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Abstract—We aim at providing a social network such that users
form groups to practice together some activities. In this paper,
we present a formal framework for coalition formation which
is suitable for our usecase. We restrict ourselves to additively
separable preferences whose representation is linear with respect
to the inputs. We propose here a distributed algorithm which aims
at maximizing the egalitarian welfare of the resulting matching.
Our experiments shows that: i) this algorithm reaches a better
outcome than the classical local search techniques; and ii) the
distribution of our algorithm speeds up its runtime.

I. INTRODUCTION

Multiagent systems (MAS) is a relevant paradigm for the
analysis, the design and the implementation of systems com-
posed of autonomous entities in interaction. In order to design
socio-technical systems for mediation or simulation, MAS
allow to model the feedback loops between heterogeneous
actors whose local decision-making leads to complex global
phenomena. In this perspective, one of the challenges of the
MAS community is to facilitate the elicitation of preferences.

Our work is part of a project which aims at understanding
and modelling the dynamic of feedback occurring in a group
of individuals interacting both within a virtual and a real social
network. The usecase on which we are focusing in this project
consists of forming some groups of seniors (60-70 years old)
in order to share some activities. This scenario involves several
thousand users. We aim at maximizing the satisfaction of users
in order to improve social cohesion and avoid the isolation of
seniors. We want to propose a social network such that the
users form groups to practice together some activities. The
purpose of this system is to suggest to each user some peers
with whom practicing these activities.

In this paper, we present a formal framework for coalition
formation which is suitable for our usecase. A set of indi-
viduals must be matched together in order to share one of the
activities with respect to the preferences of individuals for their
peers and for the activities. We restrict ourselves to additively
separable preferences, whose representation is linear with
respect to the number of individuals, in order to propose an
algorithm which returns a “good” matching where no activity

is oversubscribed. We propose here an algorithm which aims
at maximizing the egalitarian welfare, i.e. the satisfaction of
the worst-off individual. By adopting the model of actor [1],
we are able to distribute this algorithm. Our experiments show
that the solution of our algorithm has a better quality than those
obtained with the classical local search techniques. Moreover,
its distribution speeds up its runtime (up to 5 times).

Section II compares our approach with the related works.
We introduce our matching problem in Section III. We propose
a matching algorithm in Section IV. The distribution of this
algorithm consists of agent behaviours described in Section V.
Section VI exhibits our empirical results. Finally, we conclude
with some directions for future work (cf Section VII).

II. RELATED WORKS

Social choice theory aims at designing and analyzing col-
lective decision-making processes which imply a set of agents
selecting or classifying a subset of alternatives among the
available ones. Contrary to Economy, Computer science is
concerned in this field by the study of algorithms in order
to propose operational methods. We focus here on a particular
matching problem.

In the problem of hedonic coalition formation, which has
been formalized in [2], each player is endowed with a single
preference relation over all the coalitions which contain this
player. Our problem is a specialization of the hedonic coalition
problem. We can represent our problem as a hedonic game. For
this purpose, we associate : i) one player for each activity such
that all the coalitions which are compliant with its capacity
are equally preferred; and ii) one player for each individual
whose preferences are deduced from the utility function of
the latter. Even if the resulting preferences are not additively
separable as in [3], we can represent them using rational
lists for coalitions (RLC) [4]. To our best knowledge, there
exists no algorithm which computes a partition maximizing
the “egalitarian” welfare. Indeed, we consider here that the
preferences over the activities and the preferences over the
individuals are independent, then we aggregate them in an util-
ity function. Under this assumption, our setting has the useful



structural properties of two-sided matching that distinguish it
from a generic hedonic game. The fact that the activities play
the role of focal points [5] and the succinct representation of
individual’s preferences allow us to propose some algorithms
to reach “good” matchings.

The problem of group activity selection has been proposed
in [6]. In such a problem, each player participates in at most
one activity and its preferences over activities depend on the
number of participants in the activity. This is a generalization
of anonymous hedonic games. Even if this problem has been
extended [7] in order to take into account the relationships
among the agents, the latter are encoded by a social network,
i.e. an undirected graph where nodes correspond to agents
and edges represent communication links between them. By
contrast, in our problem, each individual is endowed with a
preference relation over the activities and a preference relation
over its peers.

The Hospital/Resident (HR) problem has been introduced
in [8]. This problem is a specialization of the coalition
formation game where a set of residents must be assigned
to the hospitals in accordance with the preferences of the
residents over the hospitals and the preferences of hospitals
over the residents. The HR problem has many extensions [9].
To the best of our knowledge, none extension is suitable for
our usecase.

How does an agent evaluate its preferences? We adopt here
utility functions (cardinal preferences). In order to reduce the
users’ effort, we assume some additively separable preferences
and that the evaluation of activities and individuals are compa-
rable. Even if its expressiveness is limited, the representation
of our preferences is linear with respect to the number of
individuals.

What is the “best” solution for collective decision-making
problem? In the literature, two kinds of rules derive the
social choice from the individual preferences: the first ones
are based on the desirable properties of the solution (e.g.
stability or Pareto-optimality), while the latter are based on
the aggregation of the individual preferences (e.g. the utilitar-
ian/egalitarina welfare). We adopt the second approach since
none concept from the first approach is suitable. In particular,
we propose here an algorithm which aims at maximizing the
egalitarian welfare. For this purpose, we are considering a
decision criterion for the “activity” agent which is evaluated
only if the activity is full.

How to reach a matching which maximizes the utilitar-
ian/egalitarian welfare? This problem can be NP-hard. For
this purpose, we can consider Distributed Constraint Optimiza-
tion Problem (DCOP) algorithm or Local Search Techniques
(LST). It has been shown in [10] that DCOP algorithms are
not necessarily scalable for matching problems. However, LST
are not suitable when the function to be optimized consists
of many local optima. That is the reason why we adopt
a multiagent approach, in particular a multi-level model as
recommended by [11] where each “activity” agent represents
a group of individuals.

III. IA PROBLEM

We abstract away from our practical application to introduce
a formal framework for coalition formation which captures our
usecase.

We present here the individuals/activities (IA) problem. In
such a problem, the individuals selects their favorite activities
with the partners they prefer.

Definition 1 (IA Problem): An individuals/activities (IA)
problem of size (m,n), with m ≥ 1 and n ≥ 1, is a couple
IA = 〈I, A〉 with m individuals and n activities, where:
• A = {a1, . . . , an} is a set of n activities. Each activity
aj has a positive integral capacity cj ;

• I = {1, . . . ,m} is a set of m individuals. Each individual
i is endowed with,

1) a preference relation over the activities, i.e. a reflex-
ive, complete and transitive preference ordering Di

over the activities A∪{θ}, including the void activ-
ity (denoted θ). The corresponding strict preference
relation is denoted by Bi,

2) a purely hedonic preference, i.e. a reflexive, com-
plete and transitive preference ordering %i over the
set of groups it belongs G(i) = {G ⊆ I; i ∈ G}.
The corresponding strict preference relation is de-
noted by �i.

Intuitively, the void activity corresponds to do nothing.
We aim at forming coalitions of individuals around the

activities.
Definition 2 (Coalition): Let IA = 〈I, A〉 be an IA problem.

A coalition is a couple C = 〈a,G〉 where a ∈ A ∪ {θ} and
G ⊆ I . The activity of a coalition C is aC with a capacity1

cC and the group GC . A non-empty coalition C is such that
GC 6= ∅ and C is for i if i ∈ GC .

We expect the number of individuals to be considerably
larger than the number of available activities (m >> n).

Definition 3 (Matching): A matching M for the problem
IA = 〈I, A〉 is represented by the functions aM : I → A∪{θ}
and gM : I → P(I) such that:

∀i ∈ I, aM (i) ∈ A ∪ {θ} (1)
∀i ∈ I, i ∈ gM (i) ⊆ I (2)

∀i ∈ I, aM (i) = θ ⇒ gM (i) = {i} (3)
∀i ∈ I ∀j ∈ gM (i), aM (j) = aM (i) (4)

∀i, j ∈ I, i 6= j ∧ aM (i) = aM (j) 6= θ ⇒
gM (i) = gM (j) (5)

The assignment of an individual is an activity, possibly the
void activity (cf equation 1). In this case, the individual is
said inactive. Each individual is associated with the group
it belongs (cf equation 2). All the individuals which are
assigned to the void activity are alone (cf equation 3). All
the individuals which are associated with each others have
the same activity (cf equation 4) and reciprocally all the
individuals which are assigned to the same activity, excepted
the void activity, are associated with each other (cf equation 5).

1the void activity has an infinite capacity.



In order to simplify the notations, we introduce the post
function of a matching M which returns the set of individuals
assigned to each activity:

pM : A ∪ {θ} → P(i)

pM (a) = {i ∈ I; aM (i) = a} (6)

The posts of an activity can be empty. If aM (i) = θ, we say
that i is not assigned. An activity a ∈ A is:
• oversubscribed if |pM (a)| > ca;
• full if |pM (a)| = ca;
• undersubscribed if |pM (a)| < ca.

A matching is said sound if no activity is oversubscribed.
A matching is a coalition structure, i.e. a partition of

individuals.
Property 1 (Partition): Let M be a matching for the problem

IA = 〈I, A〉. We verify:

∀a ∈ A ∪ {θ}, 〈a, pM (a)〉 is a coalition (7)

∪a∈A∪{θ}pM (a) = I∧∀ai, aj ∈ A∪{θ} pM (ai)∩pM (aj) = ∅ (8)

Proof 1: Straight forward from Def. 2 and Def. 3.
The coalition which contains i in the matching M is denoted
CM (i).

Each individual evaluates its preferences over the coalitions
and so the matchings regarding the group it belongs and the
activity it is assigned.

Definition 4 (Preferences): Let IA = 〈I, A〉 be an IA
problem.
• Let C and C ′ be two coalitions for i.

– The individual i prefers C to C ′ (denoted C %i C
′)

iff:
aC Di aC′ ∧GC %i GC′ (9)

– The individual i strictly prefers C to C ′ (denoted
C �i C

′) iff:

C %i C
′ ∧ (aC Bi aC′ ∨GC �i GC′) (10)

• Let M and M ′ be two sound matchings. The individual
i prefers M to M ′ (denoted M %i M ) iff:

CM (i) %i CM′(i) (11)

The strict preference relation over the matchings is denoted
by �i. An individual prefers a coalition to a second one
if it prefers the activity and the group of the first one (cf
equation 9). It prefers a matching to a second one if it prefers
its coalition in the first one (cf equation 11). The preference
relations over the sound matchings are reflexive, transitive and
possibly partial.

We now define the desirable properties for a matching.
Definition 5 (Stability): Let M be a matching for the

problem IA = 〈I, A〉.
• M is individually rational (IR) iff:

∀i ∈ I, (aM (i) Di θ) ∧ gM (i) %i {i} (12)

• A non-empty coalition C strongly blocks M iff:

|GC | ≤ cC (13)
∀i ∈ GC , C �i CM (i) (14)

M is core stable (CS) if it is sound and there is no
strongly blocking coalition.

• A non-empty coalition C weakly blocks M iff:

|GC | ≤ cC (15)
∀i ∈ GC , C %i CM (i) (16)
∃i ∈ GC C �i CM (i) (17)

M is strict core stable (SCS) if it is sound and there is
no weakly blocking coalition.

• M is Nash stable (NS) if it is sound, rational and:

∀i ∈ I ∀a ∈ A, a 6= aM (i) with pM (a) < ca

CM (i) %i 〈a, pM (a) ∪ {i}〉
(18)

• The matching M is individually stable (IS) if it is sound,
rational and:

∀i ∈ I ∃a ∈ A, a 6= aM (i) with pM (a) < ca

〈a, pM (a) ∪ {i}〉 �i CM (i)⇒
∃j ∈ pM (a) CM (j) �j 〈a, pM (a) ∪ {i}〉

(19)

• The matching M is contractually individually stable
(CIS) if it is sound, rational and:

∀i ∈ I ∃a ∈ A, a 6= aM (i) with pM (a) < ca

〈a, pM (a) ∪ {i}〉 �i CM (i)⇒
(∃j ∈ pM (a) CM (j) �j 〈a, pM (a) ∪ {i}〉∨
∃j′ ∈ gM (i) j′ 6= i, CM (i) �j′ 〈aM (i), gM (i) \ {i}〉)

(20)

• The matching M is contractually strict core (CSC)
if any weakly blocking coalition C makes at least one
individual j ∈ I \GC worse off when breaking off.

An individual chooses a coalition and so a matching such that
it prefers being with its partners to be alone (cf equation 12).
Intuitively, the individuals in a blocking coalition would like
to separate and form their own coalition, which makes the
underlying matching unstable. A coalition strongly blocks a
matching if its activity is not oversubscribed (cf equation 13)
and all the individuals of the coalition strictly prefer the latter
to be assigned according to the matching (cf equation 14).
A coalition weakly blocks a matching if its activity is not
oversubscribed (cf equation 15), all the individuals of the
coalition prefer the latter to be assigned according to the
matching (cf equation 16) and at least one individual of the
coalition strictly prefers the latter to be assigned according
to the matching (cf equation 17). A Nash stable matching is
immune to individual movements since the activities are full
or the coalition for any individual in the matching is at least
as good as any coalition they can join (cf equation 18). A
matching is individually stable if no individual can benefit by
moving from its coalition to another undersubscribed activity
while not making the posts of that activity worse off (cf
equation 19). A matching is contractually individually stable
if no individually can benefit by moving from its coalition to
another activity while making no posts of either activity worse
off (cf equation 20).

We now formulate the other desirable properties which are
not based on the interpersonal comparisons.

Definition 6 (Pareto-dominance/optimal): Let M and M ′ be
two sound matchings for the problem IA = 〈I, A〉.



• M is perfect iff:

∀i ∈ I ∀a ∈ A ∪ {θ} ∀g ∈ G(i)

it is not the case 〈a, g〉 �i CM (i)
(21)

• M ′ Pareto-dominates M iff:

∀i ∈ I, CM′(i) %i CM (i) (22)
∃i ∈ I, CM′(i) �i CM (i) (23)

A matching is Pareto-optimal (PO) if it is not Pareto-
dominated.

A matching is perfect if the coalition for any individual is
a most preferred one for it. A matching Pareto-dominates a
second one if it is strictly better for at least one individual
and not worst for the others. A matching is Pareto-optimal
if there is no alternative in which all agents would be in an
equivalent or better position.

As illustrated by the following example, even if the individ-
ual rationality of a matching is necessary condition to be either
core stable or Nash stable, neither type of stability implies the
other. Moreover, an IA problem does not necessarily have a
strict core stable matching or a Nash stable one.

Example 1 (Stability): Let us consider the IA problem with
3 individuals (1, 2 and 3). and one activity a such that aDi θ
with i ∈ {1, 2, 3}.
Let us first suppose that the capacity of a is 2 and the social
preferences are circular:
• {1, 2} �1 {1} �1 {1, 3};
• {2, 3} �2 {2} �2 {1, 2};
• {1, 3} �3 {3} �3 {2, 3}.

This instance has no core stable matching (and so no strict
core stable matching) since the matching M1 (with pM1(a) =
{1, 2}) is weakly/strongly blocked by the coalition 〈a, {2}〉,
the matching M2 (with pM2

(a) = {2, 3}) is weakly/strongly
blocked by 〈a, {3}〉 and the matching M3 (with pM3

(a) =
{1, 3}) is weakly/strongly blocked by 〈a, {1}〉. Moreover,
there is no Nash stable matching. Indeed, M1, M2 and M3

are not individually rational.
Let us now assume that the capacity of a is 3, a Di θ and
θDi a with i ∈ {1, 2, 3}. We consider that the individual # 3
is “undesired”, i.e. the coalitions with the individual # 3 are
not individually rational for the others:
• {1, 2} �1 {1} �1 {1, 2, 3} �1 {1, 3};
• {1, 2} �2 {2} �2 {1, 2, 3} �2 {2, 3};
• {2, 3} �3 {1, 2, 3} �3 {1, 3} �3 {3};

The matching M1 such that pM1
(a) = {1, 2} is strict core sta-

ble and so: i) core stable and individual rational; and ii) Pareto-
optimal and contractually individually stable. Moreover, it is
not Nash stable. The matching M2 such that pM2(a) = {3} is
Nash stable and so (contractually) individually stable but it is
not core stable (and so neither strict core stable). The matching
M3 such that pM3(a) = {1, 2, 3} is Pareto-optimal and
so contractually individually stable but it is not individually
rational.

Even if the strict core stability and the Nash stability are
desirable property, there exists no necessarily such solutions.

By contrast, the Pareto-optimality, and so the contractually
individually stability, seems not to be discriminative. An
alternative way to assess the quality of a matching consists
of the concept of social welfare. For this purpose, we assume
that the individuals have cardinal preferences. Moreover, in
an IA problem, each individual evaluates its preferences with
respect to 2m−1 groups. This preference representation takes
exponential space. By contrast, the representation of additively
separable preferences is linear with respect to the number of
individuals.

Definition 7 (Additively separable IA): Let IA = 〈I, A〉
be a IA problem of size (m,n). The problem is additively
separable (ASIA) if each individual i ∈ I is endowed with:

1) a valuation function vi : A∪{θ} → [−1; 1] representing
its preferences over the activities, possibly the void
activity such as vi(θ) = 0;

2) a valuation function wi : I \ {i} → [−1; 1] representing
its preferences over the potential partners.

The utility for an individual i is the function ui : G(i)×A ∪
{θ} → [−1; 1] defined such that:

∀g ∈ G(i) ∀a ∈ A∪{θ}, ui(g, a) =
[ 1
m−1

Σj∈g,j 6=iwi(j)] + vi(a)

2
(24)

We assumes that the preferences over the individuals and the
preferences over the activities are comparable. In particular,
the utility for an individual to be alone only depends on
its valuation of the activity. Moreover, the satisfaction of an
individual with respect to a group is the mean valuation of
its partners. In the rest of the paper, we do not consider that
the utilities are defined to correspond to ordinal preferences as
in [12] but we suppose a direct access the utilities of agents
since it is the case in our practical application.

Contrary to the Paretian approach, the social choice the-
ory analyses the interpersonal comparisons [13]. This theory
reconciles the utilitarianism of Jeremy Bentham and the dis-
tributive justice advocated by John Rawls [14].

Definition 8 (Social welfare): Let IA = 〈I, A〉 be an ASIA
problem of size (m,n) M
• The utilitarian welfare of a matching M is:

U(M) =
1

m

∑
i∈I

ui(gM (i), aM (i)) (25)

• The egalitarian welfare of a matching M is:

E(M) = min
i∈I

(ui(gM (i), aM (i))) (26)

The higher the welfare is, the better the matching is. A
maximum utilitarian (resp. egalitarian) matching maximizes
the utilitarian (resp. egalitarian) welfare. It is worth noticing
that the egalitarian welfare is 0 if at least one individual is
inactive.

Inspired by [3], Figure 1 depicts the inclusions relationships
between concepts which follow from their definitions.

Example 2 (ASIA problem): Let us consider our previous
example where the capacity of the activity is 3 and individual
# 3 is undesired. We define the valuation functions such
that v1(a) = v2(a) = v3(a) = 0, w1(2) = w2(1) = 1

2 ,
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Fig. 1: Inclusion relationships between stability, fairness and
optimality for IA problems. For instance, each strict core
matching is Pareto-optimal

w1(3) = w2(3) = −1, w3(1) = 1
2 and w3(2) = 1. Therefore,

the induced ordinal preferences are as previously. While the
matching M1 (such that pM1

(a) = {1, 2}) maximizes the
utilitarian welfare (U(M1) = 1

12 ) and the egalitarian welfare
(E(M1) = 0), it is not the case of the matching M3

(such that pM3(a) = {1, 2, 3}) since its utilitarian welfare
(U(M3) = 1

24 ) and it egalitarian welfare (E(M3) = − 1
8 ) are

smaller.

IV. THE ALGORITHM

We propose here an algorithm which aims at maximizing
the egalitarian welfare of the resulting matching for any ASIA
problem instance.

In Algorithm 1, all the individuals are initially alone and
assigned to the void activity. Each in turn, a free individual
i considers the rational activity a it prefers. The algorithm is
inclusive: if a is not full, then i is assigned. Otherwise, the
algorithm tries to improve the egalitarian welfare of the group,
eventually by firing the individuals whose presence penalizes
the egalitarian welfare of the group. If the assignment of i
does not improve the egalitarian welfare of the group then
i must concede, i.e. consider the next rational activity. The
individuals which are replaced by i must concede. An agent
which is rejected by all its rational activities stay alone and it
is definitely assigned to the void activity. An approximation
algorithm consists of excluding only one individual at each
step (line 20).

It can be noticed that our (approximation) algorithm always
returns a sound matching.

Property 2 (Termination): Our (approximation) algorithm
applied over an ASIA problem ends and returns a sound
matching.

Proof 2 (Termination): Let IA = 〈I, A〉 be an ASIA
problem. We consider the following loop invariant:

Σi∈I |concessions(i)|+ |Free| (27)

This invariant is positive. It strictly decreases after each loop
since:

Algorithm 1: compute a matching for an ASIA problem
input : IA = 〈I,A〉
output: a matching M

1 Free = I;
2 foreach i ∈ I do
3 concessions(i) = A.SortWith(vi( ) > vi( ) ≥ 0);
4 aM (i) = θ ;
5 gM (i) = {i} ;

6 while Free 6= ∅ do
7 foreach i ∈ Free do
8 if concessions(i) = ∅ then Free\ = {i} ;
9 else

10 a = concessions(i).head ; //a is the
most preferred activity

11 g = pM (a) ;
12 g′ = g ∪ {i} ;
13 if |g| < ca then

/* a is undersubscribed and
so i is assigned */

14 aM (i) = a;
15 gM (i) = {i} ;
16 Free\ = {i} ;

17 else
18 umax = −∞;
19 bg = ∅;
20 SG = {sg ( g′; sg 6= ∅};

/* eventually
SG = {sg ( g′; |sg| = |g′| − 1} */

21 foreach sg ∈ SG do
22 u = mink∈sg(uk(sg, a));
23 if u > umax then
24 umax = u;
25 bg = sg;

/* bg is the best group */
26 foreach j ∈ bg do gM (j) = bg ;
27 foreach j ∈ g \ bg do

/* j is unassigned */
28 aM (j) = θ ;
29 gM (j) = {j} ;
30 Free∪ = {j} ;
31 concessions(j) =

concessions(j).tail;

32 if i ∈ bg then
/* i is assigned */

33 aM (i) = a ;
34 Free\ = {i} ;

35 else
/* i is rejected */

36 concessions(i) =
concessions(i).tail;

37 return M



1) an individual, which is assigned, is removed from Free;
2) an individual, which is not assigned, concedes until it is

definitely assigned to the void activity;
3) any individual, which is unassigned, concedes and at

least one another individual is assigned (and so removed
from Free).

The resulting matching is sound since the activities are never
oversubscribed.

It is worth noticing that our algorithm does not always
maximize the egalitarian welfare since the heuristic gives
priority to the activities.

Example 3 (ASIA problem): Let us consider our previ-
ous example (cf Example 2). The matching M3 such that
pM3(a) = {1, 2, 3} is reached by our algorithm even it is
not individually rational.

V. AGENT BEHAVIOURS

We consider the asynchronous message-passing model of
actor for concurrent programming [1]. In this perspective,
the primitives are agents and events. An agent represents an
independent program that runs on its own processor. An event
is the creation of an agent or the utterance/reception of a
message. It is worth noticing that the system is distributed
since the message transmission delay is arbitrary but not
negligible. The underlying channels are assumed to be reliable
(a message is delivered once and only once) and that the
messages may arrive in different order from sending.

In order to propose a distributed solver based on this model,
we distinguish 3 kinds of agents:

1) the “solver” agent which creates the other agents and
records the assignments;

2) the “individual” agents which are endowed with the
same behaviours but with different preferences;

3) the “activity” agents which are endowed with the same
behaviours but managing different groups and capacities.

The behaviour of the “solver” agent consists of: i) creating
other agents; ii) triggering the solving; iii) recording the
assignments/unassignments; and iv) returning the matching
when all the individual are assigned.

The behaviour of the “individual” agent (cf algorithm 2)
builds the list of concessions, then it proposes itself to
the rational activity it prefers. When the agent is as-
signed/unassigned, it informs the “solver” agent. For an
unassignment, the “activity” agent waits for a confirmation
before sending a new proposal such that a matching is not
prematurely returned by the “solver” agent. If an “individual”
agent becomes free, it concedes, i.e. sends a proposal to the
next rational activity in the list of concessions, possibly until
to be definitively assigned to the void activity.

The behavior of the “activity” agent is described by the
deterministic finite state automaton in Figure 2. When a pro-
posal is received, it is accepted if the current group is not full
(in the state Available). Otherwise, the agent handles the
proposals one by one (in the state Casting) by identifying
the subgroup which maximizes the egalitarian welfare. Since

Algorithm 2: The behaviour of an “individual” agent
input : i ∈ I

1 switch ReceivedMessage do
2 case Inform(A)
3 concessions = A.SortWith(vi( ) > vi( ) ≥ 0);
4 if concessions 6= ∅ then
5 concessions.head ! Propose(i)//i

proposes itself to its most
preferred activity

6 else
7 parent!Allocated(i, θ)

8 case Accept
9 parent!Allocated(i, concessions.head); //i is

assigned

10 case Reject
11 concessions = concessions.tail; //i is not

assigned
12 if concessions = ∅ then
13 parent!Allocated(i, θ)

14 else
15 concessions.head ! Propose(i)

16 case Eject
17 parent!Disallocated(i, concessions.head) ; //i

notifies the ‘‘solver’’ agent
about the unassignment

18 case Confirm
/* The unassignment has been

recorded */
19 concessions.head!Confirm(concessions.head);
20 concessions = concessions.tail;
21 if concessions = ∅ then
22 parent!Allocated(i, θ)

23 else concessions.head ! Propose(i) ;

24 case Query(g, a)
25 sender!Reply(g, a, ui(g, a)); //i informs a

about its preferences

the capacity is reached, the subgroups of size ca or less are
considered. If the proposer is not in the best subgroup then the
proposal is rejected. Otherwise, the proposal is accepted when
the fired members have confirmed the unassignment (in the
state Firing). When the proposal is processed, the “activity”
agent is ready to evaluate the next proposals, possibly those
which have been stashed.

VI. EXPERIMENTS

Our experiments aim at evaluating the matching reached by
our algorithm and the speedup due to its distribution.

We have implemented our prototype with the Scala progam-
ming language and the Akka toolkit [15]. The latter, which is
based on the actor model [1], allows us to fill the gap between



Availablestart Casting

Firing

Propose(i) ∧ |g| < ca ⇒ i!Accept

Propose(i) ∧ |g| = ca ⇒ query({g′ ⊂ g ∪ {i}; g′ 6= ∅})

Propose(j)⇒ stash()

Reply(g′, a, u) ∧ nbQ 6= 1⇒
u(g′)+ = u;nbQ−−

Reply(g′, a, u) ∧ nbQ = 1 ∧ i /∈ Best⇒
j!Reject;unStashAll()

Reply(g′, a, u) ∧ nbQ = 1 ∧ i ∈ Best⇒
(g − best)!Eject

Propose(j)⇒ stash()

Confirm ∧ nbC 6= 1⇒
nbC −−

Confirm ∧ nbC = 1⇒
i!Accept; g = best;unStashAll()

Fig. 2: The behaviour of an “activity” agent

the specification and its implementation. In order to tackle a
large number of individuals, we considers the approximation
algorithm2.

In our experiments, we consider some (pseudo)-randomly
generated ASIA instances with n activities and m individuals.
Since we aim at evaluating the egalitarian welfare of the
outcome of our algorithm, we warrant that the individuals
and the activities are strictly rational for all the individuals
(∀i, j ∈ I ∀a ∈ A wi(j) > 0 ∧ vi(a) > 0) and that all the
individuals can be assigned to an activity (Σa∈Aca ≥ m) since
it is the case of our practical application. For sake of simplicity,
all the activities have the same capacity (c = dm/ne). For each
set of parameters (n and m), we generate 100 instances.

We have implemented a local search algorithm [16] to be
compared with our algorithm. This hill-climbing algorithm,
which starts with a sound and random matching (where all the
individuals are assigned to an activity) and iteratively tries to
improve the egalitarian welfare. Two matchings are neighbours
if they are identical with an exception for one individual which
moves to another activity. If this new activity is full, then all
the swaps of individuals with the members of that activity are
considered.

Firstly, we compare the egalitarian welfare of the matching
reached by our algorithm with the one reached by local search.
Figure 3a presents the mean egalitarian welfare obtained for
each set of parameters (with 2 ≤ n ≤ 10 and 2 × n ≤ m ≤
100). Our algorithm overreaches the local search. Indeed, the
egalitarian welfare for a ASIA problem is a function with
many local optima.

Secondly, we compare the runtime of the centralized version
of our approximation algorithm with the decentralized one.
Figure 3b shows the mean runtimes for each set of parameters
(with 2 ≤ n ≤ 10 and 2 × n ≤ m ≤ 400). While the
centralized algorithm is faster when the number of individuals

2The experiments have been performed with an Intel (R) Core (TM) i7
2.8GHz MacBook Pro with 8 cores and 16GB of RAM.

is low (∼ 40), its runtime quickly grows with the number
of individuals (13 ms for 100 individuals and 10 activities)
while the runtime of the distributed version is less (9 ms in
the latter case). Moreover, the runtime of the hill-climbing
algorithm is too high to be represented in Figure 3b (2, 969
ms for 100 individuals and 10 activities). We can expect a
higher runtime if we adopt a local search method such as the
simulated annealing without any warranty about the optimality
of the outcome.

In summary, the outcome reached by our algorithm seems
to be good. Moreover, the distribution of our algorithm allows
to speedup (up to 5 times) its runtime.

VII. CONCLUSIONS

We have presented here the generic problem of individu-
als/activities where some individuals must be assigned to the
activities they enjoy with their favorite partners. Even if the
Nash/strict core stability is a desirable property, there exists no
necessarily such a solution. By contrast, the Pareto-optimality
seems not to be discriminative. This is the reason why we
have adopted additively separable preferences which allow
the evaluation of matchings with the help of the egalitarian
welfare. Moreover, this representation of preferences is linear
with respect to the number of individuals and it reduces the
users’ effort for the individual preference elicitation. In order
to maximize the egalitarian welfare, we have proposed an
inclusive heuristic where the individuals propose themselves
to the activities they prefer and eventually concede. The
individuals which penalize the egalitarian welfare of a full
activity are unassigned and they concede. We have shown that
this algorithm always returns a sound matching. By adopting
the actor model, we have distributed this algorithm. The
difficulty lies in: (i) the detection of the halting (as messages
can arrive in a different order from the sending), an “activity”
agent must wait for the confirmation of an unassignment
before assigning a new individual); (ii) the synchronization
(as the acceptance of an individual depends on the group, an
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Fig. 3: Egalitarian welfare of matching reached by our algorithm/hill-climbing (at left) and decentralized/centralized algorithm
runtime (at right)

“activity” agent must deal with the proposals one-by-one). Our
experiments show that our algorithm benefits of the structural
properties of two-sided matching and it overreaches local
search techniques. Finally, the distribution of our algorithm
speeds up its execution (up to 5 times).

In future works, we aim at evaluating our matching engine
with the real-world data from our project.
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