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The p-center problem consists in selecting p centers among M to cover N clients, such that the maximal distance between a client and its closest selected center is minimized. For this problem we propose two new and compact integer formulations. Our first formulation is an improvement of a previous formulation. It significantly decreases the number of constraints while preserving the optimal value of the linear relaxation. Our second formulation contains less variables and constraints but it has a weaker linear relaxation bound. We besides introduce an algorithm which enables us to compute strong bounds and significantly reduce the size of our formulations. Finally, the efficiency of the algorithm and the proposed formulations are compared in terms of quality of the linear relaxation and computation time over instances from OR-Library.

Introduction

We consider N clients {C1, ..., CN } and M potential facility sites {F1, ..., FM }. Let dij be the distance between Ci and Fj. The objective of the p-center problem is to open up to p facilities such that the maximal distance (called radius) between a client and its closest selected site is minimized. This problem is very popular in combinatorial optimization and has many applications. We refer the reader to the recent survey [START_REF] Calik | p-Center Problems[END_REF]. Very recent publications include [START_REF] Ferone | On the fast solution of the p-center problem[END_REF][START_REF] Ferone | A new local search for the p-center problem based on the critical vertex concept[END_REF] which provide heuristic solutions and [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF] on an exact solution method. In this paper, we will focus on mixed-integer linear programming formulations of the p-center problem. Let M and N respectively be the sets {1, ..., M } and {1, ..., N }. The most classical formulation, denoted by (P1), for the p-center problem (see for example [START_REF] Daskin | Network and discrete location analysis[END_REF]) considers the following variables:

yj is a binary variable equal to 1 if and only if Fj is open; xij is a binary variable equal to 1 if and only if Ci is assigned to Fj; -R is the radius.

(P1)

                                               min R s.t. M j=1 yj ≤ p M j=1 xij = 1 i ∈ N xij ≤ yj i ∈ N , j ∈ M M j=1 dij xij ≤ R i ∈ N xij, yj ∈ {0, 1} i ∈ N , j ∈ M r ∈ R (1a) (1b) (1c) (1d) (1e) 
Constraint (1b) ensures that no more than p facilities are opened. Each client is assigned to exactly one facility through Constraints (1c). Constraints (1d) link variables xij and yj while (1e) ensure the coherence of the objective. A more recent formulation, denoted by (P2), was proposed in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. Let D 0 < D 1 < ... < D K be the different dij values ∀i ∈ N ∀j ∈ M. Note that, if many distances dij have the same value, K may be significantly lower than M × N . Let K be the set {1, ..., K}. Formulation (P2) is based on the variables yj, previously introduced, and one binary variable z k , for each k ∈ K, equals to 1 if and only if the optimal radius is greater than or equal to D k :

(P2)                                min D 0 + K k=1 (D k -D k-1 ) z k s.t. 1 ≤ M j=1 yj ≤ p z k + j : d ij <D k yj ≥ 1 i ∈ N , k ∈ K yj, z k ∈ {0, 1} j ∈ M, k ∈ K (2a) (2b) (2c) 
Constraints (2c) ensure that if no facility located at less than D k of client Ci is selected, then the radius must be greater than or equal to D k . This formulation has been proved to be tighter than (P1) [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. However, its size strongly depends on the value K (i.e., the number of distinct distances dij). It also has recently been adapted to the p-dispersion problem which consists in selecting p facilities among N such that the minimal distance between two selected facilities is maximized [START_REF] Sayah | A new compact formulation for the discrete p-dispersion problem[END_REF].

A last formulation, that can be deduced from (P2) by a change of variables, has been recently introduced [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF] and named (P4). It contains, for all k ∈ K, a binary variable u k equal to 1 if and only if the optimal radius is D k (i.e., u k = z k -z k+1 and z k = K q=k uq):

(P4)                                      min K k=1 D k u k s.t. (2b) j : d ij ≤D k yj ≥ k q=1 uq i ∈ N , k ∈ K K k=1 u k = 1 yj, u k ∈ {0, 1} j ∈ M, k ∈ K (3a) (3b) (3c) 
They also proposed a weaker version of this formulation, called (P3), obtained by replacing the left-hand side of constraints (3b) by u k . They proved that (P4) leads to the same linear relaxation bound and has the same size as (P2).

The rest of the paper is organized as follows. Section 2 presents our two new formulations. In Section 3 we introduce an algorithm. Finally, Section 4 describes numerical results on instances from the OR-Library.

2 Our new formulations

Formulation (CP 1 )

In (P2), for all k ∈ K, variable z k is equal to 1 if and only if the optimal radius is greater than or equal to D k . As a consequence, the following constraints are valid

z k ≥ z k+1 k ∈ {1, ..., K -1}. ( 4 
)
We first show that these inequalities are redundant for (P2). Let (P 2 ) be the formulation obtained when contraints (4) are added to (P2) and let v(F ) be the optimal value of the linear relaxation of a given formulation F . We now prove that adding constraints (4) does not improve the quality of the linear relaxation.

Proposition 1. v(P 2 ) = v(P2)
Proof. We show that an optimal solution (ỹ, z) of the relaxation of (P2) satisfies (4). For each distance D k there exists a client i(k) such that zk +

j : d i(k)j <D k ỹj = 1 (5) 
otherwise zk can be decreased and (ỹ, z) is not optimal. We now assume that zk-1 < zk for some index k ∈ {2, ..., K}. It follows that zk-1 +

j : d i(k)j <D k-1 ỹj < zk + j : d i(k)j <D k ỹj = 1
The last equality follows from [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. Therefore, constraints (2c) for i(k) and k -1 is violated.

We now prove that a large part of constraints (2c) are redundant in (P 2 ).

Let N k i be the set of facilities located at less than D k from client Ci. We can observe that

N k i is included in N k+1 i , for all k ∈ K. Moreover, N k i is equal to N k+1 i if and only if there is no facility at distance D k from client Ci. Let Si be the set of indices k ∈ {1, ..., K -1} such that N k i is different from N k+1 i . Observe that |Si| ≤ min(M, K).
We define Formulation (CP1) as Formulation (P 2 ) where only the constraints (2c) such that k ∈ Si or k = K are kept. 4)

(CP1)                        min D 0 + K k=1 (D k -D k-1 ) z k s.t. (2b), (
z k + j : d ij <D k yj ≥ 1 i ∈ N , k ∈ Si ∪ {K} yj, z k ∈ {0, 1} j ∈ M, k ∈ K (6a) (6b) 
The number of constraints is dominated by the number of constraints (6b). This number is bounded by both N M and N K.

The following proposition proves that (CP1) is a valid formulation.

Proposition 2. (CP1) is a valid formulation of the p-center problem.

Proof. We show that the constraints removed from (P 2 ) are dominated.

If

N k i = N k+1 i , then j : d ij <D k yj = j : d ij <D k+1 yj. Since z k ≥ z k+1 , we have: z k + j : d ij <D k yj ≥ z k+1 + j : d ij <D k+1 yj ≥ 1.
As a consequence, the constraint (2c) associated with i and k is dominated by the one associated with i and k + 1.

We now prove that Formulations (P2) and (CP1) lead to the same bound by linear relaxation.

Proposition 3. v(CP1) = v(P2).
Proof. The arguments used in the proof of Proposition 2 can be used again to show that the constraints removed from (P 2 ) do not impact the value of the linear relaxation.

To sum up, (CP1) is a valid formulation that has the same LP bound as (P2). However, as detailed in Table 1, Formulation (CP1) is much smaller since it reduces the number of constraints by a factor of up to N .

Formulation (CP 2 )

We now introduce a second formulation, denoted by (CP2), which contains less variables and constraints than (CP1). We replace the K binary variable z k with a unique general integer variable r which represents the index of a radius:

(CP2)                      min r s.t. (2b) r + k j : d ij <D k yj ≥ k i ∈ N , k ∈ Si ∪ {K} yj ∈ {0, 1} j ∈ M r ∈ {0, ..., K} (7a) 
Constraints (7a) play a similar role to Constraints (6b). Formulation (CP2) does not directly provide the value of the optimal radius R but its index r such that D r = R. We now prove that Formulation (CP2) is valid.

Proposition 4. (CP2) is a valid formulation of the p-center problem.

Proof. Let (ỹ, z) be an integer solution of (CP1). We first show that there exists an integer solution (y, r) of (CP2) which provides the same radius by setting y = ỹ and r = K k=1 zk . We need to prove that constraints (7a) are satisfied. We know that zk +

j : d ij <D k ỹj ≥ 1
is satisfied for any client Ci and any distance D k . If zk is equal to 0, the corresponding Constraint (7a) is satisfied, as

j : d ij <D k ỹj ≥ 1.
Otherwise, the same result is obtained since the zk variables are ordered in decreasing order which leads to r ≥ k. These two solutions provide the same radius as

D 0 + K k=1 (D k -D k-1 ) zk = D K k=1 zk .
We now prove that for any solution (ỹ, r) of (CP2) there exists an equivalent solution (y, z) of (CP1). We set y = ỹ and

z k = 1 if and only if r ≥ k. Constraint r + k j : d ij <D k ỹj ≥ k (8) 
is satisfied for any k ∈ K. If r is lower than k, then at least one variable ỹj from equation ( 8) is equal to 1 and the corresponding constraint (6b) is satisfied. Otherwise, z k is equal to 1 and the same conclusion is reached.

We now prove that the linear relaxation of (CP1) is stronger than the one of (CP2).

Assumption 1 We shall suppose D 0 = 0 and ∀k ∈ K,

D k -D k-1 = 1.
This assumption is not restrictive, one can transform any instance by replacing any distance D k by its rank k. The transformed problem is equivalent as if the optimal radius is D k * , then the optimal solution of the transformed problem is k * . Under this assumption, problems (CP1) and (CP2) have the same optimal values, both of them compute the rank of the optimal radius. Proposition 5. Let CP1 and CP2 respectively be the LP relaxation of (CP1) and (CP2), v(CP1) ≥ v(CP2) under Assumption 1.

Proof. Let (ỹ, z) be a solution of CP1. We build a solution (y, r) of CP2 with the same value. We take y = ỹ and r = K k=1 zk . We need to prove that constraints (7a) are satisfied. Since the z k variables are ordered in decreasing order by Constraints 4, it follows that r ≥ kz k ∀k ∈ K. This and Constraints (2c) imply that Constraints (7a) are satisfied.

Table 1 summarizes the size of the previously mentioned formulations.

Formulation # of variables # of constraints

(P1) O(N M ) O(N M ) (P2), (P3), (P4) O(M + K) O(N K) (CP1) O(M + K) O(min(N M, N K)) (CP2) O(M ) O(min(N M, N K))
Table 1. Size of the four formulations (K ≤ N M ).

A two-step resolution algorithm

We present, in this section, a two-step algorithm to solve more efficiently the p-center problem.

Let lb be a lower bound of the optimal radius. We suppose that lb is one of the distances D k since, otherwise, lb can be set to the next distance. All the distances dij lower than lb can be replaced by lb.

Similarly, all the distances dij greater than an upper bound ub can be replaced by ub + 1 in order to discard solutions of value greater than ub.

The size of Formulations (P2) and (CP1) strongly depends on K. This value can be reduced by identifying lower and upper bounds. Such bounds can easily be obtained, as mentioned in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF].

Our resolution algorithm, depicted in Figure 1, can be applied to any formulation F of the p-center problem including (P1), (P2), (P3), (P4), (CP1) and (CP2). It is mainly based on the idea that whenever the optimal value v of the linear relaxation of F is not equal to an existing distance, then there exists k ∈ K such that D k-1 < v < D k . In that case, D k constitutes a stronger lower bound than v and the linear relaxation can be solved again. This process is repeated until an existing distance is obtained as the optimal value of the linear relaxation. This constitutes

Step 1 of the algorithm.

The bound obtained when applying this algorithm over (P2) or (CP1) corresponds to the one called LB * , computed by a binary search algorithm in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF].

Step 1 can be further improved by introducing the notion of dominated clients and dominated facilities within some reduction rules. A facility Fa is dominated if there exists another facility F b such that dia ≥ d ib for all clients i. Such a facility can be removed as it will always be at least as interesting to assign a client to F b than to Fa. Similarly, a client Ca is said to be dominated if there exists another client C b such that daj ≤ d bj for all facilities j. Dominated clients can also be ignored. Instructions 3 and 4 are repeated since new dominated clients and facilities may be found when a bound is improved, and vice versa.

Step 2 of Algorithm 1 consists in solving Formulation F to optimality with the improved bounds lb and ub computed in Step 1. 

7 lb ← min k {D k : v ≤ D k } 8 until v = lb // until v is one of the existing distances //
Step 2 9 r * ← SolveOptimally(F , lb, ub) 10 return r * Fig. 1. Algorithm used to solve the p-center problem through F, a p-center formulation.

We implement Formulations (P1), (P2), (CP1) and (CP2) as well as Algorithm 1 on an Intel XEON E3-1280 with 3,5 GHz and 32Go of RAM with the Java API of CPLEX 12.7. Following several authors, we consider instances from the OR-Library [START_REF] Beasley | Or-library: distributing test problems by electronic mail[END_REF].

Comparing sizes and computation times on 5 instances

Table 2 presents a comparison of the sizes of the four formulations on the five first instances of the OR-Library with N = M = 100. We use the initial lower bound LB0 = maxi∈N minj∈M dij and initial upper bound U B0 = minj∈M maxi∈N dij introduced in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. As expected, the number of variables in (CP1) and (P2) are equal and are significantly lower than in (P1). Formulation (P2) has more constraints than Formulation (P1). Formulation (CP1) has by far less constraints than (P2). All this explains why (CP1) has the best performances in every aspect. Formulation (CP2) is the most compact but this does not fully compensate the poor quality of its LP bound. Table 2. Size and resolution times (1 thread) of the formulations for the five first OR-Library instances with lb = LB0 and ub = U B0.

(P1) (P2) (CP1) (CP2)

Relaxation and computation times on the 40 OR-Library instances

In Table 3, we perform a larger comparison with stronger bounds lb and ub equal to the bounds LB1 and U B1 introduced in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. The resolution is then performed by CPLEX with its default parameters but with a maximal CPU time of 1 hour. The first column is the instance number. The three following columns provide N , p and the optimal value of the instances (N = M in these instances). Columns 5 and 6 contain the initial bounds LB and U B. For each formulation, column "b" corresponds the optimal value of the linear relaxation and column "t" to the resolution time in seconds.

We can first observe that Formulations (CP1) and (P2) solve all the 40 instances within 1 hour while ten instances are not solved with (P1) and one instance is not solved with (CP2). We can even observe that (CP1) solves the whole set of instances in less than 50 minutes and (P2) in less than 85 minutes. Formulation (P2) outperforms (CP1) mainly on instances 36 and 39. This is possibly due to some difficulty of the solver to find good feasible solutions.

Results of Algorithm 1

Table 4 presents the results of Algorithm 1 with formulations (CP1) and (CP2). Columns "t1" and "t2" respectively correspond to the time of the first phase and the total time. Formulation (CP2) is now able to solve all the instances within 1 hour. We observe that the total time to solve the 40 instances is reduced by approximately 6 times for (CP1) and 14 times for (CP2) if compared to Table 3.

Conclusion

We introduced two new compact formulations of the p-center problem. We theoretically compared the quality of their LP bounds and their sizes to existing formulations. Numerical experiments confirmed these results and highlighted the fact that our new formulation (CP1) outperforms the previously known formulations (P1) and (P2) at all levels. Our more compact formulation (CP2) suffers from the poor quality of its linear relaxation. Another aspect of our work was to embed the formulations within a two-step algorithm in order to obtain better computation times.

Our future work will focus on improving our compact formulation through polyhedral studies.

N 

Algorithm 1 : 2 repeat 3 6 v

 1236 F : formulation of the p-center problem p: maximal number of centers d: distances lb, ub: initial bounds Result: The optimal radius // Step 1 1 repeat Remove dominated clients and facilities // Reduction rules 4 (lb, ub) ← Compute bounds 5 until lb and ub are not improved and no more dominated clients or facilities have been found ← SolveLinearRelaxation(F , lb, ub)

Table 3 .

 3 Comparison of the different formulations with lb = LB1 and ub = U B1. For each instance, the smallest time appears in bold. Symbol "-" means that the instance was not solved within 1 hour.

	p opt lb	ub	b	(P1)	t	b	(P2)	t	(CP1) b	t	(CP2) b	t
	1 100 5 127 59 133 98		2,4 107		75,3 107	1,0 85	4,0
	2 100 10 98 56 117 77		2,9 86		7,3 86	0,5 71	5,2
	3 100 10 93 55 116 74		2,9 84		2,5 84	0,2 69	3,1
	4 100 20 74 41 127 55		0,7 65		7,9 65	0,6 53	3,4
	5 100 33 48 23	87 31		0,8 38		1,0 38	0,1 30	1,5
	6 200 5 84 38	94 68		35,9 75	106,7 75	2,7 59	47,1
	7 200 10 64 34	79 51		20,5 58	100,2 58	1,8 46	26,1
	8 200 20 55 30	72 41		20,7 48		87,2 48	1,6 38	19,6
	9 200 40 37 22	73 28		8,9 33		14,9 33	1,4 27	29,8
	10 200 67 20 11	44 15		1,6 18		0,8 18	0,3 14	5,5
	11 300 5 59 34	67 50		99,0 54		30,4 54	6,2 44	68,1
	12 300 10 51 30	72 43	229,7 48		71,0 48	7,2 39	98,7
	13 300 30 36 20	56 28	114,0 33		44,6 33	4,7 26	106,9
	14 300 60 26 14	60 19	157,1 23		33,4 23	12,9 18	151,7
	15 300 100 18 10	42 13		8,6 16		9,4 16	0,9 13	30,2
	16 400 5 47 26	51 41	403,2 45		25,3 45	3,3 36	54,5
	17 400 10 39 21	47 33	737,8 36		35,0 36	24,9 29	149,2
	18 400 40 28 16	50 22	664,7 25		96,4 25	22,1 20	431,4
	19 400 80 18 10	40 14	226,2 16		81,4 16	18,5 13	116,9
	20 400 133 13 7	32 10		9,0 12		3,0 12	0,9 10	22,5
	21 500 5 40 23	48 35 2581,0 37	118,3 37	13,6 31	194,6
	22 500 10 38 21	49 31		-35	924,4 35	24,6 28	507,8
	23 500 50 22 13	38 17 1375,8 20	212,2 20	38,4 16	481,8
	24 500 100 15 9	35 12	573,7 14		51,0 14	29,6 11	209,2
	25 500 167 11 6	27	8		57,2 10		5,1 10	2,0	8	23,1
	26 600 5 38 21	43 32 3093,6 35	106,0 35	13,6 28	152,4
	27 600 10 32 18	39 28 3118,9 30	104,3 30	48,3 25	341,5
	28 600 60 18 10	33 14		-16	176,2 16	103,3 13	-
	29 600 120 13 7	36 10		-12	130,7 12	77,8	9	893,6
	30 600 200	9 5	29	7	106,5	8	12,4	8	15,7	7	89,8
	31 700 5 30 16	34 27 1793,8 28		68,8 28	12,5 24	139,9
	32 700 10 29 16	35 25		-27	718,7 27	127,3 22	944,5
	33 700 70 15 9	26 13		-14	155,1 14	76,0 12	890,1
	34 700 140 11 6	30	9 2617,9 10	168,7 10	32,8	8	464,9
	35 800 5 30 16	32 27		-29		23,0 29	13,0 23	170,6
	36 800 10 27 16	34 24		-26	130,3 26	821,7 21 1056,6
	37 800 80 15 8	26 12		-14	222,5 14	90,9 11 1706,9
	38 900 5 29 15	35 25		-27		68,8 27	19,0 21	300,1
	39 900 10 23 13	28 20		-22	348,4 22 1190,0 18 1786,4
	40 900 90 13 7	22 10		-12	551,0 12	129,5 10 1059,9
			Total		57699		5129		2991	16390

Table 4 .

 4 Results obtained with Algorithm 1 of Figure1with lb = LB1 and ub = U B1.