normal distribution with variance depending on the system dimensions and the noise variance. Depending on the system dimensions, the exact variance computation may be too complex in practice. The following lemma provides an approximation of the variance which can be simply calculated.

Its accuracy will be studied in the simulation section.

Lemma 4.1. Variance approximation

Let r the solution of (P SI,2 ). The variance of the output vector x = B α r can be approximated for n ≥ N p-1 p + 1 as

σ 2 x ≈ 2nσ 2 2n -2N p-1 p -1 . (24) 
From the statistical distribution of the detection output and by exploiting the general results available in [START_REF] Cho | On the general ber expression of one-and twodimensional amplitude modulations[END_REF], a lower bound of the symbol error probability can be obtained. This bound is asymptotically reached when the SNR gets high, which provides an approximation of the symbol error probability.

It can be used to predict performance without simulating the whole system and its accuracy will be checked in the simulation part.

Theorem 4.3. Symbol Error Probability upper-bound

The symbol error probability in the case of a M-ary QAM constellation can be upper-bounded by:

P s ≤ 1 2p p k=1 p j=1 j =k erfc α j -α k 2 √ 2σ x + p -1 2p p i=1 erfc α p -α i √ 2σ x . (25) 
This upper bound can be used as a tight approximation of the symbol error probability. For high SNR, the symbol error probability can be further approximated by:

P s ≈ p -1 p erfc α 2 -α 1 2 √ 2σ x . (26) 

Complexity Analysis

Table II summarizes the complexity order of the decomposition-based detectors including the proposed one referred to as (P SI,2 ), the MMSE, the MMSE-SIC, the MMSE-SIC-LR, and the SD detector. The SD detector is a high-complexity detector especially when the modulation order or the number of antennas increase, it is the least cost efficient. The MMSE-based detector consists of one matrix inversion and some matrix multiplications and additions. The MMSE-SIC adds some order of complexity. According to the complexity analysis in [START_REF] Gan | Complex lattice reduction algorithms for low-complexity MIMO detection[END_REF], the additional complexity order involved in the MMSE-SIC-LR due to lattice reduction is equal to O(N 2 log B) where B is is the norm of the longest basis vector. In the case of determined MIMO systems, (P SI,2 ) achieves the same order of complexity compared to the MMSE-based methods. As (P SI,2 ) and (P SA,2 ) are optimized with the same algorithm (interior point method) and in order to show the complexity reduction, we plotted the run-time of both detectors for high-order modulations. In Fig. 3, the 16-QAM modulation is considered with N = 64. We show that for n N = 0.8 (underdetermined system), the complexity is divided by two. In Fig. 4 the run-time is plotted for 64-QAM and N = 64. We observe that the gain is even higher than for 16-QAM and the complexity order of the proposed algorithm is similar in both modulation cases. These results are in accordance with Table 3.

Iteration number

Cost per iteration T otal

MMSE 1 O(N 3 ) O(N 3 ) MMSE-SIC 1 O(N 3 ) + O(M N 2 ) O(N 3 ) + O(M N 2 ) +O(M 2 N ) +O(M 2 N ) MMSE-SIC-LR 1 O(N 3 ) + O(M N 2 ) O(N 3 ) + O(M N 2 ) +O(M 2 N ) + O(N 2 log B) +O(M 2 N ) + O(N 2 log B) (P SI,2 ) O( √ N ) O(N 2.5 ) O(N 3 ) (P HSA,2 ) O( 2 log 2 (M )N ) O(N 2.5 ) O( 2 log 2 (M )N 3 ) (P SA,2 ) O( √ M N ) O(N 2.5 ) O( √ M N 3 ) SD 1 O( √ M N ) O( √ M N )
Table 3: Computational cost with the interior point method.

Simulation results: perfect channel estimation assumption

In this section, we assume perfect channel state information and we evaluate the error rate achieved by the proposed detector based on (P SI,2 ). We consider n × N MIMO systems, where N and n are the number of symbols to be recovered and the number of observations, respectively. H is a complex valued generic random matrix of size n × N . We transform it in a real-valued formulation H with size 2n × 2N . The channel coefficients are independent and identically Gaussian distributed with zero mean and unit variance, and the data symbols belong to a finite QAM alphabet. We use the Matlab CVX toolbox again. The quadratic minimization problem (P SI,2 ) is solved by the Gurobi optimizer [START_REF]Gurobi Optimization[END_REF]. The simulation setup is summarized in Table 4. In Fig. 9, both simulated SER and theoretical symbol error probability approximations are plotted for n = N = 32 and 16-QAM. We observe that the approximation given by Eq. ( 25) coincides with the simulated SER. The other one given by Eq. ( 26) is slightly more optimistic than simulated SER for very low SNR values. These observations validate the theoretical analysis. that it achieves a BER under 10 -3 for the SNR values higher than 20dB.

Beyond 8dB, the sphere decoder [START_REF] Cui | An efficient generalized sphere decoder for rankdeficient MIMO systems[END_REF] outperforms the proposed scheme, e.g., at BER 10 -3 , the gain is about 6.3dB. However as the MIMO system dimensions increase, the SD computation cost will rapidly become too high to be implemented in practice, making the SD inadequate for large-scale MIMO applications. with increasing SNR and both schemes perform the same for high SNR values. In Fig. 12, we also show that the gain of the proposed scheme (P SI,2 )

over MMSE-based schemes is maintained for higher order modulation. For 16-QAM, the proposed detector outperforms the MMSE-SIC by about 2 dB for BER 10 -4 .

Impact of channel estimation inaccuracy

Channel estimation is a challenging problem in massive MIMO systems as the conventional techniques applicable to MIMO systems cannot be employed owing to an exceptionally large number of unknown channel coefficients. In order to study the effect of the channel estimation inaccuracy in the determined case, we solve (P SI,2 ) using an estimate of the channel matrix given by H = H + H where the estimation error matrix H is a real Gaussian random matrix such that H ∼ N(0, σ 2 H I 2N ) where σ 2 H is the theoretical Mean Square Error (MSE). The simulation setup is summarized in Table 5.

In the determined case, we refer to [START_REF] Zaib | Distributed channel estimation and pilot contamination analysis for massive MIMO-OFDM systems[END_REF] to compute σ 2 H as a function of the SNR and the system dimensions. The method presented in [START_REF] Zaib | Distributed channel estimation and pilot contamination analysis for massive MIMO-OFDM systems[END_REF] is an MMSE-based method called O-MMSE. In Fig. 13 we have plotted the performance of the proposed algorithm in the determined case with imperfect CSI estimation compared to the perfect CSI knowledge case. We observe that the (P SI,2 ) algorithm is not very sensitive to channel estimation errors and the loss doesn't exceed 0.4dB on the whole SNR range.

Unfortunately, the O-MMSE method can not be applied in the under- of 64 × 64 systems. The bit error rate is plotted in Fig. 14 where we observe that the imperfect CSI introduces a slight performance degradation.

We can conclude that the proposed detection is quite robust to CSI inaccuracy.

Conclusions

This paper focused on finite-alphabet source signal recovery in large-scale MIMO systems. We first proposed a simplicity-based 1 -minimization combined with box constraints to solve the noise-free case. For the proposed cri- 

Pr xk ≤ α i + α q 2 |x k = α i = 1 2 erfc α i -α 1 √ 2σ x + 1 2 erfc α p -α i √ 2σ x + α i +αq 2 α 1 1 √ 2πσ x exp - (x -α i ) 2 2σ 2 x dx.
After computation, we get

Pr xk ≤ α i + α q 2 |x k = α i = 1 2 erfc α p -α i √ 2σ x + 1 2 erfc α i -α q 2 √ 2σ x . (C.5)
Therefore P s can be upper-bounded by

P s ≤ 1 2p p i=1 p q=1 i =q erfc α i -α q 2 √ 2σ x + p -1 2p p i=1 erfc α p -α i √ 2σ x . (C.6)
At high SNR, due to the decreasing rate of erfc, the terms depending on differences between adjacent symbols are predominant and the following approximation is asymptotically tight

P s ≈ p -1 p erfc α 2 -α 1 2 √ 2σ x . (C.7)

  Our contributions are: (i ) a new criterion based on the simplicity property of finite-alphabet signals (ii ) the necessary condition of successful recovery in the noise-free case (iii ) the extension of the proposed criterion to the noisy case (iv ) the theoretical probability density function of the proposed algorithm output (v ) the theoretical symbol error probability in the case of M-QAM modulations.

1 T

 1 scheme which is based on a relaxation of the ML detector constraint. We relax the solution space {x ∈ F 2N |y = Hx} by substituting it with the convex set {x ∈ [α 1 , α p ] 2N |y = Hx}. Exploiting this relaxation, the new resulting optimization problem can be resolved by polynomial algorithms for convex optimization using the following proposition.

nN

  < p-1 p and tends to 1 when n N > p-1 p . Proof of Theorem 3.1. The proof of Statement (i ) of Theorem 3.1 requires the introduction of the simplicity concept defined herinafter. Definition 3.1. Simplicity [29] A given vector x ∈ [α 1 , α p ] 2N is called k-simple if it has exactly k entries different from α 1 and α p . According to Theorem 3.1, calculating the solution uniqueness probability of the optimization problem amounts to calculating the probability that the equation y = Hx; x ∈ [α 1 , α p ] 2N has only one root. It can also be formulated as: y = Hx, x ∈ P with P

P

  contains all the vectors with entries equal to the bounds. Let x ∈ R 2N be a k-simple vector in P, in other words, with exactly k entries strictly different from the elements of the vectors of the convex hull of P. Let F denote the associated k-face of P. Given the system y = Hx, x ∈ P, it is showed in[START_REF] Donoho | Counting the faces of randomly-projected hypercubes and orthants, with applications[END_REF] Lemma 5.2] that the condition of solution unicity is equivalent to the condition that HF is a k-face of HP. In [29, Theorem 1.10], exploiting the fact that H is completely general 2 , it is demonstrated that this condition is satisfied with probability 1 -P 2(N -n),2N -k = P 2n-k,2N -k . As the elements of x take on values with equal probability in the set F = {α 1 , α 2 , . . . , α p }, the probability that it is k-simple is 2N the probability that x is the unique k-simple solution is equal to 2N 2n-k,2N -k . Hence, the proof of Statement (i ). Now that Statement (i ) is established, the proof of Statement (ii ) can be obtained by following the same reasoning as in [10, Proof of Theorem 3, page 2012].

  . A convex optimization problem defined over R m subject to d constraints requires, in the worst case, O( √ d) iterations for a computation cost order of O(m 2 d) per iteration and yields a total computation cost order equal to O(m 2 d 3/2 ) [32]. Applied to the different convex optimization problems dealt with in this section, we obtain the computation costs reported in Table

Fig. 1

 1 Fig.1is the phase diagram in the case p = 2 for the proposed simplicitybased approach. The simulated successful recovery probability corroborates Theorem 3.1 and it coincides with the analytical expression. In particular, we observe that the breakpoint occurs when n/N = 1/2 with a successful recovery probability equal to one half, as established theoretically. We also recall that the proposed simplicity-based recovery method performs the same as Mangasarian approach.

Figure 1 :Figure 2 :

 12 Figure 1: Phase diagrams of the proposed method, for p = 2 and N ∈ {64, 128, 256}.

Definition 4 . 1 .

 41 Let Ω the set of active constraints defined by Ω = {i|x i = α 1 or x i = α p } and Λ the set of binding constraints defined by Λ = {i|x i = α 1 and {H T (H xy)} i ≥ 0 or x i = α p and {H T (H xy)} i ≤ 0}. The cardinality of Λ defines the simplicity order of the searched vector.The complementary set Λ corresponds to the non-binding constraint set. Its cardinality is denoted by C = Card( Λ).

Proposition 4 . 1 .

 41 The number of non binding constraints introduced in Definition 4.1 follows the binomial distribution with parameters 2N and p-1 p :

Figure 3 : 2 and Lemma 4 . 1 .Fig. 5 ,Figure 4 :

 324154 Figure 3: Run-time Comparison for 16-QAM, N = 64 and SNR=25dB.
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 32 Fig.10shows the performance of the proposed scheme (P SI,2 ) for the underdetermined MIMO system of size 24 × 18 with 4-QAM. We observe

Figure 5 :

 5 Figure 5: Output statistics for 64 × 64 systems with 16-QAM and SNR=15dB (low SNR).

Figure 6 :

 6 Figure 6: Output statistics for 64×64 systems with 16-QAM and SNR=30dB (high SNR).
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 33 Fig. 11 considers a determined system with N = n = 64 and 4-QAM. We compare simplicity-based detection (P SI,2 ) to MMSE, MMSE-SIC and
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 78 Figure 7: Output statistics for 64 × 64 systems with 64-QAM and SNR=20dB (low SNR).
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 9 Figure 9: SER performance for 32 × 32 systems with 16-QAM.
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 10 Figure 10: BER performance comparison for 24 × 18 systems ( n N = 0.75) with 4-QAM.
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 11 Figure 11: BER performance comparison for 64 × 64 systems and 4-QAM.
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 12 Figure 12: BER performance comparison in 64 × 64 systems and 16-QAM.

Figure 13 :

 13 Figure 13: BER performance comparison in 64 × 64 systems and 4-QAM.

Figure 14 : 1 )

 141 Figure 14: BER performance comparison in 64 × 62 systems and 4-QAM.

Table 2 :

 2 Simulation setup for Section 3.3.

		Value
	Mixing matrix H	H ij ∼ CN(0, 1) i.i.d for ∀i, j
	Mixing matrix knowledge	Perfect
	Alphabet size p	p ∈ {2, 4, 8}
	Alphabet construction	F = {±(2k -1) : k = {1, 2, ..., p/2}}
	Number of sources N	N ∈ {64, 128, 256}
	Monte Carlo iteration number 1000
	Matlab toolbox	CVX toolbox

Table 2 .

 2 

	14.04 OS, Intel Core i3-2350M processor (2.3 GHz) and 8GB RAM. A solu-
	tion x is returned and we assume that the recovery is correct if the relative

  2n. Proof of Theorem 4.2. Let us consider r a stationary point of problem (P SI,2 ). Then x = B α r is feasible and {H T (H xy)}Λ = 0 (see Theorem 4.1). Let H Λ = [H :,k ] k∈ Λ with H :,k the k th column of H. We first

assume that C = Card( Λ) satisfies C < 2n -1 so that the Moore-Penrose pseudo-inverse of H Λ exists and equals

Table 4 :

 4 Simulation setup for Section 4.3.

	0.14						
	0.12				Output histogram	
					Exact value		
	0.1				Approximate value	
	0.08						
	0.06						
	0.04						
	0.02						
	-3 0	-2	-1	0	1	2	3

Table 5 :

 5 Simulation setup for Section 4.4.

		10 0							
							Perfect channel estimation
							Imperfect channel estimation
		10 -1							
	Bit Error Rate(BER)	10 -3 10 -2							
		10 -4							
		0	2	4	6	8	10	12	14	16
						SNR(dB)			

A matrix H is a generic random matrix if all sets of columns are linearly independent with probability 1 and each column is symmetrically distributed about the origin.[START_REF] Mangasarian | Probability of unique integer solution to a system of linear equations[END_REF] 

For definition and proof see Appendix A

Appendix A. Generic random matrix H

We assume that the components of H are independent, complex circularlysymmetric Gaussian random variables with zero mean and unit variance. We aim to prove that H is a generic random matrix. The assumption on the distribution of the components of H ensures that the columns of H are symmetrically distributed about the origin. We thus have to prove that H is completely general with probability 1, that is to say whatever , any × submatrix of H has full-rank. This result is given by the following Theorem A.1.

Theorem A.1 : Given a complex-valued matrix H and its real-valued transform H, if H is a generic random matrix with independent circularlysymmetric Gaussian-distributed components, then H is completely general with probability 1.

Let us prove the theorem by induction. Let H be a complex-valued matrix with independent circularly-symmetric Gaussian-distributed components. Let us define the property P by "any × submatrix of H has full-rank with probability 1". Let = 1. Then any 1 × 1 submatrix of H is a real-valued Gaussian variable, that is to say a continuous random variable and the probability that it equals zero is null. P 1 is true. Let us suppose that P is true and let us prove that P +1 is also true. Let S an ( + 1) × ( + 1) submatrix of H. Then as P is true, all minors of S have non-zero determinant with The number of non binding constraints of (P SI,2 ) can be seen as the sum of the inactive constraint number and the non binding active constraint number.

The probability that a constraint is inactive is denoted by p in and corresponds to the probability that x i / ∈ {α 1 , α p }, that is to say p in = p-2 p . The probability that a constraint is non binding and active is denoted by p nba and corresponds to the probability that either

As a constraint cannot be active and inactive, the probability that a constraint is non binding equals p nb = p in + p nba .

It remains to find the value of p nba = Pr(i ∈ Ω\Λ). To that purpose we focus on the sign of {H T (H xy)} i = {H T (H( xx) -ζ)} i , i ∈ Λ. As the elements in the set F = {α 1 , α 2 , .., α p } are equiprobable and the real-valued matrix channel H as well as the noise are Gaussian, we can affirm that the estimated vector x is a symmetrically erroneous version of the original vector x. Then the sign of {( xx)} i , i ∈ Λ takes on equiprobable values.

Consequently exploiting the same hypothesis for the channel matrix and the noise we deduce that the sign of {H T (H xy)} i can be negative or positive