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0 Abstract

In this paper we consider a penalized Stokes equation defined in a regular domain Ω ⊂ R2 and

with Dirichlet boundary conditions. We shall prove that our system is null controllable using a

scalar control defined in an open subset inside Ω and whose cost is bounded uniformly with respect

to the parameter that converges to 0.
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1 Introduction

1.1 Main results

Let T > 0 and Ω ⊂ R2 a regular domain. Throughout this paper we use the word “domain”

to refer to a bounded connected open set. Moreover, we denote as usual Q := (0, T ) × Ω and

Σ := (0, T ) × ∂Ω. In this paper we work on the Stokes penalized system with Dirichlet boundary

conditions. This system is given by the following equations:

vεt −∆vε +∇qε = f in Q,

εqε +∇ · vε = 0 in Q,

vε = 0 on Σ,

vε(0, ·) = v0 in Ω.

(1.1)

Here f : Q → R2 is a source term, v0 : Ω → R2 is an initial condition and ε > 0. This system

approximates the classical Stokes problem, which is given by:

vt −∆v +∇q = f in Q,

∇ · v = 0 in Q,

v = 0 on Σ,

v(0, ·) = v0 in Ω.

(1.2)

In this paper the main objective is to prove that system (1.1) is null controllable with a one-

dimensional control whose cost is uniformly bounded with respect to ε. We manage to prove it

for almost every direction, depending these directions on the geometry of Ω. In particular, if Ω is

strictly convex we prove it for all the directions.

First of all, we are going to state what hypothesis must satisfy Ω to be controllable by a force

parallel to e1 := (1, 0). In order to do so, if Ω ⊂ R2 is a C2 domain, we use the usual convention

to parametrize ∂Ω: we denote σi = (σi1, σ
i
2) the arc-length parametrization of each connected

component of ∂Ω and κi(θ) the signed curvature of ∂Ω on the point σi(θ) (the i is omitted if

∂Ω consists on just one component). We suppose that each component is parametrized in the

standard way; that is, for U(x, y) := (−y, x) (U is the rotation of 90 degrees to the left), for all

p = σi(θ) ∈ ∂Ω, there is δ0(p) > 0, such that if δ ∈ (0, δ0(p)), then p+ δU((σi)′(θ)) ∈ Ω.

Remark 1.1. Since the σi are arc-length, we have the well-known equalities:

κi = (σi2)′′(σi1)′ − (σi1)′′(σi2)′ =
(σi2)′′

(σi1)′
= −(σi1)′′

(σi2)′
. (1.3)

2



Hypothesis 1.1. Let Ω ⊂ R2 be a C2 domain, of boundary ∂Ω parametrized by functions σ1, . . . , σk

as explained in the previous paragraph. Then, for any i ∈ {1, . . . , k} and for any θ such that

(σi1)′(θ) = 0 or (σi2)′(θ) = 0, we have that κi(θ) 6= 0.

Remark 1.2. Hypothesis 1.1 means that if Ω is a C2 domain, then in all the points of the boundary

of horizontal or vertical tangent line the curvature is not null. We use it to avoid pathologies near

those, since in that case we do not know how to proceed.

Hypothesis 1.1 is not restrictive at all, thanks to the following lemma, which we prove at the

beginning of Subsection 4.1:

Lemma 1.3. Let Ω be a C2 domain. Then, there is an orthogonal R2-endomorphism U such

that the domain Ω̃ := U(Ω) satisfies Hypothesis 1.1. In fact, if we denote Uψ the endomorphism

characterized by e1 := (1, 0) 7→ (cos(ψ), sin(ψ)) and e2 := (0, 1) 7→ (− sin(ψ), cos(ψ)), then, for

almost every ψ in [−π, π], Uψ(Ω) satisfies Hypothesis 1.1.

With Lemma 1.3 in mind, we state one of the main results of this paper:

Theorem 1.4. Let Ω ⊂ R2 be a regular domain that satisfies Hypothesis 1.1, and let ω ⊂ Ω be an

open set. Then, there is ε0 > 0 such that for all T > 0 there is C > 0 such that if ε ∈ (0, ε0) and

y0 ∈ L2(Ω), there is a scalar-valued function f ε ∈ L2((0, T )× ω) satisfying:

‖f ε‖L2((0,T )×ω) ≤ C‖y0‖L2(Ω)

and such that the solution of: 

yεt −∆yε +∇pε = f ε1ωe1 in Q,

εpε +∇ · yε = 0 in Q,

yε = 0 on Σ,

yε(0, ·) = y0 in Ω,

(1.4)

satisfies yε(T, ·) = 0.

As usual, in Theorem 1.4 and throughout this paper Lp and Hs denote respectively the Lebesgue

and Sobolev spaces of vector-valued functions.

Remark 1.5. Thanks to Lemma 1.3 and since system (1.1) is invariant with respect to rotations,

we actually have for almost all directions eθ := (sin(θ), cos(θ)) that there is ε0 > 0 such that for

all T > 0 there is C > 0 such that for all ε ∈ (0, ε0) system (1.1) is null controllable with a force

f ε1ωe
θ satisfying:

‖f ε‖L2((0,T )×ω) ≤ C‖y0‖L2(Ω).
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Remark 1.6. A natural question that may arise is, if y0 ∈ H(Ω) (the subspace of L2(Ω) of functions

of null divergence and null normal trace), what is the relation between the control problem (1.4)

and the control problem: 

yt −∆y +∇p = f1ωe1 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(0, ·) = y0 in Ω.

(1.5)

Using weak compactness, we have that there is a sequence f εk which converges weakly in L2((0, T )×
ω) to some function f0. Moreover, using the techniques presented in [31, Theorem I.2], we have that

yεk(t, ·) converges in the H−1(Ω)-norm for all t ∈ [0, T ] to y(t, ·) (the solution of (1.5)). In particular,

since yεk(T, ·) = 0, we have that y(T, ·) = 0. Consequently, this provides an alternative way of

proving the well-known result that the system (1.5) is null controllable with a one-dimensional

control supported in any regular domain (see [12]). In that sense, an interesting problem that

remains open is if the control of minimal L2-norm of (1.4) converges to the control of minimal

L2-norm of (1.5).

In order to prove the null controllability of (1.4), we consider as usual its adjoint system:

−ϕεt −∆ϕε +∇πε = 0 in Q,

επε +∇ · ϕε = 0 in Q,

ϕε = 0 on Σ,

ϕε(T, ·) = ϕT in Ω.

(1.6)

Indeed, it is a well-known result (see [28, 25]) that the existence in (1.4) of a control f ε bounded

uniformly in ε is equivalent to proving that there is ε0 > 0 such that for all T > 0 there is C > 0

such that if ε ∈ (0, ε0) and ϕT ∈ L2(Ω) we have:∫
Ω
|ϕε(0, ·)|2 ≤ C

∫∫
(0,T )×ω

|ϕε1|2, (1.7)

for ϕε the solution of (1.6).

In order to prove estimate (1.7) we prove a Carleman inequality. Before presenting it, let us

define the weights we use throughout the paper:

α(t, x) =
e2λ‖η0‖∞ − eλη0

(t(T − t))m
, ξ(t, x) =

eλη
0

(t(T − t))m
,

α∗(t) = max
x∈Ω

α(t, x), ξ∗(t) = min
x∈Ω

ξ(t, x).

(1.8)
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These weights are classical and have been used a lot in the literature. Here, λ and m are positive

real numbers to be fixed later on. Moreover, η0 ∈ C4
(
Ω
)

is a fixed function that satisfies η0 > 0 in

Ω, η0 = 0 on ∂Ω and |∇η0| > 0 in Ω \ ω0 for some non-empty domain ω0 compactly included in ω.

We know that such function η0 exists as long as Ω ∈ C4. Indeed, a classical proof of the existence

of such function is given in [18], whereas an alternative recent proof is given in [23, Lemma 2.1].

Theorem 1.7. Let Ω be a regular domain that satisfies Hypothesis 1.1, let ω ⊂ Ω be an open set,

and let m ≥ 8. Then, there is ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0), λ ≥ λ0,

and s ≥ eCλ(Tm + T 2m), we have:

s15λ16

∫∫
Q
e−2sα∗(ξ∗)15|ϕε|2 ≤ Cs34λ35

∫∫
(0,T )×ω

e−2sαξ34|ϕε1|2 (1.9)

for any ϕε regular solution of (1.6) and for the weights defined in (1.8).

Proving (1.7) from (1.9) is mainly done by an energy estimate on χϕε, for χ ≥ 0 a regular

cut-off function such that χ = 1 in [0, T/2] and χ = 0 in [3T/4, T ]. This is a classic and easy

procedure, so it is omitted in this paper.

We remark that the equations of (1.6) couple the different components of ϕε. Using usual methods

for coupled parabolic equations we know that the important term is ∂xyϕ
ε
2, which appears in the

equation satisfied by ϕε1. The main difficulty on proving (1.9) is that ‖∂xy · ‖L2(Ω) is not necessarily

a norm (see Remark 3.2 and Remark 3.3 below). However, if we add some information on the first

and second order derivatives of ∂xyϕ
ε and on the boundary, we do have a norm. In that sense, we

consider the operator:

Lau = −a∂xxu− ∂yyu. (1.10)

Theorem 1.8. Let Ω be a C4 domain that satisfies Hypothesis 1.1. Then, for a0 > 0 small enough,

there is C > 0 such that for any function u ∈ H4(Ω)∩H1
0 (Ω) and for any a ∈ (0, a0] we have that:

‖∂xu‖C0(Ω) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (1.11)

Remark 1.9. By continuity, (1.11) remains true for a = 0.

Remark 1.10. Thanks to Poincaré inequality, there is C > 0 and a0 > 0 such that for all a ∈ [0, a0]

and for all u ∈ H4(Ω) ∩H1
0 (Ω), we have:

‖u‖C0(Ω) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (1.12)

Remark 1.11. By symmetry, we get an analogous estimate for ∂yu if instead of La we have the

operator

L̃au := −∂xxu− a∂yyu. (1.13)
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Indeed, in that case, there is C > 0 and a0 > 0 such that for all a ∈ [0, a0] and for any function

u ∈ H4(Ω) ∩H1
0 (Ω), we have:

‖∂yu‖C0(Ω) ≤ C(‖∂xyu‖H2(Ω) + ‖L̃au‖H1(∂Ω)).

In particular, in this case we also have an estimate of ‖u‖C0(Ω) similar to (1.12).

The reason why (1.11) is useful for proving (1.9) is the following one:

Remark 1.12. Let us consider ϕε a solution of (1.6). We remark that, on ∂Ω, for all t ∈ [0, T ):−∂xxϕε1 − ε
1+ε∂yyϕ

ε
1 = 1

1+ε∂xyϕ
ε
2,

− ε
1+ε∂xxϕ

ε
2 − ∂yyϕε2 = 1

1+ε∂xyϕ
ε
1.

Thus, by Remark 1.10 and Remark 1.11, we get that there is C > 0 and ε0 > 0 such that for all

t ∈ [0, T ) and ε ∈ (0, ε0]:

‖ϕε(t, ·)‖L2(Ω) ≤ C‖∂xyϕε(t, ·)‖H2(Ω). (1.14)

Finally, let us make some remarks about possible extension of the work:

Remark 1.13. The case of Theorem 1.4 and Theorem 1.7 for Ω ⊂ R3 is left as a future work. The

main complication that arises is to prove an analogous result to Theorem 1.8 because there is a

larger variety of domains in R3 than in R2. Indeed, in R3 there is one curvature for each direction.

Remark 1.14. Theorem 1.8 seems to point out that there may be some hidden estimate in the 1-d

wave equation. Indeed, if we consider (t, z) ∈ [0, T ]× [0, L], setting (x, y) 7→ (t, z) = (x+ y, x− y)

one has the dictionary ∂xyu = (∂tt − ∂zz)w, and ∂xu = (∂t + ∂z)w for w(t, z) = u(x, y). However,

one would need either Dirichlet boundary conditions for w or w(0, ·) = 0 and w(·, 0) = 0. More

importantly, one would need to see if Theorem 1.8 is true in a twisted square. All these questions

remain open.

1.2 Historical background

The first time this kind of approximation is done was in [31], where the author considered

the almost incompressible Navier-Stokes system. Many other ways of approximating the Navier-

Stokes equations have been presented throughout the years. In the survey [29] the author presents

different ways of approximating the Navier-Stokes system through the incompressibility condition

and compares them. Moreover, there are physical systems which satisfy in some ways the property

of being almost incompressible, as shown in [30] and the references therein.
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The interior null controllability of system (1.1) has first been proved in [23, Section 4] with a

control bounded uniformly with respect to ε for ε small enough. Then, in [4], this same property

is proved with an additional first order term. Moreover, in [4] the author also proves the local

controllability to trajectories of the penalized Navier-Stokes system uniformly on ε for ε small

enough.

There is an extensive literature on controllability of partial differential equations uniformly with

respect to a vanishing parameter. For a transport equation with a small diffusion term, see [11] (see

also [19] and [27]). The case of the KdV equation is treated in [20], [7] and [8], while a chemotaxis

system is presented in [10].

As for the restriction of having controls with a reduced number of components, it is not new in the

Navier-Stokes mathematical context. This same property has already been proved for the Stokes

problem (1.2) in [12]. Consequently, in this paper we prove that a system which approximates the

Stokes system conserves that property after choosing a valid reference system. Moreover, control-

lability results with controls having one null component have been proved for other systems: for

instance, the local null controllability of the Navier-Stokes system (see [6]), the local controllability

to the trajectories of the Navier-Stokes and the Boussineq system when the domain “touches” the

boundary (see [17]), or the existence of insensitizing controls (see [22, 9]). Similarly, the approx-

imate controllability of the Stokes system in a cylindrical domain with a control having two null

components was proved in [26]. Finally, the local null controllability of the Navier-Stokes system

in dimension three with one scalar control is proved in [13].

Outside the Navier-Stokes context, there is a huge literature on controllability results with con-

trols having a reduced number of components. For instance, the null controllability in the context

of linear thermoelasticity (see [24]), the existence of insensitizing controls for the heat equation

(see [14]), the controllability to trajectories in phase-field models (see [2]), the controllability in

cascade-like systems (see [21]) and the controllability in reaction-diffusion systems (see [1]). For

more results on the controllability of parabolic systems with a reduced number of control, see the

survey [3] and the references therein.

Remark 1.15. The main difference of the problem we consider in this paper with respect to the

above cited papers is the coupling. Indeed, in all the papers cited above (and in the literature

as far as we know) the coupling is constituted by a zero, first or second order term which induce

a norm in the subset of H2(Ω) which satisfies their respective boundary conditions. However, in

our situation this is clearly not the case since the differential operator ∂xy with Dirichlet boundary

conditions does not induce a norm for some Ω (see Remark 3.2 below).
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The rest of the paper is organized as follows: in Section 2 we present some analytical results; in

Section 3 we give the proof of Theorem 1.8 when Ω is strictly convex; in Section 4 we prove Lemma

1.3 and Theorem 1.8 and in Section 5 we end the proof of Theorem 1.7. Finally, in the appendix

we give a proof of some technical results stated in Section 2.

2 Some previous and intermediary results

In this section we present some result that are either interesting for understanding the problem or

that are needed later. The section is split in three parts: first, in Subsection 2.1, we prove that there

is a domain Ω which is not C2 and where we do not even have approximate null controllability; then,

in Subsection 2.2, we present several results on Cauchy problems and a classical result on linear

ordinary differential equations; finally, in Subsection 2.3, we present some Carleman estimates.

2.1 A negative controllability result

In this subsection we give a counterexample on null controllability with one component of (1.4)

when Ω is not C2, even if ω = Ω. With that purpose, we go beyond and show that we do not even

have the approximate null controllability.

Definition 2.1. We recall that system (1.4) is approximately null controllable if for all y0 ∈ L2(Ω)

and for all η > 0 there is a function f ε ∈ L2
(
(0, T )× ω

)
such that the solution yε of (1.4) satisfies

‖yε(T, ·)‖L2(Ω) ≤ η.

Proposition 2.2. Let ε > 0. Then, there is Ω ⊂ R2 of Lipschitz regularity such that, even for

ω = Ω, (1.4) is not approximately null controllable.

In order to prove Proposition 2.2 we use the technique presented in [26, Section 3].

Proof. It is a classical result that system (1.4) is not approximately null controllable if there is

ϕε 6= 0 solution of (1.6) such that ϕε1 = 0 in (0, T ) × ω. Let us suppose that the following scalar-

valued system has a nonzero solution uε:
−∂xxuε − 1+ε

ε ∂yyu
ε = λuε in Ω,

uε = 0 on ∂Ω,

∂xyu
ε = 0 in Ω.

(2.1)

Then, ϕε
(
t, (x, y)

)
:= (0, eλtuε(x, y)) is a non-trivial solution of (1.6) which satisfies ϕε1 = 0. Con-

sequently, it suffices to find a domain Ω with a nonzero solution of (2.1).
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The third equation of (2.1) is satisfied if uε(x, y) = f(x)+g(y) for any f, g ∈ C2(R;R). Moreover,

uε satisfies the first equation of (2.1) if:

− f ′′(x)− λf(x) =
1 + ε

ε
g′′(y) + λg(y). (2.2)

Since both sides of equation (2.2) depend on independent variables, they must be constant. So

we have to solve an ordinary differential equation with constant coefficients. We can suppose that

they are equal to 0. Otherwise, if they are equal to some other value α, we have that f := f + α
λ

and g := g − α
λ are solutions for the case α = 0 such that u(x, y) = f(x) + g(y).

The solutions of

f ′′(x) + λf(x) = 0 and 1+ε
ε g′′(y) + λg(y) = 0

are exponential, affine or trigonometric functions, depending on the value of λ. Since we need uε

to be null on a bounded boundary, then necessarily they must be trigonometric; that is, λ > 0. In

particular, we have that the first equation of (2.1) is satisfied by:

uε(x, y) = sin
(√

λx
)
− sin

(√
ελ

1 + ε
y

)
. (2.3)

Finally, we have to consider that the function uε given in (2.3) is null on the lines:

x =
√

ε
1+εy,

x =
√

ε
1+εy + 2π√

λ
,

x = −
√

ε
1+εy + π√

λ
,

x = −
√

ε
1+εy −

π√
λ

.

(2.4)

Consequently, the function uε given in (2.3) is a solution of (2.1) in Rε,λ, for Rε,λ the domain

limited by (2.4), which is a rhombus.

Remark 2.3. With this method we can find for Rε,λ a sequence of linearly independent eigenfunc-

tions which satisfy (2.1), for λn = (2n+ 1)2λ (n ∈ N):

uεn(x, y) = sin

(
(2n+ 1)

√
ελ

1 + ε
x

)
− sin

(
(2n+ 1)

√
λy
)

, n ∈ N.

Remark 2.4. The “reason” why unique continuation fails is that ∂Rε,λ contains lines of a specific

slope. Indeed, if for ε fixed we try to replicate the proof of Theorem 1.8 for the rhombus Rε,λ
we see that the information that (1.6) provides on the boundary is equivalent to the information
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provided by the Dirichlet condition. More precisely, for the case of Ω = Rε,λ we are blocked in

(3.7) below, since we have κ = 0 and (σ′1)2 − ε
1+ε(σ

′
2)2 = 0. This problem somehow persists when

we try to generalize the proof to regular domains and the only solution we have found is to exclude

a few directions (a null measure set).

2.2 Results on Cauchy problems

In this subsection we present some results about the Stokes penalized problem first with Dirichlet

boundary conditions and then with Neumann boundary conditions. We also present a classical

estimate about a linear differential equation. But before, we recall the definition of the interpolation

spaces, for p, q ≥ 0:

Hp,q(Q) := Hp
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;Hq(Ω)

)
,

Hp,q(Σ) := Hp
(
0, T ;L2(∂Ω)

)
∩ L2

(
0, T ;Hq(∂Ω)

)
.

Lemma 2.5. Let i ∈ N, Ω ∈ C2i. Then, there is ε0 > 0 and C > 0 such that if T > 0, ε ∈ (0, ε0),

v0 = 0 and f ∈ Hi−1,2i−2(Q) satisfying ∂tmf(t, ·) = 0 for all m ∈ N ∩ [0, i − 2], we have that the

solution vε of (1.1) satisfies vε ∈ Hi,2i(Q) with the estimate:

‖vε‖Hi,2i(Q) + ε−1‖∇ · vε‖Hi−1,2i−1(Q) ≤ C‖f‖Hi−1,2i−2(Q). (2.5)

The proof of Lemma 2.5 is mainly by induction. The base case (i = 0) can be proved by Galerkin

method (we just have to replicate the method in [15, Chapter 7.1] and see that the constants are

independent of ε). As for the inductive case, we get the regularity in time by considering that vεt is

a solution of (1.1) with (f, 0) replaced by (ft, 0) and using again the Galerkin method. Moreover,

we get the regularity in space by using the estimate for the steady Stokes problem given in [32,

Proposition I.2.2].

Let us now state the Stokes penalized system with non-homogeneous Neumann boundary

conditions: 

vεt −∆vε +∇qε = f in Q,

εqε +∇ · vε = 0 in Q,

∂nv
ε − qεn = h on Σ,

vε(0, ·) = v0 in Ω.

(2.6)

We have the following regularity and existence results, which are proved in Annex A:

Lemma 2.6. Let Ω ∈ C2. Then, there is ε0 > 0 and C > 0 such that if T > 0, ε ∈ (0, ε0),

v0 ∈ H1(Ω), f ∈ L2(Q) and h ∈ H1,1/2(Σ), system (2.6) has a unique solution:

(vε, qε) ∈ H1,2(Q)×H0,1(Q).
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In addition, that solution satisfies the estimate:

‖vε‖H1,2(Q) + ‖qε‖H0,1(Q) ≤ C
√

1 + T
(
‖f‖L2(Q) + ‖h‖H1,1/2(Σ)

)
+ C

(
‖v0‖H1(Ω) +

∥∥∥∥∇ · v0

ε

∥∥∥∥
L2(Ω)

+ ‖h(0, ·)‖L2(Σ) + ‖h(T, ·)‖L2(Σ)

)
. (2.7)

Remark 2.7. It is not necessary to assume that ε is small enough if we just want to prove existence

and uniqueness of the energy solution of (2.6). Indeed, we prove collaterally that for all ε ∈ R+,

(2.6) has a solution in H1,1(Q) and that the norm ‖vε‖H1,1(Q) can be estimated by the right-hand

side of (2.7) for a constant C independent of ε (see (A.4) below).

Lemma 2.8. Let Ω ∈ C4. Then, there is ε0 > 0 and C > 0 such that if T > 0, ε ∈ (0, ε0), v0 = 0,

f ∈ H1,2(Q) satisfies f(0, ·) = 0 and h ∈ H2,5/2(Σ) satisfies

h(0, ·) = 0, h(T, ·) = 0, ∂th(0, ·) = 0 and ∂th(T, ·) = 0,

we have that the solution vε of (2.6) belongs to H2,4(Q) with the estimate:

‖vε‖H2,4(Q) ≤ C
√

1 + T
(
‖f‖H1,2(Q) + ‖h‖H2,5/2(Σ)

)
. (2.8)

Remark 2.9. These results are not optimal in terms of the regularity imposed on h, but they will

be enough for our purpose.

Finally, we recall the following classical estimate for a linear ordinary differential equation:

Lemma 2.10. Let T > 0 and let x be the solution in C0([0, T ]) of the following ordinary differential

equation: a(t)x(t) + x′(t) = g(t) t ∈ (0, T ),

x(0) = x0,

for x0 ∈ R, a ∈ L1(0, T ) and g ∈ L1(0, T ). Then, we have the estimate:

‖x‖C0([0,T ]) ≤ (|x0|+ ‖g‖L1(0,T ))e
‖a‖L1(0,T ) (2.9)

2.3 Results about Carleman estimates

In this subsection we present some Carleman estimates that are needed later. Let us first state a

Carleman estimate which concerns a parabolic equation with non-homogeneous Neumann boundary

conditions. More precisely, let us consider the following system:
−δϕt −∆ϕ = f in Q,

∂nϕ = h on Σ,

ϕ(T, ·) = ϕT in Ω.

(2.10)
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Lemma 2.11. Let Ω be a C4 domain, let ω̂ be an open set included in Ω such that ω0 ⊂ ω̂, let

m ≥ 1 and let r ∈ R. Then, there is C > 0 and λ0 ≥ 1 such that if T > 0, δ ∈ (0, 1], ϕT ∈ L2(Ω),

f ∈ L2(Q), h ∈ L2(Σ), λ ≥ λ0 and s ≥ eCλ(Tm + T 2m) we have:

s3+rλ4+r

∫∫
Q
e−2sαξ3+r|ϕ|2 + s1+rλ2+r

∫∫
Q
e−2sαξ1+r|∇ϕ|2

≤ C

srλr ∫∫
Q
e−2sαξr|f |2 + s3+rλ4+r

∫∫
(0,T )×ω̂

e−2sαξ3+r|ϕ|2 + s1+rλ1+r

∫∫
Σ
e−2sαξ1+r|h|2

 ,

(2.11)

for ϕ is the solution of (2.10).

The case m = 1, δ = 1 and r = 0 of Lemma 2.11 is proved in [16, Theorem 1]. We get the case

for m ≥ 1 and r ∈ R repeating all the steps in [16] and we get uniformity on δ following the steps

of, for instance, [23].

Next, we also need the following elliptic inequality, whose proof can be found in [12, Lemma 3]:

Lemma 2.12. Let Ω be a C4 domain and let r ∈ R. Then, there is C > 0 and λ0 ≥ 1 such that if

T > 0, λ ≥ λ0, s ≥ CT 2m and u ∈ L2
(
0, T ;H1(Ω)

)
, we have:

s2+rλ3+r

∫∫
Q
e−2sαξ2+r|u|2 ≤ C

srλ1+r

∫∫
Q
e−2sαξr|∇u|2 + s2+rλ3+r

∫∫
(0,T )×ω0

e−2sαξ2+r|u|2

 .

(2.12)

Finally, we need a Carleman inequality for the backwards solution of (2.6) (see (2.16) below).

For a simpler statement of the Carleman inequality, we define the weights:

η(t) := (sξ∗(t))1/4+1/me−sα
∗(t), (2.13)

and

η̃(t) := (sξ∗(t))−3/4e−sα
∗(t). (2.14)

Proposition 2.13. Let Ω be a C4 domain, let ω̃ be an open subset Ω such that ω0 ⊂ ω̃ and let

m ≥ 8. Then, there is ε0 > 0, C > 0 and λ0 ≥ 1 such that if T > 0, ε ∈ (0, ε0), ϕT ∈ L2(Ω),

h ∈ H2,5/2(Σ), λ ≥ λ0 and s ≥ eCλ(Tm + T 2m), we have:

s3λ4

∫∫
Q
e−2sαξ3|ϕε|2 + sλ2

∫∫
Q
e−2sαξ|∇ϕε|2

≤ C

(
s4λ5

∫∫
(0,T )×ω̃

e−2sαξ4|ϕε|2 + (1 + T )
(
‖ηh‖2

H1,1/2(Σ)
+ ‖η̃h‖2

H2,5/2(Σ)

))
, (2.15)
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for ϕε the solution of: 

−ϕεt −∆ϕε +∇πε = 0 in Q,

επε +∇ · ϕε = 0 in Q,

∂nϕ
ε − πεn = h on Σ,

ϕε(T, ·) = ϕT in Ω.

(2.16)

The proof of this Carleman estimate is presented in Annex B.

Remark 2.14. We remark that Proposition 2.13 with h = 0 implies that there is ε0 > 0 and C > 0

such that for all T > 0, ε ∈ (0, ε0] and y0 ∈ L2(Ω), there is f ε ∈ L2
(
(0, T )× ω̃

)
such that

‖f ε‖L2((0,T )×ω̃) ≤ C‖y0‖L2(Ω);

and such that yε the solution of

yεt −∆yε +∇pε = f ε1ω̃ in Q,

εpε +∇ · yε = 0 in Q,

∂ny
ε − pεn = 0 on Σ,

yε(0, ·) = y0 in Ω,

satisfies yε(T, ·) = 0.

Up to our knowledge the result presented in Remark 2.14 is new.

3 Proof and optimality of Theorem 1.8 when Ω is strictly convex

In Section 3 we first give some remarks about how much Theorem 1.8 can be improved and we

then prove Theorem 1.8 when Ω is strictly convex. The proof we do is simpler, clearer and more

explicit than when we are in a general domain. We recall that Ω strictly convex means that its

boundary consists of one connected component and that:

min
θ∈[0,|∂Ω|]

κ(θ) > 0. (3.1)

Moreover, we remark that a strictly convex domain always satisfies Hypothesis 1.1.

In the case of Ω a strictly convex convex domain, we do not need a0 to be small. We state this

in the following proposition:

13



Proposition 3.1. Let Ω be a strictly convex C4 domain. Then, there is C > 0 such that for all

a ∈ (0, 1] and for any real valued function u ∈ H4(Ω) ∩H1
0 (Ω), we have:

‖∂xu‖C0(Ω) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (3.2)

Throughout this section we prove Proposition 3.1, which automatically implies Theorem 1.8 if

Ω is strictly convex.

Remark 3.2. Estimate (3.2) is false if we remove the term ‖Lau‖H1(∂Ω). Indeed, we just have to

consider the unit disc, to take a = 1 and u(x, y) = 1− x2 − y2.

Remark 3.3. Although it might be possible that the spaces we give on the right of (3.2) are not

optimal, the statement is false if we replace ‖∂xyu‖H2(Ω) by ‖∂xyu‖L2(Ω) in the right-hand side of

(3.2), even if we replace ‖∂xu‖C0(Ω) by ‖u‖L2(Ω) in the left-hand side of (3.2). We are going to show

this for any C4 domain with a boundary characterized by an equation of the following kind:

g(x) + h(y) = 0,

for g, h ∈ C4(R). This includes circles, ellipses and p-norm spheres (for p ≥ 2) among others.

Proof of Remark 3.3. We prove this assertion by contradiction. Let us suppose that there is C > 0

such that, for any u ∈ H4(Ω) ∩H1
0 (Ω), we have:

‖u‖L2(Ω) ≤ C
(
‖∂xyu‖L2(Ω) + ‖Lau‖H1(∂Ω)

)
. (3.3)

Let us consider the function w(x, y) := g(x) + h(y). Then, w ∈ H2(Ω) ∩H1
0 (Ω). Let us consider

fn ∈ D(Ω) a sequence such that fn → Law in L2(Ω) and let un be the solution ofLaun = fn in Ω,

un = 0 on ∂Ω.

By usual theorems on elliptic regularity we have un ∈ H4(Ω) ∩H1
0 (Ω). Thus, applying (3.3) and

since fn vanishes on the boundary, we get that:

‖un‖L2(Ω) ≤ C‖∂xyun‖L2(Ω). (3.4)

Moreover, by continuity with respect to the force in the elliptic problem, we have that un → u in

H2(Ω), where u is the solution of Lau = Law in Ω,

u = 0 on ∂Ω.

Consequently, un → w in H2(Ω).
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Thus, if we take limits in (3.4) we get:

‖w‖L2(Ω) ≤ C‖∂xyw‖L2(Ω) = 0,

which is absurd.

Proof of Proposition 3.1. In order to make the proof more understandable we split it in three steps:

first, we obtain a differential equation on the boundary in terms of ∂xyu and Lau; then, we define

an auxiliary function and perform estimates on it; finally, we estimate ∂xu in terms of the auxiliary

function.

Step 1: Getting an equation on the boundary.

In order to get a differential equation on the boundary, we have to take into account that, because

of the Dirichlet condition on u:

u
(
σ1(θ), σ2(θ)

)
= 0, ∀θ ∈ [0, |∂Ω|].

If we differentiate this, we have:

σ′1∂xu+ σ′2∂yu = 0, ∀θ ∈ [0, |∂Ω|]. (3.5)

Moreover, if we differentiate (3.5), we get:

σ′′1∂xu+ σ′′2∂yu+ (σ′1)2∂xxu+ (σ′2)2∂yyu+ 2σ′1σ
′
2∂xyu = 0, ∀θ ∈ [0, |∂Ω|]. (3.6)

The idea is to get an equality from (3.6) in which we only have ∂xu, ∂xxu, ∂xyu and Lau. In

order to get it, we multiply (3.6) by σ′2, use (3.5) and use (1.10). We get that:

(σ′′1σ
′
2 − σ′′2σ′1)∂xu+ σ′2

(
(σ′1)2 − a(σ′2)2

)
∂xxu = −2σ′1(σ′2)2∂xyu+ (σ′2)3Lau, ∀θ ∈ [0, |∂Ω|].

Recalling (1.3) we can rewrite the previous equation:

− κ∂xu+ σ′2
(
(σ′1)2 − a(σ′2)2

)
∂xxu = −2σ′1(σ′2)2∂xyu+ (σ′2)3Lau, ∀θ ∈ [0, |∂Ω|]. (3.7)

Thanks to (3.1), we can divide (3.7) by κ:

− ∂xu+
σ′2
κ

(
(σ′1)2 − a(σ′2)2

)
∂xxu = −2σ′1(σ′2)2

κ
∂xyu+

(σ′2)3

κ
Lau, ∀θ ∈ [0, |∂Ω|]. (3.8)

In order to shorten this expression, we introduce the following notation:

A(θ) :=
σ′2(θ)

κ(θ)

(
(σ′1(θ))2 − a(σ′2(θ))2

)
=
σ′2(θ)

κ(θ)

(
1− (a+ 1)(σ′2(θ))2

)
. (3.9)

Thus, (3.8) turns into:

− ∂xu+A∂xxu = −2σ′1(σ′2)2

κ
∂xyu+

(σ′2)3

κ
Lau ∀θ ∈ [0, |∂Ω|]. (3.10)
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Step 2: Defining an auxiliary function.

We now consider the lower part of the boundary:

Γ := {(σ1(θ), σ2(θ)) : σ′1(θ) ≥ 0}.

We can extend the functions κ, σ′i and σ′ii (i = 1, 2) to Ω. In order to do so, we define Θh(x) as

the only value θ ∈ [0, |∂Ω|] such that σ1(θ) = x and σ(θ) ∈ Γ. We consider the following auxiliary

function in Ω:

g(x, y) := −∂xu(x, y) +A(Θh(x))∂xxu(x, y). (3.11)

Besides, for any set S ⊂ R2, we define:

O(S) :=
(
S + Re2

)
∩ Ω,

Ph(S) := σ(Θh(S)).

We are going to estimate g and ∂xg on horizontal segments; that is, on segments of the type:

l := [xl, xr]× {y} ⊂ Ω. (3.12)

First, we estimate the L1-norm of ∂xg on any horizontal segment l ⊂ Ω. We consider the following

equality:

∂xg(x, y) = ∂xg(σ(Θh(x))) +

∫ y

σ2(Θh(x))
∂xyg(x, z)dz, ∀(x, y) ∈ Ω. (3.13)

The second term in this equality is clearly estimated in L1(l, dx)-norm by ‖∂xyu‖H2(Ω) (see (3.11)).

In order to estimate the first term in the previous equality, we differentiate (3.10) in the direction

θ:

σ′1∂xg = −σ′2∂yg + ∂θ

(
−2σ′1(σ′2)2

κ
∂xyu+

(σ′2)3

κ
Lau

)
, θ ∈ [θ̃, θ̂].

Since σ1(Θh(x)) = x, we have that:

Θ′h(x) =
1

σ′1(Θh(x))
.
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So, if we combine this with the fact that |σ′| = 1, with the fact that Θh(σ1(θ)) = θ, and recalling

the notation presented in (3.12), we have that:∫
l

(
1

|σ′1|

∣∣∣∣−σ′2((∂yg) ◦ σ) + ∂θ

(
−2σ′1(σ′2)2

κ
((∂xyu) ◦ σ) +

(σ′2)3

κ
((Lau) ◦ σ)

)∣∣∣∣) (Θh(x))dx

=

∫
l

∣∣∣∣∣d
(
σ(Θh(x))

)
dx

∣∣∣∣∣
∣∣∣∣∣− σ′2∂yg − ∂θ

(
2σ′1(σ′2)2

κ

)
∂xyu−

2σ′1(σ′2)2

κ
(σ′1∂x + σ′2∂y)∂xyu

+ ∂θ

(
(σ′2)3

κ

)
Lau+

(σ′2)3

κ
(σ′1∂x + σ′2∂y)Lau

∣∣∣∣∣(σ(Θh(x)))dx

=

∫
Ph(l)

∣∣∣∣∣− σ′2∂yg − ∂θ
(

2σ′1(σ′2)2

κ

)
∂xyu−

2σ′1(σ′2)2

κ
(σ′1∂x + σ′2∂y)∂xyu

+ ∂θ

(
(σ′2)3

κ

)
Lau+

(σ′2)3

κ
(σ′1∂x + σ′2∂y)Lau

∣∣∣∣∣,
for the geometric functions in the second and third integral above evaluated in Θh(x), when we are

in a point p = (x, y) ∈ Γ. Thus, recalling that ∂yg = −∂xyu + A∂xxyu and recalling (3.13) we get

that:

‖∂xg‖L1(l,dx) ≤ C
(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
. (3.14)

Next, we estimate the C0-norm of g on any horizontal segment l ⊂ Ω. Indeed, if we use (3.8),

(3.11) and the formula:

g(x, y) = g(σ(Θh(x))) +

∫ y

σ2(Θh(x))
∂yg(x, z)dz, ∀(x, y) ∈ Ω,

we get, for some p ∈ l, an estimate of g(p) in terms of ‖∂xyu‖H2(Ω) and ‖Lau‖H1(∂Ω) with a constant

depending on l. So, if we also consider (3.14), we get that:

‖g‖C0(l) ≤ C(l)(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (3.15)

Step 3: Getting the information from the ordinary differential equation (3.11).

We split Ω in different subsets depending on the sign of A (Θh(x)). With that purpose, we denote

θ0, θ±a and θ±1 the values such that:
σ′(θ0) = e1,

σ′(θ±a ) =
(√

a
a+1 ,±

√
1

a+1

)
,

σ′(θ±1 ) = ±e2.

(3.16)

Since the domain is strictly convex, all θi are uniquely determined for a fixed. Let us set:

x0 := σ1(θ0); x±a := σ1(θ±a ) and x±1 := σ1(θ±1 ).
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Because of (3.9) we have that A(θ0) = 0 and A(θ±a ) = 0. By (3.11) and (3.15), this implies that

we can estimate ∂xu in the vertical segments given by {x = x0} and {x = x±a }. More generally,

if we have an estimate of |∂xu(x∗, y∗)|, we have an estimate of |∂xu(x∗, y)| for all y such that

(x∗, y) ∈ Ω because ‖∂xyu‖C0(Ω) can be estimated by ‖∂xyu‖H2(Ω). Consequently, we just have to

transmit horizontally the punctual estimates of |∂xu|. In order to do so, in the rest of the proof

we are going to fix some appropriate horizontal segments and see equality (3.11) as an ordinary

differential equation.

We first prove estimate (3.2) in Ω ∩ {x ≥ x0}. We consider a sequence of values s0 < · · · < sn

such that s0 := x0, sn := x+
1 and such that for any i ∈ {1, . . . , n} there exists an horizontal

segment li ⊂ Ω such that the abscissa of its left endpoint (respectively its right endpoint) is si−1

(respectively si). Because we are in a regular bounded convex domain, all this can be done (see

Figure 1 for one such example). We denote by yi the second coordinate of any point of li.

We remark that, since the segments l1, . . . , ln do not depend on a, we have, due to (3.15), the

following estimate in those segments with a constant that only depends on Ω:

‖g‖C0(∪ni=1li)
≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (3.17)

Let us set ja ∈ {1, . . . , n} such that θ+
a ∈ Θh(lja). If there are two such segments, we choose the

one on the right. We first get an estimate in O({x ≥ x+
a }), where we have:

A (Θh(x)) ≤ 0 (3.18)

(see (3.9)). For that purpose, we define lra := lja ∩ O({x ≥ x+
a }).

First, we can get an estimate for the punctual value of ∂xu on x = x+
a since ∂xu(x+

a , y) =

−g(x+
a , y). Thus, by (3.17), we get that:

|∂xu(x+
a , yja)| ≤ C

(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
. (3.19)

Next, we have that, for any z ∈ [x+
a , sja ]:

−
∫ z

x+a

(x− z − 2)(∂xu∂xxu)(x, yja)dx =
1

2

∫ z

x+a

|∂xu(x, yja)|2dx

+
(x+
a − z − 2)

2
|∂xu(x+

a , yja)|2 − (−1)|∂xu(z, yja)|2. (3.20)
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Thus, considering (3.11), (3.19) and (3.20), we have that for a constant C independent of z:

1

2

∫ z

x+a

|∂xu(x, yja)|2dx+

∫ z

x+a

(x− z − 2)A (Θh(x)) |∂xxu(x, yja)|2dx+ |∂xu(z, yja)|2

≤
∫ z

x+a

(x− z − 2)(g∂xxu)(x, yja)dx+ C
(
‖∂xyu‖2H2(Ω) + ‖Lau‖2H1(∂Ω)

)
. (3.21)

So, the last term to be estimated in (3.21) is the one with g. In order to do that, we integrate by

parts:∫ z

x+a

(x− z − 2)(g∂xxu)(x, yja)dx = −
∫ z

x+a

(x− z − 2)(∂xg∂xu)(x, yja)dx

−
∫ z

x+a

(g∂xu)(x, yja)dx− (x+
a − z + 2)g(x+

a , yja)∂xu(x+
a , yja)− 2g(z, yja)∂xu(z, yja)

≤ C
(
‖∂xg‖L1(lra,dx) + ‖g‖C0(lra)

)
‖∂xu‖C0(lra). (3.22)

Using that ab ≤ 1
4ηa

2 + ηb2 and estimating the norms of g by (3.14) and (3.17), we obtain the

following from (3.21):∫ z

x+a

|∂xu(x, yja)|2dx+ |∂xu(z, yja)|2 ≤ Cη
(
‖∂xyu‖2H2(Ω) + ‖Lau‖2H1(∂Ω)

)
+ η‖∂xu‖2C0(lra).

Since z is arbitrary, we deduce that:

‖∂xu‖C0(lra) ≤ Cη
(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
+ η‖∂xu‖C0(lra).

Thus, taking η small enough, we can absorb the last term on the right-hand side. Moreover, using

that ‖∂xyu‖C0(Ω) is estimated in terms of ‖∂xyu‖H2(Ω), we get:

‖∂xu‖C0(O(lra))
≤ C

(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
. (3.23)

This method also works for lja+1, . . . , ln; because the trace of ∂xu on the left of these segments

is obtained first by (3.23) and then inductively. Indeed, in li it suffices to multiply at both sides

of the identity (3.11) by (x − si − 2)∂xxu and integrate by parts as above. Therefore, we can get

inductively that:

‖∂xu‖C0(O(lra))
+

n∑
i=ja+1

‖∂xu‖C0(O(li))
≤ C

(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
,

which implies that:

‖∂xu‖C0(O({x≥x+a )}) ≤ C
(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
.

19



As for getting the estimate in O({x ∈ [x0, x
+
a ]}), we have to get the estimate first in lla :=

lja ∩O({x ≤ x+
a }), then inductively in lja−1, . . . , l1. We follow the procedure done above, but this

time we multiply by x + x+
a + 2 and we spread the estimates to the left. The reason for these

changes is that for x ∈ [x0, x
+
a ], A (Θh(x)) is positive instead of negative (see (3.9)).

It is quite clear that we can get the estimate in a similar way for Ω ∩ {x < x0}. Thus, we get

(3.2).

4 Proof of Theorem 1.8 and some geometrical results

In this section we present the proof of Theorem 1.8 as well as some strongly related results.

First, in Subsection 4.1 we prove Lemma 1.3. Then, in Subsections 4.2 and 4.3 we state and prove

some geometrical consequences of Hypothesis 1.1. Finally, in Subsection 4.4 we prove Theorem 1.8,

using, among others, Section 3.

We recall that some of the notation used in this section has been introduced above Hypothesis

1.1.

4.1 Proof of Lemma 1.3

Lemma 1.3 is a consequence of Sard’s Theorem:

Theorem 4.1 (Sard’s Theorem). Let f : R→ R a C1 function. Let

X := {x ∈ R : f ′(x) = 0}.

Then, f(X) has zero measure.

Proof of Lemma 1.3. In order to apply Sard’s theorem, we consider the functions

(σ1
1)′, . . . , (σk1 )′, (σ1

2)′, . . . , (σk2 )′.

Let us denote Z ⊂ [−1, 1] the set of values such that if (σi1)′(θ) = z or if (σi1)′(θ) = −z or if

(σi2)′(θ) = z or if (σi2)′(θ) = −z; then, κi(θ) 6= 0. Since κi(θ) = 0 implies that (σi1)′′(θ) = 0 and

(σi2)′′(θ) = 0 (see (1.3)), thanks to Sard’s Theorem (and to the fact that a finite union of null-

measure sets and translations of those sets are still of null measure) we get that the measure of

[−1, 1] \ Z is 0.
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Let us consider ψ ∈ sin−1(Z). Then, for Ω̃ = Uψ(Ω), we have that Uψ(∂Ω) = ∂Ω̃ and it can be

parametrized by σ̃i := Uψ(σi). Moreover, we have (Uψ(σi))′ = Uψ((σi)′). Consequently, (σ̃i)′ = ±e2

if and only if (σi)′(θ) = U(−ψ)(0,±1); that is, if and only if (σi)′(θ) = ±(sin(ψ), cos(ψ)). Similarly,

(σ̃i)′ = ±e1 if and only if (σi)′(θ) = ±(cos(ψ),− sin(ψ)). Finally, if κ̃i(θ) is by definition the

curvature in σ̃i(θ), we have, by the non-variation of the curvature by rotations, κ̃i(θ) = κi(θ).

Thus, by the definition of Z, taking z = sinψ, we have that all the points of ∂Ω̃ with horizontal or

vertical tangent vector have a non zero curvature.

Finally, the measure of R \ sin−1(Z) is null because, for all k ∈ Z, the sinus is a diffeomorphism

from (π(k− 1/2), π(k+ 1/2)) to (−1, 1) (and because a countable union of sets of null measure has

null measure).

4.2 Geometrical consequences of Hypothesis 1.1

In order to prove Theorem 1.8, we need to define equivalent notions to the ones presented in the

convex case (see Section 3).

Definition 4.2. We define Γ as the subset of ∂Ω such that p = σi(θ) ∈ Γ if and only if at least one

of the following properties is satisfied:

• ∃δ0(p) > 0 : ∀δ ∈ (0, δ0(p)), p+ δe2 ∈ Ω,

• (σi)′(θ) = ±e2.

When Ω is convex we have that Γ is the bottom of Ω.

Example 4.3. In the domain given by Figure 2 below, we have an example on what Γ may look

like.

Remark 4.4. The relative boundary of Γ is given by points of tangent vectors ±e2. Indeed, the

components of ∂Ω are closed curves; thus, by regularity, having a vertical tangent vector is the only

possibility.

Definition 4.5. Let (x, y) ∈ Ω. We define:

Ph(x, y) := (x, y)− λe2 such that λ := min{λ ∈ R+ : (x, y)− λe2 ∈ Γ}.

We remark that when Ω is convex Ph represents the vertical projection on Γ, Ph is continuous

and Ph does not depend on y. In the general situation, though, there is a dependence on y and Ph
is not continuous due to the fact that Γ may not be connected (see B1 in Figure 2 below). Yet, we

can define an application Ph that coincides with the one given in Section 3 when Ω is convex:
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Definition 4.6. Let li = [xil, x
i
r]× {yi} ⊂ Ω a segment. Then,

Ph(li) := Ph((xil, x
i
r)× {yi}).

Moreover, we see that Hypothesis 1.1 implies the existence of segments like in the case of a

convex domain:

Lemma 4.7. Let Ω be a domain that satisfies Hypothesis 1.1. Then, there is a subset S ⊂ Ω such

that:

• S is a finite union of horizontal segments li := [xil, x
i
r]× {yi}.

• Ph(S) = Γ.

• Ph is continuous in the relative interior of each segment li.

Example 4.8. In Figure 2 S is given by the segments: [A1, A2], [A2, A5], [C1, C5], [D1, D6] and

[E1, E2].

The proof of Lemma 4.7 is postponed to Section 4.3. We first prove some geometrical results:

Lemma 4.9. Let Ω be a domain that satisfies Hypothesis 1.1. We have:

1. If (σi1)′(θ) = 0 or if (σi2)′(θ) = 0, then, for some δ(θ) > 0, κi does not change of sign in

(θ − δ(θ), θ + δ(θ)).

2. The number of points in ∂Ω with tangent vectors ±e1 or ±e2 is finite.

3. Given any c ∈ R, the number of points in ∂Ω ∩ {x = c} or in ∂Ω ∩ {y = c} is finite.

4. Given any c ∈ R, there is δ(c) > 0 such that:

• We have

([c− δ(c), c+ δ(c)]× R) ∩ ∂Ω =
⋃

p=σip (θp)∈∂Ω∩{x=c}

σip(Ip),

for Ip = (θ1
p, θ

2
p), for some θ1

p < θp < θ2
p.

• In the set ((
[c− δ(c), c+ δ(c)] \ {c}

)
× R

)
∩ ∂Ω,

we do not have p = σi(θ) with (σi)′(θ) = ±e2.

5. There is some η > 0 such that for all points p = σi(θp) ∈ ∂Ω with (σi)′(θp) = ±e1, there

exists a neighbourhood Vp = σi(Ip) ⊂ ∂Ω (Ip = (θ1
p, θ

2
p), for some θ1

p < θp < θ2
p) such that

σi2(θ1
p) = σi2(θ2

p) and such that |κi| > η.
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6. There exists a0 > 0 small enough such that, for all a ∈ (0, a0), for each point p = σi(θ) ∈ ∂Ω

with (σi(θ))′ = ±e2 there is a neighbourhood Up ⊂ ∂Ω which has exactly a point of tangent

vector ±
(√

a
1+a ,

√
1

1+a

)
and exactly another one of tangent vector ±

(√
a

1+a ,−
√

1
1+a

)
. Re-

ciprocally, if pa = σi(θa) ∈ ∂Ω satisfies (σi)′(θa) =
(
±
√

a
1+a ,±

√
1

1+a

)
, then pa ∈ Up, for

Up one of the above defined neighbourhoods. Finally, we can suppose that for some η > 0,

|κi| > η on those neighbourhoods.

Proof of Lemma 4.9. Firstly, implication 1 is an easy consequence of Ω being at least C2.

Secondly, we prove implication 2 for points of tangent vector ±e2 by contradiction. If they are

not finite, by (pre-)compactness and regularity of Ω, there is a point p = σi(θ) and θn → θ such

that (σi1)′(θn) = 0. Obviously (σi1)′(θ) = 0. But, because of the regularity of Ω, we also have

(σi1)′′(θ) = 0. Indeed,

(σi1)′′(θ) = lim
s→θ

(σi1)′(s)− (σi1)′(θ)

s− θ
= lim

n→∞

(σi1)′(θn)− (σi1)′(θ)

θn − θ
= 0. (4.1)

Thus, we get by (1.3) that κi(θ) = 0, which contradicts Hypothesis 1.1. The proof for points with

tangent vector ±e1 is analogous.

Thirdly, given any line x = c, we prove by contradiction that there is a finite number of points

in ∂Ω∩{x = c}. Indeed, if we have an infinite number of points, by regularity and compactness we

can write a sequence of distinct elements as σi(θn) with θn → θ. Since σi1(θn) = c, by an equality

similar to (4.1), (σi1)′(θ) = 0. Since κi(θ) 6= 0 by Hypothesis 1.1, σi(θn) cannot be in {x = c} for n

large enough, contradicting the choice of θn. The proof for y = c is analogous.

Fourthly, statement 4 is a consequence of assertion 2. Indeed, the only possibility is that there

is an infinite number of curves of ∂Ω that approach the line x = c and then move away (like a

parabola). But this implies that there is an infinite number of points of tangent vector ±e2, which

contradicts statement 2.

Fifthly, assertion 5 is an easy consequence of statements 1 and 2 and of picking the neighbour-

hoods small enough.

Finally, statement 6 is a consequence of assertion 2. Indeed, we know that such neighbourhoods

and a0 > 0 exist because we can get a small open neighbourhood of points of tangent vector ±e2

and because we can get the minimum of |(σi1)′| outside those neighbourhoods. In that sense, we
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can choose a0 and η small enough because there is a finite number of neighbourhoods and because

|κi| > 0 in each neighbourhood.

4.3 Proof of Lemma 4.7 and some remarks

To continue with, we present the proof of Lemma 4.7, which shows the existence of segments li

with analogous properties of those in Section 3. Then, we state some direct consequences.

First of all, we define some useful notation:

Definition 4.10. Let Ω ⊂ R2 be a domain and x ∈ R. We define:

Ωx := Ω ∩
(
(−∞, x)× R

)
.

Now we are ready to present the proof:

Proof of Lemma 4.7. Without loss of generality we can suppose that:

0 = min{x : ∃y with (x, y) ∈ Ω}.

We consider:

I = {x ∈ R+ : ∀s ∈ [0, x] ∃Ss ⊂ Ωs :

Ss satisfies the conclusion of Lemma 4.7 with Γ replaced by Γ ∩ Ωs}.

First, we remark that 0 ∈ I because Ω0 = ∅. Thus, in order to prove the result it suffices to show

that if [0, c) ⊂ I, we have c ∈ I and that if c ∈ I, we have (c, c+ δ(c)) ⊂ I for δ(c) > 0 sufficiently

small.

Next, let us show that [0, c) ⊂ I implies c ∈ I. We consider δ(c) given by statement 4 in Lemma

4.9. In Ωc−δ(c) we already have the segments Sc−δ(c). Thus, it suffices to define in Ωc \ Ωc−δ(c)

a finite number of segments slightly above the curves of Γ, which can be done by regularity and

pre-compactness. If there is some point p = σi(θ) ∈ Γ with x = c such that (σi)′(θ) = ±e2 we

might have to start a segment in p and spread it to the left (see the segment [E2, E1] in Figure 2).

So we have c ∈ I.

Finally, let us show that c ∈ I implies c + δ(c) ∈ I, for δ(c) sufficiently small. Again, we pick

δ(c) small enough to satisfy the conclusion of statement 4 in Lemma 4. We already have Sc, so

now we consider the possible situation for the points in Γ∩ {x = c} (which are finite by statement

3 in Lemma 4.9):
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• For the points in {x = c}∩Γ which do not have as tangent vector ±e2, we just have to extend

the segment of Sc with right endpoint in x = c to the right of Ωc, unless some segment has a

right endpoint which belongs to ∂Ω. In that case, we just have to start a new segment whose

left endpoint can be joint by a vertical segment inside Ω with the right endpoint of the former

one (see the dashed segments near C5 in Figure 2).

• As for the points in {x = c} ∩ Γ of tangent vector ±e2, we might not be allowed to extend

the segment because Ph becomes discontinuous and we need to start two new segments (for

instance, in A2 in Figure 2 we must stop and start two new segments: one with left endpoint

A2, the other one with left endpoint C1). It might also be the case that we need to start a

new segment above the point (see near D1 in Figure 2).

Summing up, since all this happens for a finite number of situations, for δ(c) sufficiently small we

have (c, c+ δ(c)) ⊂ I.

Remark 4.11. We remark that, because of the conclusion of Lemma 4.7, the left endpoint of each

segment li is either a point p = σi(θ) ∈ Γ with (σi)′(θ) = ±e2 and κi(θ) > 0 (the case of A1 in

Figure 2) or it can be joined by a vertical segment (including degenerated segments) inside Ω with

some other segment lj such that xjl < xil ≤ x
j
r (the case of A2, C1, D1 and E1 in Figure 2).

Remark 4.12. Another easy consequence of Lemma 4.7 is that, if Ω satisfies Hypothesis 1.1, since

Ph(S) = Γ, for all p ∈ Ω there is λ ∈ R such that [p, p + λe2] ⊂ Ω and such that p + λe2 ∈ S.

Because of that, if suffices to get an estimate of ‖∂xu‖C0(S) to prove Theorem 1.8, since ‖∂xyu‖C0(Ω)

is estimated by ‖∂xyu‖H2(Ω).

Remark 4.13. Given any segment li as defined in Lemma 4.7, because of its third property, it makes

sense to define Θi
h(x), Ai(x) and gi(x, y) as in the convex case (see Section 3) by looking at Ph(li).

Indeed, they make sense in the domain limited superiorly by li and inferiorly by Ph(li). Moreover,

we recall that:

gi(x, y) := −∂xu(x, y) +Ai(Θ
i
h(x))∂xxu(x, y). (4.2)

We also remark that if minli |κ(Θi
h(x))| > 0 we can prove the following estimate as in the convex

case (see (3.14) and (3.15)) for a constant C depending only on S:

‖gi‖C0(li) + ‖∂xgi‖L1(li,dx) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (4.3)

4.4 Proof of Theorem 1.8

In order to prove Theorem 1.8 we get an estimate in each segment li given by Lemma 4.7. Indeed,

we prove inductively that:

‖∂xu‖C0(li) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)). (4.4)
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By inductively, we mean that (4.4) is proved for any other segment lj such that xjl < xil (see Lemma

4.7 for the notation).

First, for getting a pointwise estimate on xil, we consider the two situations given in Remark

4.11. In the first case, because of statement 6 on Lemma 4.9, we can get an estimate on xil by

‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω) as in the convex case (see Section 3). In the second case, by the

induction hypothesis and the fact that ‖∂xyu‖C0(Ω) can be estimated by ‖∂xyu‖H2(Ω), we get the

estimate on xil by ‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω). So, in both cases we have:

|∂xu(xil, y
i)| ≤ C

(
‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)

)
. (4.5)

So, once we have (4.5), we have to propagate the estimate in li. Indeed, we can split, extend

and move the segments li (see the points A3, A4, C3, C4, D2, D3, D4 in Figure 2, which allow us

to split their respective segment into smaller ones) so that we only have one of the four following

possibilities for Ph(li):

1. Ph(li) is the intersection of Γ with one of the neighbourhoods Up (see statement 6 in Lemma

4.9).

2. Ph(li) has null intersection with all the neighbourhoods Up and Vp.

3. Ph(li) is one of the neighbourhoods Vp (see statement 5 in Lemma 4.9) which has a positive

curvature.

4. Ph(li) is one of the neighbourhoods Vp (see statement 5 in Lemma 4.9) which has a negative

curvature.

• Let us first deal with situation 1. We recall that by Remark 4.13, functions like gi or Θi
h or

Ai make sense in li. We start in the subcase in which (σi1)′(Θi
h(xir)) = 0. In Figure 3, Ω1

illustrates an example in which the surface is locally convex and Ω2 an example in which it is

locally concave. We remark that, in the concave case, the ratio
(σi

2)′

κi
has the same sign as in

the convex case (by the criteria fixed above Hypothesis 1.1, (σi2)′ < 0, (σi1)′ ≥ 0 and κi < 0

in that part of Γ). Analogously to the convex case (see Section 3), we define pa ∈ Vq as the

point such that Ai(Θh(pa)) = 0. Moreover, qa is the point in li such that Ph(qa) = pa. Thus,

in both cases, we can multiply (4.2) by x+ C for C large enough in the segment [q1, qa] and

by x−C for C large enough in [qa, q2] and then follow the procedure of the convex case. The

case in which (σi1)′(Θi
h(xil)) = 0 is analogous. Consequently, we have (4.4) in situation 1.
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• If Ph(li) belongs neither to Up nor to Vp (situation 2), we have, by statement 6 in Lemma 4.9,

that there is η > 0 such that:

|Ai(Θi
h(li))| > η

(see Remark 4.13 or (3.9) for definition of Ai). Consequently, we can divide the equation

(4.2) by Ai and hope to have uniform estimates. With that purpose, we define:

g̃i(x, y) := − 1

Ai(Θi
h(x))

∂xu(x, y) + ∂xxu(x, y). (4.6)

In that sense, we can get the same estimate for g̃i as the one for gi in (4.3) by following similar

steps. Thus, seeing (4.6) as an ordinary linear differential equation in li whose initial value

is in (xil, y
i), we get (4.4) by Lemma 2.10.

• As for the situation 3 (see Figure 4 for the notation), we mainly replicate the method of

the previous section. In this paragraph and in the following one, we do all the estimates by

‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω) even if we do not explicitely write it. We already have by (4.5) a

pointwise estimate in q−1, so we can get an estimate in [q−1, q] following the method of the

convex case. As for [q, q1], to replicate the method of the convex case, we need an estimate of

|∂xu(q1)|. In order to get it, first we use the estimate of |∂xu(q−1)| in (4.5) to get an estimate

of |∂xu(p−1)|. Then, using the Dirichlet boundary condition, we get an estimate of |∂yu(p−1)|.
Next, with the estimate of ‖∂xyu‖C0([p−1,p1]), we have an estimate of |∂yu(p1)|. To continue

with, again by Dirichlet conditions, we have an estimate of |∂xu(p1)|. Finally, by estimating

‖∂xyu‖C0([p1,q1]), we have an estimate of |∂xu(q1)|, and thus we can replicate the method of

the previous section for [q, q1].

• The last situation is that Ph(li) is locally concave (see Figure 5 for the notation). The

technique is the same one as in situation 3 (recall that the ratio
(σi

2)′

κi
and consequently Ai

have the same sign as in the convex case), but this time we have the extra difficulty of showing

that having the estimate of |∂yu(p−1)| implies having the estimate of |∂yu(p1)|. In order to

do it, we have to consider that in each component of ∂Ω we have the following equality:

aκi∂yu− (σi1)′(1− (a+ 1)((σi2)′)2)∂yyu = ((σi1)′)3Lau− 2a((σi1)′)2(σi2)′∂xyu.

This equality can be obtained similarly to (3.7). So, similarly as in Remark 4.13, we can

define locally at the left of σi((θ1
p, θp)) (see statement 5 in Lemma 4.9 for the notation) a

function Θi
v(y) and a function:

ĝ(x, y) := aκi(Θi
v(y))∂yu(x, y)−

(
(σi1)′(1− (a+ 1)((σi2)′)2)

)
(Θi

v(y))∂yyu(x, y). (4.7)

Moreover, we can obtain as (4.3) that (see Figure 5 for the notation):

‖ĝ‖L1([q−1,k−1],dy) ≤ C(‖∂xyu‖H2(Ω) + ‖Lau‖H1(∂Ω)).
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So, by seeing (4.7) as an ordinary differential equation whose initial data is p−1, because

there is η > 0 such that (σi1)′(1 − (a + 1)((σi2)′)2) ≥ η in Vp, we can use Lemma 2.10 to

get an estimate of |∂yu(k−1)|. Then, because ‖∂xyu‖C0([k−1,k1]) can be estimated, we have

an estimate of |∂yu(k1)|. Finally, we can propagate the pointwise estimate of |∂yu| in the

segment [k1, p1] in an analogous way as in the segment [p−1, k−1]. Consequently, we have the

estimate of |∂yu(p1)| and we can replicate the method for situation 3.

Finally, by Remark 4.7, since we have (4.4) for all segments in S, we have (1.11).

5 Proof of Theorem 1.7

For the proof of this theorem we define a subdomain ω̃ compactly contained in ω such that

ω0 ⊂ ω̃. Moreover, we consider a cut-off function χ ≥ 0 satisfying supp(χ) ⊂ ω and χ = 1 in ω̃. In

order to clarify the proof we divide it in several steps.

Step 1: Estimates of the crossed derivative.

First of all, we consider estimate (1.14) squared, multiplied by (sξ∗)15λ16e−2sα∗ and integrated in

time. If we also bound the weights (see (1.8)), we get that:

s15λ16

∫∫
Q
e−2sα∗(ξ∗)15|ϕε|2 ≤ Cs15λ16

2∑
i=0

∫∫
Q
e−2sαξ15|Di∂xyϕ

ε|2. (5.1)

Next, we apply the elliptic estimate (2.12) to Di∂xyϕ
ε for i = 0, . . . , 7 (we take D0∂xyϕ

ε :=

∂xyϕ
ε). We get that:

7∑
i=0

s19−2iλ20−2i

∫∫
Q
e−2sαξ19−2i|Di∂xyϕ

ε|2 ≤ C

(
s3λ4

∫∫
Q
e−2sαξ3|D8∂xyϕ

ε|2

+
7∑
i=0

s19−2iλ20−2i

∫∫
(0,T )×ω0

e−2sαξ19−2i|Di∂xyϕ
ε|2
)

. (5.2)

Moreover, since under our hypothesis 1 ≤ Csξ, we combine that fact with (5.2) and (5.1), and we

get that:

s15λ16

∫∫
Q
e−2sα∗(ξ∗)15|ϕε|2 +

7∑
i=0

s19−2iλ20−2i

∫∫
Q
e−2sαξ19−2i|Di∂xyϕ

ε|2

≤ C

s3λ4

∫∫
Q
e−2sαξ3|D8∂xyϕ

ε|2 +
7∑
i=0

s19−2iλ20−2i

∫∫
(0,T )×ω0

e−2sαξ19−2i|Di∂xyϕ
ε|2

 . (5.3)
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To continue with, we deal with each term of D8∂xyϕ
ε. In order to do so, we use Proposition 2.13

(on each term of D8∂xyϕ
ε) and get that:

sλ2

∫∫
Q
e−2sαξ|D9∂xyϕ

ε|2 + s3λ4

∫∫
Q
e−2sαξ3|D8∂xyϕ

ε|2

≤ C

s4λ5

∫∫
(0,T )×ω̃

e−2sαξ4|D8∂xyϕ
ε|2 + (1 + T )

(
‖ηh‖2

H1,1/2(Σ)
+ ‖η̃h‖2

H2,5/2(Σ)

) , (5.4)

for h := ∂nD
8ϕε + ε−1∇ ·D8ϕε.

Remark 5.1. It is well-known since [12] that by taking enough derivatives we can absorb the trace.

Indeed, each time we use (2.12), the weight is, up to a constant, divided by s2λ2ξ2. Moreover, with

the weights α∗ and ξ∗ (the weights on the boundary), we can formally “remove a derivative” by

multiplying the weight by C(sξ∗)1+1/m (this is rigorously done in the next step). Consequently, it

is clear that we can absorb the trace using Proposition 2.13 by taking enough derivatives. In our

case, if we take less derivatives, what happens when we remove the derivatives of the trace is that

we get something with a weight larger than s15λ16e−2sα∗(ξ∗)15, which cannot be absorbed by the

left-hand side of (5.1).

Step 2: Absorbing the trace terms.

Let us start absorbing (1 + T )‖ηh‖2
H1,1/2(Σ)

. We consider the continuous injections:

H6,12(Q) ⊂ H1(0, T ;H10(Ω)) and H5,11(Q) ⊂ H1(0, T ;H8+4/5(Ω)).

Consequently, we have that:

‖ηh‖H1,1/2(Σ) ≤ C
(
‖ηϕε‖H1(0,T ;H10(Ω)) + ε−1‖∇ · (ηϕε)‖H0,9(Q)

+ ε−1‖∇ · (ηϕε)‖H1(0,T ;H8+4/5(Ω))

)
≤ C

(
‖ηϕε‖H6,12(Q) + ε−1‖∇ · (ηϕε)‖H5,11(Q)

)
. (5.5)

We recall that

(t, x) 7→ η(T − t)ϕε(T − t, x)

is a solution of (1.1) with null initial value and force −η′(T−t)ϕε(T−t, x). Thus, applying estimate

(2.5) with i = 6 to (5.5), we have that:

‖ηϕε‖H6,12(Q) + ε−1‖∇ · (ηϕε)‖H5,11(Q) ≤ C‖η′ϕε‖H5,10(Q).

If we repeat this reasoning 5 times, we get that:

‖ηh‖H1,1/2(Σ) ≤ C‖η
vi)ϕε‖L2(Q).

29



We have that, if s ≥ eCλ(Tm + T 2m) and m ≥ 8 (see (2.13)):

(1 + T 1/2)|ηvi)| ≤ C(sξ∗)6+1/4+7/me−sα
∗ ≤ C(sξ∗)15/2e−sα

∗
.

Consequently, if we also have λ ≥ λ0, we can absorb the term (1 +T )‖ηh‖H1,1/2(Σ) by the left-hand

side of (5.3).

Finally, we have to absorb (1 + T 1/2)‖η̃h‖H2,5/2(Σ). In order to do so, we recall that:

H7,14(Q) ⊂ H2(0, T ;H10(Ω)) and H6,13(Q) ⊂ H2(0, T ;H8+2/3(Ω)).

Thus, we have that:

‖η̃h‖H2,5/2(Σ) ≤ C
(
‖η̃ϕε‖H0,12(Q) + ‖η̃ϕε‖H2(0,T ;H10(Ω)) + ε−1‖∇ · (η̃ϕε)‖H0,11(Q)

+ ε−1‖∇ · (η̃ϕε)‖H2(0,T ;H8+2/3(Ω))

)
≤ C

(
‖η̃ϕε‖H7,14(Q) + ε−1‖∇ · (η̃ϕε)‖H6,13(Q)

)
.

Consequently, using estimate (2.5) seven times, we get that:

‖η̃h‖H2,5/2(Σ) ≤ ‖η̃
vii)ϕε‖L2(Q);

which is a term that can be absorbed by the left-hand side of (5.3) if λ ≥ λ0, s ≥ eCλ(Tm + T 2m)

and m ≥ 8, because under those hypothesis (see (2.14)):

(1 + T 1/2)|η̃vii)| ≤ C(sξ∗)6+1/4+7/me−sα
∗ ≤ C(sξ∗)15/2e−sα

∗
. (5.6)

Summing up, if we combine (5.3) and (5.4), we have that, after the absorptions:

s15λ16

∫∫
Q
e−2sα∗(ξ∗)15|ϕε|2 +

9∑
i=0

s19−2iλ20−2i

∫∫
Q
e−2sαξ19−2i|Di∂xyϕ

ε|2

≤ C

 7∑
i=0

s19−2iλ20−2i

∫∫
(0,T )×ω0

e−2sαξ19−2i|Di∂xyϕ
ε|2 + s4λ5

∫∫
(0,T )×ω̃

e−2sαξ4|D8∂xyϕ
ε|2

 . (5.7)

Step 3: Bounding the local terms.

In order to bound the local terms, we start estimating everything by a local term of ∂xyϕ
ε. We

do it with the usual technique: we bound each 1ω̃ by χ (which was defined at the beginning of

this section) to a sufficiently high power, we integrate by parts and we use properly weighted
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Cauchy-Schwarz inequalities. After all this process, we get from (5.7) that:

s15λ16

∫∫
Q
e−2sα∗(ξ∗)15|ϕε|2 +

9∑
i=0

s19−2iλ20−2i

∫∫
Q
e−2sαξ19−2i|Di∂xyϕ

ε|2

+

8∑
i=1

s28−3iλ29−3i

∫∫
(0,T )×ω

χ4+2ie−2sαξ28−3i|Di∂xyϕ
ε|2 ≤ Cs28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28|∂xyϕε|2. (5.8)

Indeed, when i = 1, . . . , 8, we have that:

s28−3iλ29−3i

∫∫
(0,T )×ω

χ4+2ie−2sαξ28−3i|Di∂xyϕ
ε|2

= s28−3iλ29−3i

∫∫
(0,T )×ω

D
(
χ4+2ie−2sαξ28−3iDi∂xyϕ

ε
)
·Di−1∂xyϕ

ε

≤ Cδs28−3(i−1)λ29−3(i−1)

∫∫
(0,T )×ω

χ4+2(i−1)e−2sαξ28−3(i−1)|Di−1∂xyϕ
ε|2

+ δ

(
s28−3iλ29−3i

∫∫
(0,T )×ω

χ4+2ie−2sαξ28−3i|Di∂xyϕ
ε|2

+ s28−3(i+1)λ29−3(i+1)

∫∫
(0,T )×ω

χ4+2(i+1)e−2sαξ28−3(i+1)|Di+1∂xyϕ
ε|2
)

. (5.9)

The exponents of s, ξ and λ in (5.8) might look strange. The reason is that we have s4λ5 in the

last local term of (5.7), instead of s3λ4, which would be the usual term.

In order to get in the right-hand side of (5.8) only a weighted local L2-norm of ϕε1 we must

treat ∂xyϕ
ε
1 and ∂xyϕ

ε
2 differently. As for ∂xyϕ

ε
1, we can deal with it quite easily. Indeed, when we

integrate by parts twice, we have that:

s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28|∂xyϕε1|2 = s28λ29

∫∫
(0,T )×ω

∂xy
(
χ4e−2sαξ28

)
∂xyϕ

ε
1ϕ

ε
1

+ s28λ29

∫∫
(0,T )×ω

∂x
(
χ4e−2sαξ28

)
∂xyyϕ

ε
1ϕ

ε
1 + s28λ29

∫∫
(0,T )×ω

∂y
(
χ4e−2sαξ28

)
∂xxyϕ

ε
1ϕ

ε
1

+ s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28∂xxyyϕ
ε
1ϕ

ε
1. (5.10)
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We can deal with all the term of (5.10) as usual. In the end, for δ > 0 as small as needed, after an

absorption, we get that:

s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28|∂xyϕε1|2 ≤ Cδs34λ35

∫∫
(0,T )×ω

e−2sαξ34|ϕε1|2

+ δ

s22λ23

∫∫
(0,T )×ω

χ8e−2sαξ22|∂xxyyϕε1|2 + s24λ25

∫∫
(0,T )×ω

χ6e−2sαξ24|D1∂xyϕ
ε
1|2

 . (5.11)

Finally, we have to estimate the term of ∂xyϕ
ε
2. Indeed, by (1.6), we have that:

s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28|∂xyϕε2|2

= s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28∂xyϕ
ε
2(−ε∂tϕε1 − (1 + ε)∂xxϕ

ε
1 − ε∂yyϕε1).

We can deal with the term in the right integrating by parts in space and time and using weighted

Cauchy-Schwarz inequalities. In order to deal with the term of ε∂txyϕ
ε
2 that appears after the

integration by parts, we have to consider that:

ε∂txyϕ
ε
2 = − (ε∂xxxyϕ

ε
2 + (1 + ε)∂xyyyϕ

ε
2 + ∂xxyyϕ

ε
1) .

Consequently, we get that, after an absorption:

s28λ29

∫∫
(0,T )×ω

χ4e−2sαξ28|∂xyϕε2|2 ≤ Cδs34λ35

∫∫
(0,T )×ω

e−2sαξ34|ϕε1|2

+ δ

s22λ23

∫∫
(0,T )×ω

χ8e−2sαξ22|∂xxyyϕε|2 + s24λ25

∫∫
(0,T )×ω

χ6e−2sαξ24|D1∂xyϕ
ε|2

 . (5.12)

Summing up, if m ≥ 8, λ ≥ λ0, and s ≥ eCλ(Tm + T 2m), combining (5.8), (5.11) and (5.12) we get

(1.9).

A Existence, uniqueness and regularity of (2.6)

In this section we first prove Lemma 2.6 and then prove Lemma 2.8. The proofs that we do

are classical, since they use Galerkin method and elliptic estimates (see Lemma A.1 below). We

follow the steps of [15, Chapter 7.1], but we do the necessary adaptations caused by the different

boundary conditions.
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Proof of Lemma 2.6: uniqueness. In order to prove the uniqueness, we just have to show

that for f = 0, h = 0 and v0 = 0, the unique solution is vε = 0. Indeed, by multiplying by vε the

first equation of (2.6) and by integrating in (0, t)× Ω (by parts), we have, for all t ∈ [0, T ]:∫
Ω

|vε(t, ·)|2

2
+

∫∫
[0,t]×Ω

|∇vε|2 + ε

∫∫
[0,t]×Ω

|qε|2 = 0,

which implies that vε = 0.

Proof of Lemma 2.6: existence. As for the existence, we consider the Galerkin method.

It is well-know that there is a set of eigenvalues {λi}i∈N → +∞ and a set of L2(Ω)-orthonormal

and H1(Ω)-orthogonal eigenvectors wi such that {wi}i∈N ⊂ H2(Ω) and that −∆wi = λiwi. In

that sense, for u ∈ L2(Ω), we denote Pnu the orthonormal projection of u into 〈w1, . . . , wn〉. We

consider the Galerkin sub-problems, for n ∈ N, t ∈ [0, T ]:∫
Ω
∂tv

ε
n(t, ·)·wi+

∫
Ω
∇vεn(t, ·) : ∇wi+

∫
Ω

(∇ · vεn(t, ·))(∇ · wi)
ε

=

∫
Ω
f(t, ·)·wi+

∫
∂Ω
h(t, ·)·wi, (A.1)

for all i = 1, . . . , n. We look for a solution which belongs to C1
(
[0, T ]; 〈w1, . . . , wn〉

)
; that is, we

look for aεi,n ∈ C1([0, T ]) such that aεi,n(0) = 〈v0, wi〉L2(Ω) and that vεn(t, x) :=
∑n

i=1 a
ε
i,n(t)wi(x) is

a solution of (A.1).

Energy estimates. It is not difficult to see that each set of components (aεi,n)ni=1 is the solution

of a linear ordinary differential equation of n equations and n unknowns. Therefore, system (A.1)

together with the initial condition has a well-defined solution. Moreover, adding up (A.1) multiplied

by the coefficients aεi,n and integrating in time, we get that, for any t ∈ [0, T ], provided that vεn is

defined:∫
Ω

|vεn|2(t, ·)
2

+

∫∫
[0,t]×Ω

|∇vεn|2 +

∫∫
[0,t]×Ω

(∇ · vεn)2

ε
=

∫∫
[0,t]×Ω

f · vεn +

∫∫
[0,t]×∂Ω

h · vεn +

∫
Ω

|Pnv0|2

2
.

We have to consider that:∫∫
[0,t]×Ω

f · vεn ≤ C(1 + T )

∫∫
[0,t]×Ω

|f |2 +
1

4(1 + T )

∫∫
[0,t]×Ω

|vεn|2.

Moreover, we have that:∫∫
[0,t]×∂Ω

h · vεn ≤ C(1 + T )

∫∫
[0,t]×∂Ω

|h|2 +
1

4(1 + T )

∫∫
[0,t]×Ω

(
|vεn|2 + |∇vεn|2

)
.
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Consequently, due to Gronwall’s inequality and usual absorptions, we get that:∫
Ω
|vεn|2(t, ·) +

∫∫
[0,t]×Ω

|∇vεn|2 +

∫∫
[0,t]×Ω

(∇ · vεn)2

ε

≤ C

(1 + T )

∫∫
[0,t]×Ω

|f |2 + (1 + T )

∫∫
[0,t]×∂Ω

|h|2 +

∫
Ω
|Pnv0|2

 . (A.2)

Thanks to estimate (A.2), all the solutions (vεn)n∈N are bounded uniformly in C0([0, t]; L2(Ω)) ∩
L2(0, t; H1(Ω)). This implies, due to extension theorems related with the Cauchy-Lipschitz systems,

that all the vεn are defined in [0, T ] and that we can take a weak limit in L2(0, T ; H1(Ω)).

Estimates on H1,1(Q). Next, in order to take limits in (A.1), we need to prove that the vεn are

also uniformly bounded in H1(0, T ; L2(Ω)). By multiplying (A.1) by (aεi,n)′, adding all up and

integrating in time, we have that:∫∫
Q
|∂tvεn|2 +

∫ T

0

∂t
2

∫
Ω
|∇vεn|2 +

∫ T

0

∂t
2

∫
Ω

(∇ · vεn)2

ε
=

∫∫
Q
f · ∂tvεn +

∫∫
Σ
h · ∂tvεn.

In order to deal with the term
∫∫

Σ h · ∂tv
ε
n we have to integrate by parts in time. Then, using also

(A.2), we get for a constant C that does not depend on n:

‖vεn‖H1,1(Q) ≤ C
√

1 + T
(
‖f‖L2(Q) + ‖h‖H1,1/2(Σ)

)
+

C

(
‖v0‖H1(Ω) +

∥∥∥∥∇ · v0

ε

∥∥∥∥
L2(Ω)

+ ‖h(0, ·)‖L2(Σ) + ‖h(T, ·)‖L2(Σ)

)
. (A.3)

So, up to extracting a subsequence, we have that (vεn)n∈N converges weakly in H1,1(Q) to some

function vε which satisfies:

‖vε‖H1,1(Q) ≤ C
√

1 + T
(
‖f‖L2(Q) + ‖h‖H1,1/2(Σ)

)
+

C

(
‖v0‖H1(Ω) +

∥∥∥∥∇ · v0

ε

∥∥∥∥
L2(Ω)

+ ‖h(0, ·)‖L2(Σ) + ‖h(T, ·)‖L2(Σ)

)
. (A.4)

Thus, we can take limits in (A.1). Indeed, we have for every i ∈ N, as functions of L2(0, T ):∫
Ω
vεt · wi +

∫
Ω
∇vε : ∇wi +

∫
Ω

(∇ · vε)(∇ · wi)
ε

=

∫
Ω
f · wi +

∫
∂Ω
h · wi. (A.5)

We recall that H1(0, T ;L2(Ω)) is compactly embedded in C0([0, T ];H−1(Ω)). Thus, weak conver-

gence in H1(0, T ;L2(Ω)) implies strong convergence in C0([0, T ];H−1(Ω)), so vε(0, ·) = v0.

34



Estimates on H1,2(Q). In order to prove that the solution is in L2(0, T ; H2(Ω)), we use that it

satisfies for any i ∈ N, as functions of L2(0, T ), that:∫
Ω
∇vε : ∇wi +

∫
Ω

(∇ · vε)(∇ · wi)
ε

=

∫
Ω

(f − vεt ) · wi +

∫
∂Ω
h · wi. (A.6)

So, we use the following lemma, whose proof can be found in [5, Theorem IV.7.1]:

Lemma A.1. Let us consider Ω ∈ C2 and the system:

−∆u+∇g = f1 in Ω,

∇ · u = f2 in Ω,

∂nu− gn = f3 on ∂Ω,∫
Ω u = 0,

(A.7)

for f1 ∈ L2(Ω), f2 ∈ L2(Ω) and f3 ∈ H1/2(∂Ω). Then, if we have as a vector equation:∫
Ω
f1 +

∫
∂Ω
f3 = 0, (A.8)

the solution (v, q) of (A.7) is unique and

‖D2u‖L2(Ω) + ‖g‖H1(Ω) ≤ C
(
‖f1‖L2(Ω) + ‖f2‖H1(Ω) + ‖f3‖H1/2(∂Ω)

)
.

In order to apply Lemma A.1 it suffices to take f1(t, ·) := f(t, ·) − vεt (t, ·), f2(t, ·) := ∇ · vε(t, ·)
and f3(t, ·) := h(t, ·). In addition to that, (A.8) is satisfied because:∫

Ω
vεt =

∫
Ω

(∆vε −∇q) +

∫
Ω
f =

∫
∂Ω

(∂nv
ε − qn) +

∫
Ω
f =

∫
∂Ω
h+

∫
Ω
f .

Thus, since:

u(t, ·) = vε(t, ·)− 1
|Ω|
∫

Ω v
ε(t, ·) and g(t, ·) = ∇·vε

ε (t, ·) = qε(t, ·),

if we combine (A.4) and Lemma A.1, remarking that D2u = D2vε, we get the estimate:

‖vε‖H1,2(Q) + ‖qε‖H0,1(Q) ≤ C
√

1 + T
(
‖f‖L2(Q) + ‖h‖H1,1/2(Σ)

)
+ C

(
‖v0‖H1(Ω) + ‖∇ · vε‖H0,1(Q) +

∥∥∥∥∇ · v0

ε

∥∥∥∥
L2(Ω)

+ ‖h(0, ·)‖L2(Σ) + ‖h(T, ·)‖L2(Σ)

)
. (A.9)

This expression can be simplified since for ε small enough we can absorb the term ‖∇ · vε‖H0,1(Q)

by ‖qε‖H0,1(Q). So estimate (2.7) is established.
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Proof of Lemma 2.8. As for the proof of Lemma 2.8, it consists of repeating the Galerkin

method for vεt , since vεt is a solution of (2.6) with (f, h, 0) replaced by (ft, ht, 0). Indeed, we first

get an estimate for each ∂tv
ε
n and then pass to the limit. Finally, we use a more complete version

of Lemma A.1, which can be found in [5, Theorem IV.7.1].

B Proof of Proposition 2.13

Throughout this proof we consider ω̂ some open subdomain of Ω compactly contained in ω̃ such

that ω0 ⊂ ω̂ (see Proposition 2.13 for the definition of ω̃). In order to make the reading of the

proof more comfortable we split it in several steps: first, we bound left of (2.15) by a trace and a

local term with the help of the rotational; then, we deal with the trace and local terms as usual.

Step 1: Bounding by a trace and a local term.

To begin with, we have that ∇× ϕε is a solution of the heat equation, since ∇× (∇πε) = 0. So,

using Lemma 2.11 for r = −1 and δ = 1, we get that if λ ≥ λ0 and s ≥ eCλ(Tm + T 2m):

s2λ3

∫∫
Q
e−2sαξ2|∇ × ϕε|2 + λ

∫∫
Q
e−2sα|∇(∇× ϕε)|2

≤ C

∫∫
Σ
e−2sα|∂n(∇× ϕε)|2 + s2λ3

∫∫
(0,T )×ω̂

e−2sαξ2|∇ × ϕε|2

 . (B.1)

Next, we consider that the divergence satisfies:

∇(∇ · ϕε) = ∆ϕε +∇× (∇× ϕε).

This implies that ϕε satisfies:

− ε

1 + ε
∂tϕ

ε −∆ϕε =
1

1 + ε
(∇× (∇× ϕε)).

Thus, using again Lemma 2.11 for ω̂ defined as before, r = 0 and now δ = ε
1+ε , we get that if

λ ≥ λ0 and s ≥ eCλ(Tm + T 2m):

s3λ4

∫∫
Q
e−2sαξ3|ϕε|2 + sλ2

∫∫
Q
e−2sαξ|∇ϕε|2

≤ C

s3λ4

∫∫
(0,T )×ω̂

e−2sαξ3|ϕε|2 +

∫∫
Q
e−2sα|∇(∇× ϕε)|2 + sλ

∫∫
Σ
e−2sαξ|∂nϕε|2

 . (B.2)
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Next, we remark that the term of ∇(∇× ϕε) on the right-hand side of (B.2) can be absorbed

by the left-hand side of (B.1) for λ ≥ λ0. Thus, we have that:

s3λ4

∫∫
Q
e−2sαξ3|ϕε|2 + sλ2

∫∫
Q
e−2sαξ|∇ϕε|2 + s2λ3

∫∫
Q
e−2sαξ2|∇ × ϕε|2

+ λ

∫∫
Q
e−2sα|∇(∇× ϕε)|2 ≤ C

(
s3λ4

∫∫
(0,T )×ω̂

e−2sαξ3|ϕε|2

+ s2λ3

∫∫
(0,T )×ω̂

e−2sαξ2|∇ × ϕε|2 + sλ

∫∫
Σ
e−2sαξ|∂nϕε|2 +

∫∫
Σ
e−2sα|∂n(∇× ϕε)|2

)
. (B.3)

Step 2: Absorption of the trace.

In this step we absorb the traces with the estimates established in Lemma 2.6. We recall that on

∂Ω: α = α∗ and ξ = ξ∗.

Let us first bound the third integral on the right-hand side of (B.3). First, we consider that,

integrating by parts:

sλ

∫∫
Σ
e−2sα∗ξ∗|∂nϕε|2 ≤ C‖(sξ∗)5/4−1/mλ2e−sα

∗
ϕε‖1/2

L2(Q)
‖(sξ∗)1/4+1/me−sα

∗
ϕε‖3/2

H0,2(Q)
.

Using Young’s inequality we get that:

sλ

∫∫
Σ
e−2sα∗ξ∗|∂nϕε|2 ≤ C

(
‖(sξ∗)5/4−1/mλ2e−sα

∗
ϕε‖2L2(Q) + ‖(sξ∗)1/4+1/me−sα

∗
ϕε‖2H0,2(Q)

)
.

(B.4)

We can absorb the first term on the right-hand side of (B.4) by the left-hand side of (B.3) by taking

s ≥ CT 2m and λ ≥ 1.

We can bound the fourth integral at the right-hand side of (B.3) similarly. Indeed, integrating

by parts, we get that, if s ≥ CT 2m:∫∫
Σ
e−2sα∗ |∂n(∇× ϕε)|2 ≤ C‖(sξ∗)1/4e−sα

∗
ϕε‖3/2

H0,2(Q)
‖(sξ∗)−3/4e−sα

∗
ϕε‖1/2

H0,4(Q)

≤ C
(
‖(sξ∗)1/4e−sα

∗
ϕε‖2H0,2(Q) + ‖(sξ∗)−3/4e−sα

∗
ϕε‖2H0,4(Q)

)
. (B.5)

So, we first deal with the term ‖ηϕε‖2H1,2(Q) (see (2.13) for the definition of η). We remark that

(t, x) 7→ η(T − t)ϕε(T − t, x)

is a solution of (2.6) with null initial value, force −η′(T − t)ϕε(T − t, x) and boundary Neumann

term η(T − t)h(T − t, x). Consequently, because of (2.7), we get that:

‖ηϕε‖2H1,2(Q) ≤ C(1 + T )
(
‖η′ϕε‖2L2(Q) + ‖ηh‖2

H1,1/2(Σ)

)
. (B.6)
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Moreover, the term of η′ϕε can be absorbed by the left of (B.3) if m ≥ 8, λ ≥ λ0, and s ≥
eCλ(Tm + T 2m), since in that case:

(1 + T 1/2)|η′| ≤ C(sξ∗)1+1/4+2/me−sα
∗ ≤ C(sξ∗)3/2e−sα

∗
. (B.7)

Let us now estimate the term ‖η̃ϕε‖2H0,4(Q) (see (2.14) for the definition of η̃). We have that

(t, x) 7→ η̃(T − t)ϕε(T − t, x)

is a solution of (2.6) with null initial value, force −η̃′(T − t)ϕε(T − t, x) and boundary Neumann

term η̃(T − t)h(T − t, x). Consequently, if we use (2.8), we get that:

‖η̃ϕε‖2H0,4(Q) ≤ C(1 + T )
(
‖η̃′ϕε‖2H1,2(Q) + ‖η̃h‖2

H2,5/2(Σ)

)
. (B.8)

Let us now estimate the first norm at the right-hand side of (B.8). To begin with, since, if m ≥ 8

and s ≥ eCλ(Tm + T 2m), (1 + T 1/2)|η̃′| ≤ Cη, we have that:

(1 + T )‖η̃′ϕε‖2H0,2(Q) ≤ C‖ηϕ
ε‖2H0,2(Q), (B.9)

which is estimated in (B.6). To continue with, we have that, if m ≥ 8 and s ≥ eCλ(Tm + T 2m):

(1 + T )‖η̃′′ϕε‖2L2(Q) ≤ C‖(sξ
∗)1+1/4+2/me−sα

∗
ϕε‖2L2(Q) ≤ C‖(sξ

∗)3/2e−sα
∗
ϕε‖2L2(Q), (B.10)

a term which can be absorbed by the left-hand side of (B.3) for λ large enough. Finally, we have

that, if m ≥ 8 and s ≥ eCλ(Tm + T 2m):

(1 + T 1/2)|η̃′ϕt| ≤ |ηϕεt | ≤ |(ηϕε)t|+ |η′ϕε|,

which implies that:

(1 + T )‖η̃′ϕεt‖2L2(Q) ≤ C
(
‖ηϕε‖2H1,0(Q) + ‖η′ϕε‖2L2(Q)

)
, (B.11)

terms which can be estimated by the left-hand side of (B.6) and (B.3) respectively.

Summing up, if we combine (B.3)-(B.11) we get that, if m ≥ 8, λ ≥ λ0 and s ≥ eCλ(Tm + T 2m):

s3λ4

∫∫
Q
e−2sαξ3|ϕε|2 + sλ2

∫∫
Q
e−2sαξ|∇ϕε|2 + s2λ3

∫∫
Q
e−2sαξ2|∇ × ϕε|2

+ λ

∫∫
Q
e−2sα|∇(∇× ϕε)|2 ≤ C

(
s3λ4

∫∫
(0,T )×ω̂

e−2sαξ3|ϕε|2

+ s2λ3

∫∫
(0,T )×ω̂

e−2sαξ2|∇ × ϕε|2 + (1 + T )
(
‖ηh‖2

H1,1/2(Σ)
+ ‖η̃h‖2

H2,5/2(Σ)

))
.
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Finally, we remove the derivative from the local terms. We do it with the usual localizing tech-

niques: we multiply by a cut-off function χ, integrate by parts and use Cauchy-Schwarz weighted

inequalities. So, if λ ≥ λ0, s ≥ eCλ(Tm + T 2m) and m ≥ 8, we get estimate (2.15).
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[21] M. González Burgos and L. de Teresa. Controllability results for cascade systems of m coupled

parabolic PDEs by one control force. Port. Math., 67(1):91–113, 2010.

[22] S. Guerrero. Controllability of systems of Stokes equations with one control force: existence

of insensitizing controls. Ann. I. H. Poincaré, 24:1029–1054, 2007.
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Figure 1: An illustration of the strictly convex case
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Figure 2: An illustration of what is S in a non-convex domain
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Figure 3: Situation 1 of the proof of Theorem 1.8

45



Figure 4: Situation 3 of the proof of Theorem 1.8
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Figure 5: Situation 4 of the proof of Theorem 1.8
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