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Abstract. The p-center problem consists in selecting p centers among
M to cover N clients, such that the maximal distance between a client
and its closest selected center is minimized. For this problem we propose
two new and compact integer formulations.

Our first formulation is an improvement of a previous formulation. It
significantly decreases the number of constraints while preserving the
optimal value of the linear relaxation. Our second formulation contains
less variables and constraints but it has a weaker linear relaxation bound.

We besides introduce an algorithm which enables us to compute strong
bounds and significantly reduce the size of our formulations.

Finally, the efficiency of the algorithm and the proposed formulations are
compared in terms of quality of the linear relaxation and computation
time over instances from OR-Library.

1 Introduction

We consider N clients {C1, ..., CN} and M potential facility sites {F1, ..., FM}.
Let dij be the distance between Ci and Fj . The objective of the p-center
problem is to open up to p facilities such that the maximal distance
(called radius) between a client and its closest selected site is minimized.

This problem is very popular in combinatorial optimization and has
many applications. We refer the reader to the recent survey [2]. Very re-
cent publications include [7, 6] which provide heuristic solutions and [3]
on an exact solution method.

In this paper, we will focus on mixed-integer linear programming formu-
lations of the p-center problem.

Let M and N respectively be the sets {1, ...,M} and {1, ..., N}. The
most classical formulation, denoted by (P1), for the p-center problem
(see for example [4]) considers the following variables:

– yj is a binary variable equal to 1 if and only if Fj is open;

– xij is a binary variable equal to 1 if and only if Ci is assigned to Fj ;

– R is the radius.
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min R

s.t.

M∑
j=1

yj ≤ p

M∑
j=1

xij = 1 i ∈ N

xij ≤ yj i ∈ N , j ∈M
M∑
j=1

dij xij ≤ R i ∈ N

xij , yj ∈ {0, 1} i ∈ N , j ∈M
r ∈ R

(1a)

(1b)

(1c)

(1d)

(1e)

Constraint (1b) ensures that no more than p facilities are opened. Each
client is assigned to exactly one facility through Constraints (1c). Con-
straints (1d) link variables xij and yj while (1e) ensure the coherence of
the objective.
A more recent formulation, denoted by (P2), was proposed in [5]. Let
D0 < D1 < ... < DK be the different dij values ∀i ∈ N ∀j ∈ M. Note
that, if many distances dij have the same value, K may be significantly
lower than M×N . Let K be the set {1, ...,K}. Formulation (P2) is based
on the variables yj , previously introduced, and one binary variable zk,
for each k ∈ K, equals to 1 if and only if the optimal radius is greater
than or equal to Dk:

(P2)



min D0 +

K∑
k=1

(Dk −Dk−1) zk

s.t. 1 ≤
M∑
j=1

yj ≤ p

zk +
∑

j : dij<Dk

yj ≥ 1 i ∈ N , k ∈ K

yj , z
k ∈ {0, 1} j ∈M, k ∈ K

(2a)

(2b)

(2c)

Constraints (2c) ensure that if no facility located at less than Dk of client
Ci is selected, then the radius must be greater than or equal to Dk.
This formulation has been proved to be tighter than (P1) [5]. However,
its size strongly depends on the value K (i.e., the number of distinct
distances dij).
It also has recently been adapted to the p-dispersion problem which
consists in selecting p facilities among N such that the minimal distance
between two selected facilities is maximized [8].
A last formulation, that can be deduced from (P2) by a change of vari-
ables, has been recently introduced [3] and named (P4). It contains, for
all k ∈ K, a binary variable uk equal to 1 if and only if the optimal radius
is Dk (i.e., uk = zk − zk+1 and zk =

∑K
q=k uq):
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min

K∑
k=1

Dkuk

s.t. (2b)∑
j : dij≤Dk

yj ≥
k∑

q=1

uq i ∈ N , k ∈ K

K∑
k=1

uk = 1

yj , uk ∈ {0, 1} j ∈M, k ∈ K

(3a)

(3b)

(3c)

They also proposed a weaker version of this formulation, called (P3),
obtained by replacing the left-hand side of constraints (3b) by uk. They
proved that (P4) leads to the same linear relaxation bound and has the
same size as (P2).

The rest of the paper is organized as follows. Section 2 presents our
two new formulations. In Section 3 we introduce an algorithm. Finally,
Section 4 describes numerical results on instances from the OR-Library.

2 Our new formulations

2.1 Formulation (CP1)

In (P2), for all k ∈ K, variable zk is equal to 1 if and only if the optimal
radius is greater than or equal to Dk. As a consequence, the following
constraints are valid

zk ≥ zk+1 k ∈ {1, ...,K − 1}. (4)

We first show that these inequalities are redundant for (P2). Let (P ′2) be
the formulation obtained when contraints (4) are added to (P2) and let
v(F ) be the optimal value of the linear relaxation of a given formulation
F . We now prove that adding constraints (4) does not improve the quality
of the linear relaxation.

Proposition 1. v(P ′2) = v(P2)

Proof. We show that an optimal solution (ỹ, z̃) of the relaxation of
(P2) satisfies (4). For each distance Dk there exists a client i(k) such
that

z̃k +
∑

j : di(k)j<Dk

ỹj = 1 (5)

otherwise z̃k can be decreased and (ỹ, z̃) is not optimal.
We now assume that z̃k−1 < z̃k for some index k ∈ {2, ...,K}. It follows
that

z̃k−1 +
∑

j : di(k)j<Dk−1

ỹj < z̃k +
∑

j : di(k)j<Dk

ỹj = 1



The last equality follows from (5). Therefore, constraints (2c) for i(k)
and k − 1 is violated.

�

We now prove that a large part of constraints (2c) are redundant in (P ′2).
Let Nk

i be the set of facilities located at less than Dk from client Ci. We
can observe that Nk

i is included in Nk+1
i , for all k ∈ K. Moreover, Nk

i

is equal to Nk+1
i if and only if there is no facility at distance Dk from

client Ci. Let Si be the set of indices k ∈ {1, ...,K − 1} such that Nk
i is

different from Nk+1
i . Observe that |Si| ≤ min(M,K).

We define Formulation (CP1) as Formulation (P ′2) where only the con-
straints (2c) such that k ∈ Si or k = K are kept.

(CP1)



min D0 +

K∑
k=1

(Dk −Dk−1) zk

s.t. (2b), (4)

zk +
∑

j : dij<Dk

yj ≥ 1 i ∈ N , k ∈ Si ∪ {K}

yj , z
k ∈ {0, 1} j ∈M, k ∈ K

(6a)

(6b)

The number of constraints is dominated by the number of constraints (6b).
This number is bounded by both NM and NK.
The following proposition proves that (CP1) is a valid formulation.

Proposition 2. (CP1) is a valid formulation of the p-center problem.

Proof. We show that the constraints removed from (P ′2) are dominated.
If Nk

i = Nk+1
i , then

∑
j : dij<Dk yj =

∑
j : dij<Dk+1 yj . Since zk ≥ zk+1,

we have:
zk +

∑
j : dij<Dk

yj ≥ zk+1 +
∑

j : dij<Dk+1

yj ≥ 1.

As a consequence, the constraint (2c) associated with i and k is domi-
nated by the one associated with i and k + 1.

�

We now prove that Formulations (P2) and (CP1) lead to the same bound
by linear relaxation.

Proposition 3. v(CP1) = v(P2).

Proof. The arguments used in the proof of Proposition 2 can be used
again to show that the constraints removed from (P ′2) do not impact the
value of the linear relaxation.

�

To sum up, (CP1) is a valid formulation that has the same LP bound as
(P2). However, as detailed in Table 1, Formulation (CP1) is much smaller
since it reduces the number of constraints by a factor of up to N .



2.2 Formulation (CP2)

We now introduce a second formulation, denoted by (CP2), which con-
tains less variables and constraints than (CP1).
We replace the K binary variable zk with a unique general integer vari-
able r which represents the index of a radius:

(CP2)



min r

s.t. (2b)

r + k
∑

j : dij<Dk

yj ≥ k i ∈ N , k ∈ Si ∪ {K}

yj ∈ {0, 1} j ∈M
r ∈ {0, ...,K}

(7a)

Constraints (7a) play a similar role to Constraints (6b).
Formulation (CP2) does not directly provide the value of the optimal ra-
dius R but its index r such that Dr = R. We now prove that Formulation
(CP2) is valid.

Proposition 4. (CP2) is a valid formulation of the p-center problem.

Proof. Let (ỹ, z̃) be an integer solution of (CP1). We first show that there
exists an integer solution (y, r) of (CP2) which provides the same radius
by setting y = ỹ and r =

∑K
k=1 z̃

k. We need to prove that constraints (7a)
are satisfied. We know that

z̃k +
∑

j : dij<Dk

ỹj ≥ 1

is satisfied for any client Ci and any distance Dk.
If z̃k is equal to 0, the corresponding Constraint (7a) is satisfied, as∑

j : dij<Dk ỹj ≥ 1. Otherwise, the same result is obtained since the z̃k

variables are ordered in decreasing order which leads to r ≥ k. These
two solutions provide the same radius as D0 +

∑K
k=1(Dk −Dk−1) z̃k =

D
∑K

k=1 z̃k .
We now prove that for any solution (ỹ, r̃) of (CP2) there exists an equiv-
alent solution (y, z) of (CP1). We set y = ỹ and zk = 1 if and only if
r̃ ≥ k. Constraint

r̃ + k
∑

j : dij<Dk

ỹj ≥ k (8)

is satisfied for any k ∈ K. If r̃ is lower than k, then at least one variable ỹj
from equation (8) is equal to 1 and the corresponding constraint (6b) is
satisfied. Otherwise, zk is equal to 1 and the same conclusion is reached.

�

We now prove that the linear relaxation of (CP1) is stronger than the
one of (CP2).



Assumption 1 We shall suppose D0 = 0 and ∀k ∈ K, Dk−Dk−1 = 1.

This assumption is not restrictive, one can transform any instance by
replacing any distance Dk by its rank k. The transformed problem is
equivalent as if the optimal radius is Dk∗

, then the optimal solution of
the transformed problem is k∗.
Under this assumption, problems (CP1) and (CP2) have the same opti-
mal values, both of them compute the rank of the optimal radius.

Proposition 5. Let CP1 and CP2 respectively be the LP relaxation of
(CP1) and (CP2), v(CP1) ≥ v(CP2) under Assumption 1.

Proof. Let (ỹ, z̃) be a solution of CP1. We build a solution (y, r) of CP2

with the same value. We take y = ỹ and r =
∑K

k=1 z̃
k.

We need to prove that constraints (7a) are satisfied.
Since the zk variables are ordered in decreasing order by Constraints 4,
it follows that r ≥ kz̃k ∀k ∈ K. This and Constraints (2c) imply that
Constraints (7a) are satisfied.

�

Table 1 summarizes the size of the previously mentioned formulations.

Formulation # of variables # of constraints

(P1) O(NM) O(NM)

(P2), (P3), (P4) O(M + K) O(NK)

(CP1) O(M + K) O(min(NM,NK))

(CP2) O(M) O(min(NM,NK))

Table 1. Size of the four formulations (K ≤ NM).

3 A two-step resolution algorithm

We present, in this section, a two-step algorithm to solve more efficiently
the p-center problem.
Let lb be a lower bound of the optimal radius. We suppose that lb is one
of the distances Dk since, otherwise, lb can be set to the next distance.
All the distances dij lower than lb can be replaced by lb.
Similarly, all the distances dij greater than an upper bound ub can be
replaced by ub+ 1 in order to discard solutions of value greater than ub.
The size of Formulations (P2) and (CP1) strongly depends on K. This
value can be reduced by identifying lower and upper bounds. Such bounds
can easily be obtained, as mentioned in [5].



Our resolution algorithm, depicted in Figure 1, can be applied to any
formulation F of the p-center problem including (P1), (P2), (P3), (P4),
(CP1) and (CP2). It is mainly based on the idea that whenever the
optimal value v of the linear relaxation of F is not equal to an existing
distance, then there exists k ∈ K such that Dk−1 < v < Dk. In that case,
Dk constitutes a stronger lower bound than v and the linear relaxation
can be solved again. This process is repeated until an existing distance
is obtained as the optimal value of the linear relaxation. This constitutes
Step 1 of the algorithm.

The bound obtained when applying this algorithm over (P2) or (CP1) cor-
responds to the one called LB∗, computed by a binary search algorithm
in [5].

Step 1 can be further improved by introducing the notion of dominated
clients and dominated facilities within some reduction rules. A facility
Fa is dominated if there exists another facility Fb such that dia ≥ dib for
all clients i. Such a facility can be removed as it will always be at least
as interesting to assign a client to Fb than to Fa. Similarly, a client Ca is
said to be dominated if there exists another client Cb such that daj ≤ dbj
for all facilities j. Dominated clients can also be ignored.

Instructions 3 and 4 are repeated since new dominated clients and facil-
ities may be found when a bound is improved, and vice versa.

Step 2 of Algorithm 1 consists in solving Formulation F to optimality
with the improved bounds lb and ub computed in Step 1.

Algorithm 1:
F : formulation of the p-center problem
p: maximal number of centers
d: distances
lb, ub: initial bounds
Result: The optimal radius
// Step 1

1 repeat
2 repeat
3 Remove dominated clients and facilities // Reduction rules
4 (lb, ub)← Compute bounds

5 until lb and ub are not improved and no more dominated clients or
facilities have been found

6 v ← SolveLinearRelaxation(F , lb, ub)

7 lb← mink{Dk : v ≤ Dk}
8 until v = lb // until v is one of the existing distances

// Step 2
9 r∗ ← SolveOptimally(F , lb, ub)

10 return r∗

Fig. 1. Algorithm used to solve the p-center problem through F, a p-center formulation.



4 Numerical results

We implement Formulations (P1), (P2), (CP1) and (CP2) as well as
Algorithm 1 on an Intel XEON E3-1280 with 3,5 GHz and 32Go of
RAM with the Java API of CPLEX 12.7. Following several authors, we
consider instances from the OR-Library [1].

4.1 Comparing sizes and computation times on 5
instances

Table 2 presents a comparison of the sizes of the four formulations on the
five first instances of the OR-Library with N = M = 100. We use the
initial lower bound LB0 = maxi∈N minj∈M dij and initial upper bound
UB0 = minj∈Mmaxi∈N dij introduced in [5].
As expected, the number of variables in (CP1) and (P2) are equal and are
significantly lower than in (P1). Formulation (P2) has more constraints
than Formulation (P1). Formulation (CP1) has by far less constraints
than (P2). All this explains why (CP1) has the best performances in
every aspect.
Formulation (CP2) is the most compact but this does not fully compen-
sate the poor quality of its LP bound.

(P1) (P2) (CP1) (CP2)

Instance 1 number of variables 10101 286 286 101

number of constraints 12209 18602 6089 5903

(LB0 = 0) LP bound 97,57 106,54 106,54 83,62

(UB0 = 186) resolution time (s) 9,14 251,28 3,16 14,94

Instance 2 number of variables 10101 277 277 101

number of constraints 12473 17702 6094 5917

(LB0 = 0) LP bound 76,72 85,68 85,68 70,19

(UB0 = 178) resolution time (s) 15,69 47,31 2,99 19,80

Instance 3 number of variables 10101 305 305 101

number of constraints 11293 20502 6852 6647

(LB0 = 0) LP bound 73,24 83,28 83,28 68,92

(UB0 = 205) resolution time (s) 11,68 21,02 2,85 10,99

Instance 4 number of variables 10101 299 299 101

number of constraints 12009 19902 6403 6204

(LB0 = 0) LP bound 54,55 64,16 64,16 52,42

(UB0 = 204) resolution time (s) 3,19 43,02 1,64 12,90

Instance 5 number of variables 10101 270 270 101

number of constraints 11777 17002 6263 6093

(LB0 = 0) LP bound 30,37 37,82 37,82 29,29

(UB0 = 169) resolution time (s) 1,93 25,10 1,66 11,65

Table 2. Size and resolution times (1 thread) of the formulations for the five first
OR-Library instances with lb = LB0 and ub = UB0.



4.2 Relaxation and computation times on the 40
OR-Library instances

In Table 3, we perform a larger comparison with stronger bounds lb and
ub equal to the bounds LB1 and UB1 introduced in [5]. The resolution
is then performed by CPLEX with its default parameters but with a
maximal CPU time of 1 hour.
The first column is the instance number. The three following columns
provide N , p and the optimal value of the instances (N = M in these
instances). Columns 5 and 6 contain the initial bounds LB and UB. For
each formulation, column “b” corresponds the optimal value of the linear
relaxation and column “t” to the resolution time in seconds.
We can first observe that Formulations (CP1) and (P2) solve all the 40
instances within 1 hour while ten instances are not solved with (P1) and
one instance is not solved with (CP2). We can even observe that (CP1)
solves the whole set of instances in less than 50 minutes and (P2) in less
than 85 minutes.
Formulation (P2) outperforms (CP1) mainly on instances 36 and 39.
This is possibly due to some difficulty of the solver to find good feasible
solutions.

4.3 Results of Algorithm 1

Table 4 presents the results of Algorithm 1 with formulations (CP1) and
(CP2). Columns “t1” and “t2” respectively correspond to the time of
the first phase and the total time.
Formulation (CP2) is now able to solve all the instances within 1 hour.
We observe that the total time to solve the 40 instances is reduced by
approximately 6 times for (CP1) and 14 times for (CP2) if compared to
Table 3.

5 Conclusion

We introduced two new compact formulations of the p-center problem.
We theoretically compared the quality of their LP bounds and their sizes
to existing formulations. Numerical experiments confirmed these results
and highlighted the fact that our new formulation (CP1) outperforms
the previously known formulations (P1) and (P2) at all levels. Our more
compact formulation (CP2) suffers from the poor quality of its linear
relaxation. Another aspect of our work was to embed the formulations
within a two-step algorithm in order to obtain better computation times.
Our future work will focus on improving our compact formulation through
polyhedral studies.
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