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Abstract

Although the ongoing digital revolution in fields such as chemometrics, genomics or
personalized medicine gives hope for considerable progress in these areas, it also provides
more and more high-dimensional data to analyze and interpret. A common usual task in
those fields is discriminant analysis, which however may suffer from the high dimensionality
of the data. The recent advances, through subspace classification or variable selection
methods, allowed to reach either excellent classification performances or useful visualizations
and interpretations. Obviously, it is of great interest to have both excellent classification
accuracies and a meaningful variable selection for interpretation. This work addresses this
issue by introducing a subspace discriminant analysis method which performs a class-specific
variable selection through Bayesian sparsity. The resulting classification methodology is
called sparse high-dimensional discriminant analysis (sHDDA). Contrary to most sparse
methods which are based on the Lasso, sHDDA relies on a Bayesian modeling of the
sparsity pattern and avoids the painstaking and sensitive cross-validation of the sparsity
level. The main features of sHDDA are illustrated on simulated and real-world data. In
particular, we propose an exemplar application to cancer characterization based on medical
imaging using radiomic feature extraction is in particular proposed.

1 Introduction

In many applications, such as chemometrics, genomics or personalized medicine, the observed
data are frequently high-dimensional and the classification of such data remains a challenging
problem. In particular, when considering the generative (model-based) framework, the corre-
sponding classification (or discriminant analysis) methods show a disappointing behavior in high-
dimensional spaces. They suffer from the well-known curse of dimensionality (Bellman, 1957)
which is mainly due to the fact that model-based methods are dramatically over-parametrized
in high-dimensional spaces. Moreover, even though many variables are measured to describe the
studied phenomenon, only a small subset of these original variables are in fact relevant for both
modeling and classification.

In recent years, several works tried to reduce the data dimensionality or select relevant vari-
ables while building a generative classifier. In this context, there are two main approaches. On
the one hand, some works assume that the data of each class live in different low-dimensional
subspaces. On the other hand, some other works assume that the classes differ only with respect
to some of the original features. Therefore, the classification task aims to discriminate the data
on a subset of relevant features. Both approaches present two practical advantages: classification
results are improved by the removing of non informative features and the interpretation of the
obtained classification is eased by the visualization in the subspaces or the meaning of retained
variables. We detail hereafter some key works in both approaches. For further reading, we may
recommend to refer to Bouveyron and Brunet-Saumard (2013) and Bouveyron (2013).



1.1 Subspace classification

The earliest work in the context of subspace classification is due to R. Fisher who introduced
in 1936 the famous-to-be (Fisher) linear discriminant analysis (LDA, Fisher (1936)) method.
LDA aims to find a linear subspace that best separates the classes (see Duda et al. (2000) for
more details). For this, LDA looks for a linear transformation which projects the observations
in a discriminative and low dimensional subspace. The optimal linear transformation is the one
maximizing a criterion which is large when the between-class covariance matrix (Sg) is large
and when the within-covariance matrix (Sy ) is small. Four different criteria can be found in the
literature which satisfy such a constraint (see Fukunaga (1990) for a review). The criterion which
is traditionally used is J(U) = trace((U'SwU) 1UtSgU) where Sy and Sp are respectively
the within and the between empirical covariance matrices. Although LDA suffers from some
limitations in high-dimensional spaces, it remains a baseline method which usually offers satisfying
classification results in most situation, like in this radiomic study (Kirienko et al., 2018), while
providing a useful visualization of the data.

Among the subspace classification methods, partial least square discriminant analysis (PLS-
DA, Barker and Rayens (2003)) is probably the most popular and used method in chemometrics
and genomics. PLS-DA is built on partial least square regression and is adapted to discriminant
analysis by replacing the categorical response variable (encoding class memberships) by a multi-
dimensional binary one (of the size of the number of classes). Let us recall that PLS aims to find
latent representations of both the explanatory and response variables such that the covariance of
the corresponding latent variables is maximum. Thus, PLS-DA realizes a supervised dimension
reduction which, most of the time, allows an efficient classification of high-dimensional data. In
addition, the latent representation of the observed data is usually meaningful for practitioners
interested in having a look at their data.

On the model-based side, high-dimensional discriminant analysis (HDDA, Bouveyron et al.
(2007)) has also become a standard tool for discriminant analysis, in particular for multi-class
classification. HDDA is based on a parsimonious Gaussian mixture model which translates the
assumption that the data of each class live in specific low-dimensional subspaces. To do so,
the HDDA model assumes a low-rank covariance structure for the classes by imposing that the
covariance matrices of each class have only dj, + 1 different eigenvalues (dj, being the intrinsic
dimensionality of the kth class). In particular, the intrinsic dimensions of the classes control the
complexity of the modeling. Interestingly, HDDA allows to recover the usual Gaussian mixture
model when assuming that the intrinsic dimensions are all equal to the observed data dimension.

1.2 Variable selection methods

Another way of doing classification in high-dimensional spaces is to perform a selection of the
original variables that are relevant for discriminating the classes. Early variable selection methods
for classification relied on scores, such as the Fisher score (Duda et al., 2000), to evaluate the
ability of a set of variables to discriminate. However, those approaches had to face the combi-
natorial problem of exploring all possible sets of the original variables. We refer to McLachlan
(1992) for further details on early approaches. The most recent approaches rely on greedy algo-
rithms to explore the possible sets of variables. In particular, Murphy et al. (2010) and Maugis
et al. (2011) use a forward-backward algorithm to add or remove variables in the selection based
on a model selection criterion. The main idea is here to consider a Gaussian mixture model and
to choose using Bayesian Information Criterion (BIC) between a model with a specific variable
and the same model without it. Among similar variable selection approaches for classification,
we can mention Pacheco et al. (2006), Chiang and Pell (2004) and Indahl and Naes (2004).

In the last decade, a new approach for variable selection has emerged which is more computa-
tionally tenable for very high-dimensional: variable selection through sparsity penalization. Sparse
methods for classification usually intend to find a low-dimensional modeling of the classes under
some sparsity constraints. In particular, they impose that the building of the low-dimensional
representation of the data relies on only a few of the original variables. Such a constraint can be



imposed using ¢, or ¢1 penalties, as commonly done in the context of regression by Lasso (Tib-
shirani, 1996). A first sparse version of Fisher's linear discriminant analysis was introduced by
Trendafilov and Jolliffe (2007). In this seminal work, they introduce DALASS which looks for
the solution of the Fisher discrimination problem under sparsity constraints, through ¢; penal-
ization via the Lasso. Thus, the Fisher discriminant subspace that is built only depends on the
relevant original variables, helping in turn the interpretation of the classification results. A few
years later, Witten and Tibshirani (2011) and Clemmensen et al. (2011) proposed two other
formulations for this problem. More specifically, Witten and Tibshirani (2011) considered the
Fisher discrimination problem under ¢; penalization and recast it as a biconvex problem. They
make use of a minorization-maximization algorithm to optimize the resulting objective function.
Conversely, Clemmensen et al. (2011) used optimal scoring, which involves the reformulation of
the classification problem as a regression one, which is solved under sparsity constraints. An
accelerated optimization procedure for this problem was proposed in Atkins et al. (2017) using
accelerated proximal gradient.

Sparse versions of PLS-DA have also been proposed. A first sparse PLS-DA method was
proposed by Chung and Keles (2010) which solves the PLS-DA problem with Lasso constraints
through a two-step optimization procedure. In the line of sparse PLS (L& Cao et al., 2008, 2009),
Lé Cao et al. (2011) introduced a one-step technique by reformulating the PLS-DA problem as
a regression one, on which the Lasso penalty is then added.

1.3 Contributions and organization of the paper

Although many methods have been proposed to perform variable selection in discriminant analy-
sis, all approaches select variables that globally discriminate the classes. Conversely, it would be
of interest for practitioners to make a selection of relevant variables for describing each class. In
this work, we introduce a modeling which extends the HDDA model of Bouveyron et al. (2007) in
order to perform class-specific variable selection. The HDDA model is extended by incorporating
a sparsity pattern for each class, allowing in turn an improvement of the classification perfor-
mance and an easier interpretation of the modeling. The resulting classification methodology
is called sparse HDDA (sHDDA). Contrary to most sparse discriminant analysis methods which
are based on the Lasso, sHDDA relies on a Bayesian modeling of the sparsity pattern. This
allows in particular to avoid the painstaking and sensitive cross-validation of the sparsity level of
Lasso-based approaches.

Section 2 introduces the probabilistic model of sHDDA. The inference algorithm for estimating
the intrinsic dimensionalities, the sparsity patterns and the model parameters are presented in
Section 3. Section 4 is devoted to numerical experiments. These numerical experiments aim
to highlight the main features of sHDDA, in particular regarding the variable selection stability
and the classification performance. Section 5 proposes an application to cancer characterization
based on medical imaging (using radiomic feature extraction). Some concluding remarks are
given in Section 6.

It is worth noticing that a package for the R software is in development and it is currently
available upon request. The package will incorporate a graphical interface allowing for the users
to perform the analysis and visualization of their data in a facilitated way.

2 Sparse HDDA

This section introduces the model for sparse discriminant analysis and discusses model inference.
This model extends the HDDA model of Bouveyron et al. (2007) by incorporating a sparsity
pattern for each class, allowing in turn an easiest interpretation of the modeling.



2.1 The classification model

Let us consider a complete training dataset {(x1,21),..., (Zn,2n)} where z; € {1,..., K} in-
dicates the class label of the observation xz; € RP. Let us assume that {z1,...,2,} and
{z1,...,2n} are respectively independent observed realizations of a random vector X € R? and
a random variable Z € {1,..., K}. Let us first assume that distribution of Z is a multinomial
distribution:

Z ~ M(m),

with m = (mq,...,mx) and where 7 is therefore the prior probability of the kth class, for
k=1,.. K.

A low-rank decomposition Let us also assume that, conditionally to Z, the observed variable
X can be expressed as follows:

Xiz=r = QrY + i +¢, (1)

where Y € R% is a low-dimensional latent vector, Q) is a p x dj projection matrix, j; € RP
is a centering term and ¢ is a noise term, for k = 1,..., K. From a geometric point of view,
Qy is the orthogonal orientation matrix of the subspace where the data of the kth class are
supposed to live. The dj column vectors of Qi span the subspace of the kth class and the
intrinsic dimensionality of the class is dj. Let us further assume that, conditionally to Z, the
continuous latent variable Y is normally distributed

Y|Z =k~ N(0, Ag),

with variance-covariance matrix Ay = diag(Ag1, ..., Aka, ). Conditionally to Z, the noise term ¢
is also assumed to be normally distributed

e|Z =k ~ N(0,b1,).

Incorporating sparsity In order to incorporate sparsity in a generative way, we assume that
the orientation matrices Q; of the class-specific subspaces, for k = 1, ..., K, can be decomposed
as

Qr = Vi Wy,

where V, = diag(vy) with vg = (vg1, ..., vgp) € {0,1}P and Wy is a p x dj, matrix. Thus, (1)
becomes:
X\Z:k :VkaY+Nk+5- (2)

Note that each binary parameter vy; indicates wether the jth variable is relevant for modelling
the kth class. For each class k, ¢ = Z?Zl vy; represents the number of relevant variables.

Marginal distribution With all these assumptions, the conditional distribution of X is:
XY, Z =k~ N(Vi;WLY + g, bil,),
and its marginal distribution is therefore a mixture of Gaussians:
K
pla) =Y mrd(@s e, S),
k=1

where ¢(.) denotes the multivariate Gaussian density function parametrized, for the kth compo-
nent, by its mean vector py, and its covariance matrix Xy, = V, W A, WEVE+ b I,. Notice that
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Figure 1: lllustration of the proposed modeling for two classes in their specific subspaces.

Y1 has therefore a specific covariance srtucture since QiEka is such that:

ar1 0
- 0 } dy
0 Qkdy,

QLSkQr = br 0

0 b

where Q = [Qk,Qk], Qx being an arbitrary complementary matrix, and ay; = Ap; + by, for
j=1,...,dg. Figure 1 illustrates the modeling introduced here for the case of two classes.

2.2 Classification of new observations

In the discriminant analysis framework, new observations are usually assigned to a class using
the maximum a posteriori (MAP) rule which assigns a new observation 2 € R? to the class for
which 2 has the highest posterior probability P(Z = k| X = x), i.e.

2 = argmaxP(Z = k| X = ).
k=1,...,K

s

Therefore, the classification step mainly consists in calculating this posterior probability P(Z =
k|X = x) for each class k = 1, ..., K. Maximizing the posterior probability over k is equivalent
to minimizing the classification function T'y(y) = —2log(mrd(y; pr, Xk ) which is, for our model,
equal to:

dp
Ty(@) = ik — Pr()l|%, + i”x — Py(x)|I* + Z log(ak;) + (p — di) log(bx) — 21og(mx). (3)

where ||z|%, = y"Ary, Ax = QLA QY and Py (x) = QrQ% (v — pur,) + px. Proof of this result
is provided in Bouveyron et al. (2007).

Besides its computational interest, the above formula provides as well a comprehensive in-
terpretation of the classification function I'y, which mainly governs the computation of P(Z =
kE|Y = y). Indeed, it appears that I'; mainly depends on two distances: on the one hand, the



distance between the projections on the discriminant subspace E of the observation y; and the
mean my and, on the other hand, the distance between the projections on the complementary
subspace of = and . Therefore, the posterior probability P(Z = k|X = ) is close to 1 if both
distances are small which seems quite natural. Obviously, these distances are also balanced by the
variances in the class-specific subspace and its complementary and by the mixture proportions.

3 Model inference

We now present a strategy for inferring the model described above. Due to the complex nature
of the modeling, we address the inference in three steps: intrinsic dimensionality estimation,
sparsity pattern estimation and model parameter estimation.

3.1 Intrinsic dimensionality estimation

Before to go further in the inference, it is first necessary to estimate the intrinsic dimensionality
of each class, i.e. estimate the discrete parameters dy,...,dg. The estimation of the intrinsic
dimension of a dataset is a difficult problem which occurs frequently in data analysis, such as
in principal component analysis (PCA). A classical solution in PCA is to look for a break in
the eigenvalue scree of the covariance matrix. This strategy relies on the fact that the jth
eigenvalue of the covariance matrix corresponds to the fraction of the full variance carried by
the jth eigenvector of this matrix. Following Bouveyron et al. (2007), we propose to make use
of the scree-test of Cattell (1966) for estimating the intrinsic dimensions d, k = 1, ..., K. For
each class, the selected dimension is the one for which the subsequent eigenvalues differences
are smaller than a threshold. The threshold can be provided by the user (we recommend 10%
of the largest difference), selected through cross-validation or using model selection tools, such
as BIC (Schwarz, 1978).

3.2 Sparsity pattern estimation

In order to recover the sparsity pattern for each of the K classes, we leverage the strategy
proposed by Bouveyron et al. (2016) for performing Bayesian variable selection in probabilistic
PCA. To this end, we complete the previous modeling by considering priors for both the sparsity
patterns p(v1), ..., p(vk), and the projection parameters p(W7),...,p(Wik). This allows us to
select the sparsity patterns that are the sparsity patterns with the highest posterior probability.
Specifically, following the parametric empirical Bayes framework leads to choose, for each k& =
1,..., K, the following sparsity pattern

O = argmax,, ¢ (o,13»P(vk| X)

= argmakae{o}l}pp(vk)P(Xk |vk)

nk
= argmax,, o) [[ [ plawd Wi op()aws.
=1/ RPX R

where X is the set of n, = > " 1{z; = k} observations belonging to the kth class, i.e.

Regarding the projection parameters following Bouveyron et al. (2016), we derive a closed-
form expression of the marginal likelihood p(Xj|vg). To this end, we consider a Gaussian prior
for the matrix . Specifically, we assume that its rows are a priori i.i.d. following

Vie{l,.,p}, w; N/\/'(O,A,;l/ai).

The hyperparameter «, > 0 controls the width of the prior variance, and will be chosen via
parametric empirical Bayes. In that setting, the marginal likelihood becomes



Nk ngk
p(Xxlvr, aw) = [ [ plarilow, ox) = H/ Pl Wi, vn)p(Wi| ) d W
i=1 =17 RPX

In order to obtain a closed-form formulation of the evidence, we dissociate the modelling of
the noise of active and inactive variables. To do so, for each class k = 1, ..., K, the noise ¢ is
assumed to decompose as follows:

€|z=k = UkE1 + V€2,

where 1|Z = k ~ N(0,0%,1,) is the noise of the inactive variables and e3|Z = k ~ N(0, 0%,1,)
is the noise of the active variables, both for the kth class. Making use of Theorem 2 of Bouveyron
et al. (2016) and assuming that o7, — 0, we end up with a closed-form formulation for the
evidence:

Sk gy — | _ nkqk

log p(X|v, ax) = — 507 nk(p — qx) log ox2 + log ag, (4)
k2
Nk
+ ) (log Kg, —a,) 2 (clleys — pp*l]) — ailog ||z — i |l) -
=1

where K, denotes the modified Bessel function of the second kind (Abramowitz and Stegun,
1965). The hyperparameter «, can be found by solving a univariate convex optimization problem,
as in Bouveyron et al. (2016).

Regarding the prior on the sparsity pattern, while Bouveyron et al. (2016) only used the
uniform noninformative prior p(v) o< 1, we extend their approach by also considering sparsity
inducing priors. Specifically, we consider a product of Bernoulli distributions with the same
parameter. This shared parameter is chosen so that the prior probability of selecting more than
n variables is at most 5%. This rationale comes from the fact that singular value decomposition,
which is the cornerstone of our inference strategy, works best when n > p or n = p (Johnstone
and Lu, 2009). A similar reasoning was applied to linear regression by Narisetty and He (2014).

The main advantage of the chosen framework is that it exhibits a closed-form formulation
of the posterior probabilities of all sparsity patterns. However, directly maximizing this quantity
over the binary vector vy, is not tractable because 22 models need to be evaluated. It is however
possible to reduce the complexity of the optimization problem by ranking the candidate variables
using the fast variational expectation-maximization (VEM) algorithm proposed in Bouveyron
et al. (2016) on a relaxed version of the above modeling. Then, once the variable are ranked, it
is possible to optimize the evidence over the path of models (4). This procedure, first introduced
by Latouche et al. (2016) in a linear regression context, provides both the number g; and the
list of active variables for the kth class.

3.3 Model parameter estimation

Finally, the estimation of the model parameters 8, = {7y px, Qk, ax;, bx} is performed through
maximum likelihood. The log-likelihood function £ takes the following form in the case of the
statistical model described above:

L(X;0) =) logp(ws,z) = Y logp(z:) + Y logp(ws|z). (5)
=1 i=1 i=1

Only the first of those two terms depend on m, leading to the estimate 7, = ng/n for all
k € {1,..., K}. The second terms depend on all the other parameters, we can rewrite it:



n K ng K ng
S logplailz) = S0 logplandz = k) = 3.3 log(p(aft |z = bpafilz = k) (6)
i=1 k=11i=1 k=11i=1

K ng K ng

:ZZIOg¢$kwﬂka WARQ) + bily,) +ZZIOg¢xkzaﬂk’ p—q

k=11i=1 k=11i=1
(7)

Therefore, the maximum likelihood estimates of the class means is

= E Tik-
nk

The first term of Equation (7) exactly corresponds to a sum of likelihoods of probabilistic PCA
models (Tipping and Bishop, 1999). As detailed in Lemma 1 (see Appendix A), maximum
likelihood in such models is linked to the eigendecomposition of the class-specific covariances

defined as
1 &

St = om Dk — m)akt — )" (8)
i=1
Therefore, maximum likelihood estimates of the projection parameters are given by
e the columns of Q” are the dy, eigenvectors of Sy that correspond to its dj, largest eigen-
values 11, ..., 14, (recall also that Q”’“ = 0 by definition of the model),
e forall k € {1, ,K} and [ € {1, ...,dk}, S\k’l = v — bg.

The last remaining parameters, b1, ..., b, appear in both terms of Equation (7). Using Lemma
1, up to constants that do not depend on any of the by, ..., bg, this leads, at a maximum of the
likelihood, to

¢ o~ (e — di)
Zlogp(xi\zz‘) = —Z <kq,f2k1 Z Akl

k=1 l dr+1
nk(p — qk b} Vg (|2
+21%b+§nk%w>,(m

which leads to

b = ( Z Akl+—Z||x ;;k||2>.

l=di+1

3.4 The sHDDA algorithm

We provide in Algorithm 3.4 a summary of the whole process for performing sparse HDDA on
a set of data. As any supervised classification algorithm, sHDDA is split into a learning phase
and a prediction phase. The learning phase gathers the three inference steps described above:
estimation of intrinsic dimensionalities, estimation of active variable sets and estimation of model
parameters. Then, the prediction of labels {7, ..., 2, } for new observations {7, ..., 2} } is done
through the MAP rule. Notice that the prediction step is not mandatory for users only interested
in the class-specific variable selection.

4 Numerical experiments

In this section, our goal is to present the specificity of the proposed sHDDA method on a
simulated data set and some real data sets, and to compare the performances with other statistical
methods.

o)



Algorithm 1 The sparse HDDA (sHDDA) algorithm.

Input: a learning dataset {(z1,21), ..., (Zn,2,)} and a set of new observations {z7,...,2% } to
label

Output: predicted labels {27, ..., 2%} for the new observations and estimated model parameters
6.

// Learning
For each class k=1,..., K do

e estimate the intrinsic dimensionality dj, of the class using Cattell’s scree-test,
e estimate the set of active variables vy, for the class by maximizing (4),
e estimate model parameters ¢, through maximizing the likelihood function (5).

// Classification
For each new observation z* do

e compute for each class & = 1,..., K the posterior probability P(Z = k|X = x,é)
through (3),

e assign the observation x* to the class with the highest posterior probability:

2" = argmax, P(Z = k|X = x,0).

// Return results
Return the predicted labels {2, ..., 2%} and estimated model parameters 6.

4.1 Implementation of statistical methods

We used the R package MASS for LDA function (Fisher, 1936) and sparseLDA for sLDA function
(Clemmensen et al., 2011) with default settings. We used the function of the penalizedLDA
R package with a cross-validation of parameters for PenalizedLDA function (Witten and Tib-
shirani, 2011). Based on accSDA package, we used ASDA function with default parameters for
the accelerated sparse discriminant analysis of Atkins et al. (2017). For PLS-DA and sPLS-DA
(Lé Cao et al., 2011), we used the mixOmics R package. For sPLS-DA, we used the function
tune.splsda to select the optimal number of components and the optimal number of vari-
ables to choose in the learning subset with 5-fold cross validation and by using the maximal
distance to estimate the classification error rate. For HDDA (Bouveyron et al., 2007), we used
the HDclassif R package (Bergé et al., 2012). The performances of each statistical method
were evaluated by taking into account the percentage of observations correctly identified in the
test subsets.

4.2 An introductory example

We simulated here a data set to illustrate the incorporation of a sparsity pattern for each class
in the model. For this experiment, n = 150 observations were simulated according to (2) with
p = 100 variables, k = 3 classes (50 observations by class), d = (10,5, 2) for the dimensions
of the latent space for each class and ¢ = 20 true number of relevant variables in each class.
The sparsity pattern was variables 1 to 20 for class 1, variables 16 to 35 for class 2 and variables
31 to 50 for class 3. Therefore, the variables 16 to 20 were common to class 1 and 2 and the
variables 31 to 35 were common to class 2 and 3. The variables 51 to 100 were not related to
any class. In this simulation, the signal to noise ratio was equal to 0.89 for class 1, 1.00 for class
2 and 1.11 for class 3.

Based on only one run for illustration, sHDDA estimated the dimensions of the latent space



SHDDA-class 1 SHDDA-class 2 SHDDA-class 3
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Figure 2: Selected variables for the numerical simulation in each class by sHDDA for one run:
class 1 (left), class 2 (center) and class 3 (right).

SHDDA-class 1 SHDDA-class 2 SHDDA-class 3

Number of tests
Number of tests
Number of tests

Figure 3: Selected variables for the numerical simulation in each class by sHDDA for 50 runs:
class 1 (left), class 2 (center) and class 3 (right).

equal to (7, 5, 2), very close to the simulated parameters. Concerning the variable selection,
sHDDA selected 19 variables out of 20 for class 1, 20/20 variables for class 2 and 16/20 variables
for class 3. Figure 2 shows that sHDDA selected variables corresponding to the sparsity pattern
for each class, did not select variable other than those which were specific of each class and not
the variables 51 to 100. Similarly, sHDDA estimated the noise of each class subspace equal to
2.33 for class 1 (versus 2.25 for the simulation), 0.98 for class 2 (versus 1.00) and 0.36 for class
3 (versus 0.36).

4.3 Stability of variable selection

To evaluate the stability of variable selection, we generated 50 data sets repeating the simulation
of the previous section, and we compared the selected variables by sHDDA and those by other
sparse statistical methods described in 4.1. Figure 3 shows that sHDDA identified all twenty
true variables for classes 1 and 2, and 16/20 true variables for class 3 in more than 75% of
runs. In addition, sHDDA never selected variables other than those which were specific of each
class. Inversely, as shown in Figure 4, other sparse statistical methods selected all variables
either for all runs (sLDA, pLDA and ASDA), or for approximately half of the runs (sPLS-DA). As
expected, sHDDA leaded to the best performances as the sparsity pattern for each class in the
model is advantageous for this method which performs a variable selection by class. In contrast,
other sparse methods perform a globally variable selection, but it is surprising that they selected
irrelevant variables (variables 51 to 100).

4.4 Benchmark

In this section, the results of sSHDDA were compared to other classification approaches based
on three data sets. The first data set corresponds to the simulation example described in the
previous sections, while the two other data sets represent realistic situations to evaluate the
classification power of sSHDDA and compared with those obtained for other statistical methods.
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Number of tests
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ASDA SPLS-DA
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Figure 4: Selected variables for the numerical simulation with 50 runs for: sLDA (top left), pLDA
(top right), ASDA (bottom left) and sPLS-DA (bottom right).
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Data description

e Data set 1: the first data set corresponds to the simulation setup described in the section
4.2. The simulation was repeated 50 times with n = 150 observations, p = 100 variables
and k = 3 classes with each 50 observations. The observations were randomly separated
in a learning subset (100 observations) and a test subset (50 observations).

e Data set 2: the second data set illustrates a problem encountered in chemometrics. It
comes from the 3-class near-infrared spectroscopy data set previously described and pub-
lished in Devos et al. (2009). The data set contains n = 202 near-infrared spectra of
manufactured textiles quantified by p = 2800 variables. The objective is to classify sam-
ples according to a physical property summarized in k = 3 classes (48 samples in class
1, 108 in class 2 and 46 in class 3). The samples were randomly divided 50 times in a
learning subset (135 observations) and a test subset (67 observations).

e Data set 3: the third data set corresponds to the study of breast subtype lesions based
on gene expression patterns derived from cDNA microarrays. It is presented in the
datamicroarray R package and initially published in Sgrlie et al. (2001). The data
set consists of n = 85 experimental samples with p = 456 cDNA clones in breast cancer
carcinoma. The authors divided the data set in k = 5 sub-types (14 samples in class 1,
11 in class 2, 13 in class 3, 15 in class 4 and 32 in class 5). The population was randomly
divided 50 times in a learning subset (57 observations) and a test subset (28 observations).

Results The performances of classification obtained on the three data sets with the eight
statistical methods are presented in Figure 5.

Based on data set 1, we observed that the performances of sLDA were not better than
those of LDA for the distinction of 3 classes. pLDA showed a large variability of performances
compared to other methods. ASDA, PLS-DA and sPLS-DA provided better results than LDA but
the performances were statistically lower than those of HDDA and sHDDA (p-values of Wilcoxon
test < 0.001). This result was planned since the simulated sparsity pattern is in favour of these
two methods. Compared to HDDA, sHDDA yielded performances slightly below (p-value =
0.016) but enables to interpret model more easily with the selection of variables.

For the data set 2, the results is divided into two groups. sLDA, pLDA and PLS-DA yielded
similar performances to LDA. These results suggested that the variable selection by sLDA and
pLDA compared to LDA was not effective. In contrast, ASDA, sPLS-DA, HDDA and sHDDA
provided better results.

Finally, based on the data set 3, ASDA and PLS-DA achieved poorer results compared to LDA
and sPLS-DA. Best performances were obtained with pLDA, HDDA and sHDDA to distinguish
the 5 classes.

In summary, based on the study of these three data sets, we observed that HDDA and sHDDA
yielded good and stable performances compared to the other statistical methods.

5 Application to radiomics

In this section, we focus on a possible application of sSHDDA for the selection and combination
of radiomic features (Gillies et al., 2016). Radiomics is an emerging discipline in medical studies
that consists to extract a large number of image derived phenotypes from medical images. In
oncology, the aim is to quantify the tumor heterogeneity based on histogram, shape and texture
features in order to improve diagnosis, patient management and treatment monitoring. As is
common in medical context, most studies include a hundred patients (or even less), while it is
possible to extract from tens to hundreds radiomic features according to the technique used. To
illustrate the potential interest of sHDDA in this field, we considered a data set extracted from
Grossmann et al. (2017).
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(center) and data set 3 (bottom). Note that sLDA is not applicable on data set 3 because some
13

Figure 5: Classification accuracy of the eight statistical methods on data set 1 (top), data set 2
variables are co-linear.



Method Any run At least 25% At least 50% At least 75%  All runs
sLDA 35 84 75 53 21
pLDA 0 636 636 609 0
ASDA 0 598 487 265 8
sPLS-DA 0 372 7 2 0
sHDDA - class 1 618 17 14 11 4
sHDDA - class 2 615 17 17 15 8
sHDDA - class 3 617 18 18 14 10

Table 1: Number of features no selected, selected in at least 25% or 50% or 75% of runs and in
all runs by each sparse statistical method.

Data description The available data set consists of n = 87 patients with a lung cancer.
Based on Computed Tomography images, p = 636 radiomic features are extracted by the au-
thors including tumor intensity, shape, texture and wavelet features and are made available in
supplemental data of Grossmann et al. (2017). Our purpose is to identify the sub-type of lesions
according to k = 3 classes: 42 adenocarcinoma lesions, 33 squamous carcinoma lesions and 12
tumors of another sub-type. The cohort was randomly divided 50 times in a learning subset
(57 patients) and a test subset (30 patients). On test subsets, we compared the classification
accuracy of sHDDA with those of other statistical methods and we studied the selected radiomic
features.

Results To distinguish lung lesions in three sub-types, sLDA, pLDA and ASDA performed
poorer results than LDA, in contrast to PLS-DA, sPLS-DA, HDDA and sHDDA (Figure 6).
In particular, HDDA and sHDDA yielded better performances than other methods (p-values of
Wilcoxon test < 0.05) except for sPLS-DA.

With sHDDA, 615 features were not selected in any run compared with 35 for sSLDA (Table 1).
Other sparse methods (pLDA, ASDA and sPLS-DA) selected all features in at least one run.
Inversely, sHDDA selected 4, 8 and 10 features respectively for class 1, 2 and 3 in all runs
(Figure 7). Twenty-one features with sLDA and 8 features with ASDA were selected in all runs,
versus any with pLDA and sPLS-DA (Figure 8). These results show that the model built by
sHDDA was more sparse and stable compared to the other statistical methods. Based on at
least 75% of runs, SHDDA selected 11 features for the class 1, 15 features for the class 2 and 14
features for the class 3, as the variable selection by sHDDA is specific for each class compared to
other sparse methods. In particular, as shown in Table 2, some of selected variables were specified
to one class like Wavelet HHH stats energy for class 3. Other variables were specified to two
classes like Wavelet LHL stats energy for classes 1 an 2. The features identified by sHDDA
were also selected in at least 94% of runs by sLDA, 72% for pLDA and 56% for ASDA, but in
less than 56% of tests for sPLS-DA.

Even though the performances were close for sHDDA and sPLS-DA, the selections of features
were completely different: only two features (Shape compactness and Shape spherDisprop)
were selected in at least 75% of tests by sPLS-DA and that were not identified by sHDDA in
any run. Furthermore, sHDDA retained none of the shape features, only histogram, texture and
wavelet features (Table 2).

In the context of radiomics, it is very important to identify a small number of features of interest
in order to study each of them and to understand the link between these features and the
biological characteristics of lesions (Buvat et al., 2015; Orlhac et al., 2016). This biological
validation is necessary for the acceptance of radiomics in clinical practice (Lubner et al., 2017).
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Figure 6: Classification accuracy of the eight statistical methods on the radiomic data set.

pLDA |
ASDA |

PLS-DA

SPLS-DA -

HDDA

SHDDA -

Radiomic features sHDDA sLDA pLDA ASDA sPLS-DA
class1 «class2 class 3
GLCM _clusProm 88% 98% | 100% 84% 62% 16%
GLSZM highlIntensityLarteAreaEmp | 100%  100%  100% | 100% 92% 82% 56%
GLSZM _largeAreaEmphasis 94% 96% | 100% 72%  98% 20%
Stats_energy 100% 100% 100% | 94%  86% 90% 22%
Stats_ totalenergy 84% 90% 100% | 94% 68%  98% 14%
Wavelet HHH stats energy 82% | 100% 90%  90% 50%
Wavelet HHL stats_energy 100%  100%  100% | 100% 92%  92% 26%
Wavelet HLH stats energy 96%  100%  100% | 100% 88%  94% 14%
Wavelet HLL stats energy 98%  100%  100% | 100% 90%  98% 28%
Wavelet LHH stats_energy 80%  100%  98% | 100% 82%  96% 10%
Wavelet LHL stats energy 98% 96% 100% 88%  72% 14%
Wavelet LLH stats energy 98% 92% 9% 2%  86% 10%
Wavelet LLL glem clusProm 88%  100% | 100% 76%  62% 14%
Wavelet LLL stats energy 100%  100%  100% | 98%  86%  90% 22%
Wavelet LLL stats totalenergy 90%  100%  100% | 100% 80%  98% 12%
Wavelet LLL stats var 82%  100% | 100% 82%  56% 16%

Table 2: List of selected features by sHDDA in at least 75% of runs for the radiomic data set
and for each class (class 1: other sub-type, class 2: adenocarcinoma and class 3: squamous cell

carcinoma) and associated percentage. The four last columns correspond to the percentage of
runs for which each feature is selected for each sparse statistical method.
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Figure 7: Selected variables on 50 runs for the radiomic data set by sHDDA: other sub-type
(top), adenocarcinoma (center) and squamous carcinoma (bottom).
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6 Conclusion

Contrary to other sparse statistical methods that make a globally selection of relevant variables,
this article presents a modeling which extends the HDDA model for allowing to perform class-
specific variable selection. sHDDA includes a subspace discriminant analysis method which leds to
a class-specific variable selection through Bayesian sparsity. The method allows an improvement
of the classification performance and an easiest interpretation of the modeling thanks to the
meaningful variable selection by class. Experimental results demonstrated the high performances
for the classification and the great stability for the variable selection. These advantages make it
an efficient tool for all applications with high-dimensional data and for which an interpretation
of the model is expected such as in all "omics" sciences (genomics, proteomics, metabolomics,
radiomics, ...) for instance.

A Maximum likelihood estimates

The following lemma gives us the technical tools to derive the estimates of Section 3.3. Notice
that the model considered in this lemma is non-identifiable, and that infinitely many other
maximum likelihood estimates exist. The ones we consider can be conveniently computed by
simply performing a singular value decomposition.

Lemma 1 Consider some i.i.d. data (z1,...,x,) coming from the model
X ~ N(p1, QAQ" + 1),

with i € RP, Q € RP*?, and A = diag(ay, ..., aq).
Let S = (1/n) Y1 (z; — pu)(z; — p)t, and let S = Udiag(\1, ..., \p)UT be the eigenvalue

i=1
decomposition of S. Maximum likelihood estimates of 11, Q) and A are given by:

e [i is the empirical mean of 1, ..., Ty,
o the columns of Q are the first d columns of U,

o foralll € {1,...,d}, ag = A\ —b.

Moreover, at its maximum, the log-likelihood can be written
- n(p — d) n <
1 )= ————"logh— — N+ K,
> _logp(x:) 5 logb—op > i+
i=1 l=d+1
where K is a constant that does not depend on b.

A proof of this lemma can be found in Tipping and Bishop (1999, Appendices A-1,A-2).
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