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INTRODUCTION: HAMMERSLEY' LPP AND BEYOND

Let us recall the original Hammersley's Last Passage Percolation (LPP) problem of the maximal number of points that can be collected by up/right paths, also known as Ulam's problem [START_REF] Ulam | Monte Carlo calculations in problems of mathematical physics[END_REF] of the maximal increasing sequence.

Let m P N, and pZ i q 1ďiďm be m points independently drawn uniformly on the square r0, 1s 2 . We denote the coordinates of these points Z i :" px i , y i q for 1 ď i ď m. A sequence pz i q 1ď ďk is said to be increasing if x i ą x i ´1 and y i ą y i ´1 for any 1 ď ď k (by convention i 0 " 0 and z 0 " p0, 0q). The question is to find the length of the longest increasing sequence among the m points, which is equivalent to finding the length of the longest increasing subsequence of a random (uniform) permutation of length m: we let L m " max k : D pi 1 , . . . , i k q s.t. pZ i q 1ď ďk is increasing ( .

Hammersley [START_REF] Hammersley | A few seedlings of research[END_REF] first proved that m ´1{2 L m converges a.s. and in L 1 to some constant, that was believed to be 2. Then the constant has been proven to be indeed 2, see [START_REF] Logan | A variational problem for random young tableaux[END_REF][START_REF] Vershik | Asymptotics of the plancherel measure of the symmetric group and the limiting form of young tables[END_REF], and estimates related to L m were improved by a series of papers, culminating with a seminal paper by Baik, Deift and Johansson [START_REF] Baik | On the ditribution of the longest increasing subsequence of random permutations[END_REF], showing that m ´1{6 pL m ´2? mq converges in distribution to the Tracy-Widom distribution.

The main goal of the present article is to define the Entropy-controlled Last Passage Percolation (E-LPP), a natural extension of Hammersley's LPP (1.1). We introduce the concept of global (entropy) path constraint, which depends on the structure of the whole path, and is related to the moderate deviation rate function of the simple symmetric random walk.

The E-LPP turns out to be crucial in the analysis of the directed polymer model in a heavy-tailed environment in p1`1q-dimension. We refer to [START_REF] Comets | Directed Polymers in Random Environments[END_REF][START_REF] Comets | Probabilistic analysis of directed polymers in a random environment: a review. Stochastic analysis on large scale interacting systems[END_REF][START_REF] Hollander | Random polymers, volume 1974 of Ecole d'Eté de probabilités de Saint-Flour[END_REF] for the definition of the directed polymer model and a general overview on the main questions. Let us stress that among these, a fundamental question is to capture the transversal fluctuations exponent ξ of the polymer. This problem as attracted much attention in recent years, in particular because the model is in the KPZ universality class: in particular, it is conjectured that at any fixed inverse temperature β, the transversal fluctuation exponent is ξ " 2{3. Alberts, Khanin and Quastel [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF] recently introduced the concept of intermediate disorder regime in which β scales with n, the size of the system. In the setting of a heavy-tailed environment, this was considered first by Auffinger-Louidor [START_REF] Auffinger | Directed polymers in random environment with heavy tails[END_REF], who showed that rescaling suitably β, the model has transversal fluctuations of order one, that is ξ " 1. Dey and Zygouras [START_REF] Dey | High temperature limits for p1 `1q-dimensional directed polymer with heavytailed disorder[END_REF] then proved that with a different (stronger) rescaling of β, the model has Brownian fluctuations, that is ξ " 1{2. Moreover Dey and Zygouras proposed a phase-diagram picture that connects the exponent of the transversal fluctuation of the polymer ξ with the tail exponent α of the heavy-tailed distribution of the environment and the decay rate of β. In [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF] we start to complete this picture by giving a complete description in the case of α P p0, 2q: one of the main results is a proof of Conjecture 1.7 of [START_REF] Dey | High temperature limits for p1 `1q-dimensional directed polymer with heavytailed disorder[END_REF], describing explicitly the limit, cf. Theorem 2.4. One crucial tool needed in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF] is the E-LPP defined below (in the discrete and continuous case), which allows to go beyond the Lipschitz setting of [START_REF] Auffinger | Directed polymers in random environment with heavy tails[END_REF][START_REF] Hambly | Heavy tails in last-passage percolation[END_REF], and treat intermediate transversal fluctuations 1{2 ă ξ ă 1.

Let us highlight that in the related paper [START_REF] Berger | Beyond hammersley's last-passage percolation: a discussion on possible new local and global constraints[END_REF] we investigate further generalizations of Hammersley's LPP problem which can bring about new tool and perspectives on this research topic.

1.1. Organization of the article. We state all our results in Section 2: in Section 2.1 we give the precise definition of E-LPP and we state our results for the E-LPP in continuous and in discrete settings; in Section 2.2 we consider the problem of E-LPP with heavytail weights that appears in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF], and we show that the continuous limit in Theorem 2.4 of [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF] is well defined, completing the proof of [START_REF] Dey | High temperature limits for p1 `1q-dimensional directed polymer with heavytailed disorder[END_REF]Conjecture 1.7]; in Section 2.3 we state the convergence of the discrete energy-entropy variational problem to its continuous counterpart. This result is crucial to prove the convergence in Theorems 2.2-2.7 of [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]. The proofs of the all results are presented in Sections 3 to 5.

MAIN RESULTS

Operating a rotation by 45 ˝clockwise, we may map Hammersley's LPP problem (cf. Section 1) to that of the maximal number of points that can be collected by 1-Lipschitz paths s : r0, 1s Ñ R. We now introduce a new (natural) model where the Lipschitz constraint is replaced by a path entropy constraint.

2.1. Entropy-controlled LPP. For t ą 0, and a finite set ∆ " pt i , x i q; 1 ď i ď j ( Ă r0, ts ˆR with |∆| " j P N and with 0 ď t 1 ď t 2 ď ¨¨¨ď t j ď t, we can define the entropy of ∆ as Entp∆q :" 1 2

j ÿ i"1 px i ´xi´1 q 2 t i ´ti´1 , (2.1) 
where we used the convention that pt 0 , x 0 q " p0, 0q. If there exists some 1 ď i ď j such that t i " t i´1 then we set Entp∆q " `8. This corresponds to the definition (2.7) of the entropy of a continuous path s : r0, ts Ñ R, applied to the linear interpolation of the points of ∆: to any set ∆ we can therefore canonically associated a (continuous) path with the same entropy. The set ∆ is seen as a set of points a path has to go through. For S " pS i q iě0 a simple symmetric random walk on Z, and if ∆ Ă N ˆZ, we have that Pp∆ Ă Sq ď e ´Entp∆q (∆ Ă S means that S t i " x i for all i ď |∆|)-we used that for the simple random walk PpS i " xq ď e ´x2 {2i by a standard Chernoff bound argument. Then, for any fixed B ą 0, we will consider the maximal number of points that can be collected by paths with entropy smaller than B, among a random set Υ m of m points, whose law is denoted P. We now consider two types of problems, depending on how this set Υ m is constructed:

(i) continuous setting: for t, x ą 0, we consider a domain Λ t,x :" r0, ts ˆr´x, xs, and Υ m " Υ m pt, xq " tY 1 , . . . , Y m u where pY i q 1ďiďm is a collection of independent r.v. chosen uniformly in Λ t,x ; (ii) discrete setting: for n, h P N, we consider a domain Λ n,h :" 0, n ˆ ´h, h , and Υ m " Υ m pn, hq " tY 1 , . . . , Y m u is a set of m distinct points taken randomly in Λ n,h . We are then able to define the Entropy-controlled LPP by

L pBq m pt, xq " max ∆ĂΥmpt,xq Entp∆qďB ˇˇ∆ ˇˇ, L pBq m pn, hq " max ∆ĂΥmpn,hq Entp∆qďB ˇˇ∆ ˇˇ, (2.2) 
the maximal number of points than can be included in a set ∆ that has entropy smaller than B. In other words, it is the maximal number of points in Υ m or Υ m that can be collected by a path of entropy smaller than B. note that we use the different font to be able to differentiate the setting: L, Λ, Υ for the continuous case and L, Λ, Υ for the discrete one.

We show the following result-the lower bound is not needed for our applications, but can be found in [START_REF] Berger | Beyond hammersley's last-passage percolation: a discussion on possible new local and global constraints[END_REF].

Theorem 2.1.

There are constants C 0 , c 0 , c 1 0 ą 0 such that: for any t, x, B ą 0, n, h ě 1 (i) continuous setting: for all m ě 1 and all k ď m

P ´LpBq m pt, xq ě k ¯ď ´C0 pBt{x 2 q 1{2 m k 2 ¯k . (2.3) 
(ii) discrete setting: for all 1 ď m ď nh and all k ď m

P ´LpBq m pn, hq ě k ¯ď ´C0 pBn{h 2 q 1{2 m k 2 ¯k . (2.4)
The proof of Theorem 2.1 is not difficult but a bit technical, and we give it in Section 3. This result shows in particular that L pBq m pt, xq is of order `pBt{x 2 q 1{4 ? m ˘^m, resp.

L pBq m pn, hq is of order `pBn{h 2 q 1{4 ? m ˘^m, as stressed by the following corollary. We stress that keeping track of the dependence in B is essential for the applications we have in mind. pn, nq ě L pLipq m pnq. We also stress that our definition of E-LPP opens the way to many extensions: in particular as soon as one is able to properly define the entropy of a path (i.e. of a set ∆), one could extend the results to the case of paths with unbounded jumps or even non-directed paths: this is the object of [START_REF] Berger | Beyond hammersley's last-passage percolation: a discussion on possible new local and global constraints[END_REF], where a general notion of path-constrained LPP is developed and studied.

Let us stress here that one might want to reverse the point of view, and estimate the minimal entropy needed for a path to visit at least k points. This turns out to be essential in Section 4 of [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]. One realizes that

inf ∆ĂΥm |∆|ěk Entp∆q ď B ðñ sup ∆ĂΥm Entp∆qďB |∆| ě k .
Hence, an easy consequence of Theorem 2.1 is that for any k ď n (we state it only in the discrete setting)

P ´inf ∆ĂΥm,|∆|ěk Entp∆q ď B ¯ď ´C0 pBn{h 2 q 1{2 m k 2 ¯k . (2.5) 
It therefore says that, with high probability, a path that collects k points in Υ m Ă Λ n,h has an entropy larger than a constant times k 4 {m 2 ˆh2 {n.

Application I: continuous E-LPP with heavy-tail weights.

In [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF] we prove the convergence of the directed polymer model in heavy-tail environment (suitably rescaled) to a continuous energy-entropy variational problem T β , defined below in (2.9) (or in Section 2.2 of [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]). A first application of our E-LPP is to show that this variational problem is well-defined when the tail decay exponent α is in p1{2, 2q: this is Theorem 2.4, which proves the first part of [START_REF] Dey | High temperature limits for p1 `1q-dimensional directed polymer with heavytailed disorder[END_REF]Conjecture 1.7]. The second part of this conjecture, i.e. that T β is indeed the scaling limit of the directed polymer in heavy-tail environment, is proved in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]Theorem 2.4].

Let us recall some notations from Section 2.2 in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]. The set of allowed paths (scaling limits of random walk trajectories) is D :" s : r0, 1s Ñ R ; s continuous and a.e. differentiable ( ,

and the (continuum) entropy of a path s P D is defined by

Entpsq " 1 2 ż 1 0 `s1 ptq ˘2dt . (2.7) 
This last definition derives from the rate function of the moderate deviation of the simple random walk (see [START_REF] Stone | On local and ratio limit theorems[END_REF] or [5, Eq. (2.14)]). We let P :" tpw i , t i , x i qu iě1 be a Poisson Point Process on r0, 8q ˆr0, 1s ˆR of intensity µpdwdtdxq " α 2 w ´α´1 1 twą0u dwdtdx, where α P p0, 2q. For a quenched realization of P, the energy of a continuous path s P D is then defined by πpsq " π P psq :"

ÿ pw,t,xqPP w 1 tpt,xqPsu , (2.8) 
where pt, xq P s means that pt, xq is visited by the path s, that is s t " x. Using (2.7) and (2.8) we define the energy-entropy competition variational problem: for any β ě 0 we let

T β :" sup sPD,Entpsqă`8 ! βπpsq ´Entpsq ) .
(2.9)

The next result shows that it is well defined, and gives some of its properties.

Theorem 2.4. For α P p1{2, 2q we have the scaling relation

T β pdq " β 2α 2α´1 T 1 , (2.10) 
and T β P p0, `8q for all β ą 0 a.s. Moreover, E " pT β q υ ‰ ă 8 for any υ ă α ´1{2. We also have that a.s. the map β Þ Ñ T β is continuous, and that the supremum in (2.9) is attained by some unique continuous path s β with Entps β q ă 8.

On the other hand, for α P p0, 1{2s we have T β " `8 for all β ą 0 a.s.

Remark 2.5. As we discuss in Section 2.5 of [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF], the fact that the maximizer of T β is unique could be used to show the concentration of the paths around s β under the polymer measure P ω n,βn , in analogy with the result obtained by Auffinger and Louidor in Theorem 2.1 of [START_REF] Auffinger | Directed polymers in random environment with heavy tails[END_REF].

Application II: discrete E-LPP with heavy-tail weigths.

In this section we discuss the convergence of a discrete energy-entropy variational problem T β n,h n,h defined below (2.15), to its continuous counterpart T β (2.9). This is a crucial result that we need in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF] to prove Theorems 2.4-2.7.

We introduce the discrete field tω i,x ; pi, xq P N ˆZu, which are i.i.d. non-negative random variables of law P: there is some slowly varying function Lp¨q and some α ą 0 such that P `ω ą x ˘" Lpxqx ´α .

(2.11) This random field is the discrete counterpart of the Poisson Point Process P introduced in Section 2.2. We refer to Section 5.1 for further details.

Let us consider F pxq " Ppω ď xq be the disorder distribution, cf. (2.11), and define the function mpxq by mpxq :" F ´1`1 ´1 x ˘, so P `ω ą mpxq ˘" 1{x.

(2.12)

The second identity characterizes mpxq up to asymptotic equivalence: we have that mp¨q is a regularly varying function with exponent 1{α.

For any given box Λ n,h " 1, n ˆ ´h, h we can rewrite the discrete field in this region pω i,x q pi,xqPΛ n,h using the ordered statistic: we let M pn,hq r be the r-th largest value of

pω i,x q pi,xqPΛ n,h and Y pn,hq r P Λ n,h its position-note that pY pn,hq r q |Λ n,h | r"1
is simply a random permutation of the points of Λ n,h . In such a way

pω i,j q pi,jqPΛn " pM pn,hq r , Y pn,hq r q |Λ n,h | r"1 .
(2.13)

In the following we refer to pM

pn,hq r q |Λ n,h |
r"1 as the weight sequence. We now define the energy collected by a set ∆ Ă Λ n,h and its contribution by the first weights (with (2.14)

1 ď ď |Λ n,h |) as follows Ω n,h p∆q :" |Λ n,h | ÿ r"1 M pn,hq r 1 tY pn,hq r P∆u ; Ω p q n,h p∆q :" ÿ r"1 M pn,hq
We also set Ω pą q n,h p∆q :" Ω n,h p∆q ´Ωp q n,h p∆q. In such a way we can define the (discrete) variational problem

T β n,h n,h :" max ∆ĂΛ n,h β n,h Ω n,h p∆q ´Entp∆q ( , (2.15) 
with β n,h some function of n, h (soon to be specified), and Entp∆q as defined in (2.1). We also define analogues of (2.15) with a restriction to the largest weights, or beyond the -th weight

T β n,h ,p q n,h :" max ∆ĂΛ n,h β n,h Ω p q n,h p∆q ´Entp∆q ( , T β n,h ,pą q n,h :" max ∆ĂΛ n,h β n,h Ω pą q
n,h p∆q ´Entp∆q ( .

(2.16)

The following proposition is crucial for the proof of Theorem 2.7 below, and is also a central tool in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]Section 4].

Proposition 2.6. The following hold true:

• For any a ă α, there is a constant c a ą 0 such that for any 1 ď ď nh, for any b ą 1

P ´T β n,h ,p q n,h ě b ˆ`β n,h mpnhq ˘4{3 ´n h 2 ¯1{3 ¯ď c a b ´3a{4 .
(2.17)

• We also have that there is a constant c ą 0 such that for any b ą 1

P ´T β n,h ,pą q n,h ě b ˆ`β n,h mpnh{ q ˘4{3 ´ 2 n h 2 ¯1{3 ¯ď cb ´α {4 `e´cb 1{4 . (2.18)
The proof is is postponed to Section 5.3. Observe that we need here to keep track of the dependence on n, h: to that end, estimates obtained in Section 1 will be crucial. Note already that if n h 2 β n,h mpnhq Ñ β P p0, 8q, as n, h Ñ 8, it gives that T

β n,h ,p q n,h
is of order β 4 h 2 {n.

In the next result we prove the convergence in distribution for (2.15), which generalizes the convergence of related variational problems considered in [START_REF] Auffinger | Directed polymers in random environment with heavy tails[END_REF][START_REF] Hambly | Heavy tails in last-passage percolation[END_REF].

Theorem 2.7. Suppose that n h 2 β n,h mpnhq Ñ ν P r0, 8q as n, h Ñ 8. For every α P p1{2, 2q and for any q ą 0 we have the following convergence in distribution

n h 2 T β n,h n,qh pdq ÝÝÝÑ nÑ8 T ν,q :" sup sPMq νπpsq ´Entpsq ( , (2.19) 
with M q :" ts P D, Entpsq ă 8, max tPr0,1s |sptq| ď qu. We also have

n h 2 T β n,h ,p q n,qh pdq ÝÝÝÑ nÑ8 T p q ν,q :" sup sPMq νπ p q psq ´Entpsq ( , (2.20) 
where π p q :" ř r"1 M r 1 tYrPsu with tpM r , Y r qu rě1 the ordered statistics of P restricted to r0, 1s ˆr´q, qs, see Section 5.1. Finally, we have T p q ν,q a.s.

Ý ÝÝ Ñ

Ñ8

T ν,q , and T ν,q a.s. 

Ý ÝÝ Ñ qÑ8 T ν . ( 2 
˘" C k ˆBk{2 t 3k{2 , with C k " π k { ? 2 Γ `k{2 `1˘Γ`3 k{2 `1˘.
In particular, it gives that there exists some constant C such that

Vol `Ept,Bq k ˘ď ´CB 1{2 t 3{2 k 2 ¯k .
Proof. The key to the computation is the induction formula below, based on the decomposition over the left-most point in E pt,Bq k at position pu, yq (by symmetry we can assume y ě 0): it leaves k ´1 points with remaining time t ´u and entropy smaller than

B ´y2 2u , Vol `Ept,Bq k ˘" 2 ż t u"0 ż ? 2Bu y"0 Vol `Ept´u,B´y 2 {2uq k´1 ˘dydu. (3.1) 
The induction is only calculations. For k " 1 we have

Vol `Ept,Bq 1 ˘" 2 ż t u"0 ż ? 2Bu y"0 dudy " 2 ? 2B ż t 0 u 1{2 du " 4 ? 2 3 B 1{2 t 3{2 ,
so that we indeed have that C 1 " πp ? 2Γp3{2qΓp5{2qq ´1. For k ě 2, by induction, we have

VolpE pt,Bq k q " 2C k´1 ż t u"0 ż ? 2Bu y"0 pt ´uq 3pk´1q{2 `B ´y2 2u ˘pk´1q{2 dydu.
Then, by a change of variable w " y 2 {p2Buq, we get that

ż ? 2Bu y"0 `B ´y2 2u ˘pk´1q{2 dy " B pk´1q{2 ż 1 0 p1 ´wq pk´1q{2 c Bu 2 w ´1{2 dw " 1 ? 2 B k{2 u 1{2 Γ `pk ´1q{2 `1˘Γ p1{2q Γpk{2 `1q
.

Moreover, we also have

ż t u"0 u 1{2 pt ´uq 3pk´1q{2 dx " t 3pk´1q{2`1{2`1 ż 1 0 v 1{2 p1 ´vq 3pk´1q{2 dv " t 3k{2 Γp3{2qΓp3pk ´1q{2 `1q Γp3k{2 `1q .
Hence, the constant C k verifies

C k " 2C k´1 ˆ?π Γ `pk ´1q{2 `1Γ pk{2 `1q ˆ?π 2 
Γp3pk ´1q{2 `1q Γp3k{2 `1q , which completes the induction, in view of the formula for C k´1 .

For the inequality in the second part of the lemma, we simply use Stirling's formula to get that there is a constant c ą 0 such that 

Γ `k{2 `1˘ě

¯,

where Z 1 " pt 1 , x 1 q, . . . , Z k " pt k , x k q are independent uniform r.v. on the domain Λ t,x (with volume 2tx). We then have that

P ´D σ P S k s.t. pZ σp1q , . . . , Z σpkq q P E pt,Bq k ¯" k! VolpE pt,Bq k q p2txq k .
We therefore obtain, using that `m k ˘ď m k {k!, together with Lemma 3.1

P `LpBq m pt, xq ě k ˘ď ´CB 1{2 t 1{2 m 2xk 2 ¯k (3.2)
This gives the upper bound of Theorem 2.1-(i). :" # `pt , x q ˘1ď ďk Ă 1, n ˆZ ; 0 ă t 1 ă ¨¨¨ă t k ď n ; Ent `pt , x q 1ď ďk ˘ď B + .

We can estimate the cardinality of E pn,Bq k -however not in an exact manner as in the continuous case.

Lemma 3.2. For any n P N it holds true that

Vol

`Epn,Bq

k ˘ď 2 k C k ˆBk{2 n 3k{2 , with C k " π k { ? 2 Γ `k{2 `1˘Γ`3 k{2 `1˘.
Proof. The analogous of (3.1) is here

Vol `Epn,Bq k ˘" 2 n ÿ i"1 ? 2Bi ÿ y"0 Vol `Epn´i,B´x 2 {2iq k´1 ˘. (3.3)
The induction is again straightforward calculations: we can use the computations made in the continuous setting, together with the comparison between finite sums and Riemann integrals, i.e. q are a uniform random choice of k distinct points from Λ n,h (which contains np2h `1q points)-the main difference with the continuous setting comes from the fact that the Z i 's are not independent. We therefore have that, using Lemma 3.2,

n ÿ i"0 gpiq ď ż n`1 0 gpzqdz if g is increasing, n ÿ i"0 gpiq ď gp0q `ż n 0 gpzqdz if g is decreasing . ( 3 
Ern k s " ˆm k ˙VolpE pn,Bq k q `2nh`n k ˘ď m k p2nhq k ´CB 1{2 k 2 ¯k .
We also used that `m k ˘ď m k {k! and that `2nh`n k ˘ě p2nh `n ´kq k {k! with k ď n. This concludes the proof of the upper bound in Theorem 2.1-(ii).

Proof of Corollary 2.2.

We prove it in the continuous setting, the discrete one being similar. From Theorem 2.1, we deduce that for any u ě peC 0 q 1{2 , we have

P ´LpBq m pt, xq ě u pBt{x 2 q 1{4 ? m ¯ď exp ´´upBt{x 2 q 1{4 ? m ¯. (3.5) 
Applying this inequality with u " peC 0 q 1{2 , and using also the a priori bound L pBq m pn, hq ď m, we get that for any b ą 0 E "ˆL pBq m pt, xq `pBt{x 2 q 1{4 m 1{2 ˘^m ˙b ď peC 0 q b{2 `ż `8 peC 0 q b{2 P ˆLpBq m pt, xq `pBt{x 2 q 1{4 m 1{2 ˘^m ą u 1{b ¯du ď peC 0 q b{2 `cst.

PROOF OF THEOREM 2.4

Let us recall that P :" pw i , t i , x i q : i ě 1 ( is a Poisson Point Process on r0, 8q ˆr0, 1s ˆR of intensity µpdwdtdxq " α 2 w ´α´1 1 twą0u dwdtdx, as introduced in Section 2.2. 4.1. Ideas of the proof. First we prove that T β " `8 when α ď 1{2. Then, we prove the scaling relation (2.10), and finally we show the finiteness of the υ-th moment (υ ă α´1{2). We stress that the core of the proof is based on an application of the continuous E-LPP: roughly, the idea of the proof is to decompose the variational problem (2.9) according to the value of the entropy: The E-LPP appears essential to show that the last supremum is finite, see in particular Lemma 4.1 below. Then, at a heuristic level, we get that T β is finite because in (4.1) we have B 1 2α ! B as B Ñ 8 (remember that α ą 1{2). In the last part of the proof we prove the continuity of β Þ Ñ T β and of the existence and uniqueness of the maximizer in (2.9). 4.2. Case α ď 1{2. Let us prove here that T β " `8 when α P p0, 1{2s. For any k in Z, we define the event

T β " sup Bě0 ! β sup sPD,Entpsq"B πpsq ´B) . ( 4 
G k :" P X rβ ´12 2k`1 , `8q ˆr 1 2 , 1s ˆr2 k´1 , 2 k s ‰ H ( ,
On the event G k , we denote pw k , t k , x k q a point of P such that w k ě β ´12 2k`1 and pt k , x k q P r 1 2 , 1s ˆr2 k´1 , 2 k s: considering the path going straight to pt k , x k q we get that

T β ě βw k ´x2 k 2t k ě 2 2k , on the event G k .
Then, it is just a matter of estimating PpG k q. We stress that considering M k the maximal weight in r 1 2 , 1s ˆr2 k´1 , 2 k s, we find that M k is of order p2 k q 1{α (as a maximum of a field of independent heavy-tail random variables, or using the scaling relations below), so that we get that: if α ă 1{2, PpG k q Ñ 1 as k Ñ `8; if α " 1{2, there is a constant c ą 0 such that PpG k q ě c for all k P Z; if α ą 1{2, PpG k q Ñ 1 as k Ñ ´8. note that the events G k are independent, so an application of Borel-Cantelli lemma gives that for α ď 1{2, a.s. G k occurs for infinitely many k P N: since T β ě 2 2k on G k , it implies that T β " `8 a.s. for α ď 1{2.

On the other hand, it also proves that when α ą 1{2, a.s. there exists some k 0 ď ´1 such that G k 0 occurs and thus T β ě 2 2k 0 ą 0.

Scaling relations.

For any α P p0, 2q and a ą 0 we consider two functions ϕpw, t, xq :" pw, t, axq and ψpw, t, xq :" pa ´1{α w, t, xq which scale space by a (hence the entropy by a 2 ) and weights by a ´1{α respectively. 

and we observe that T β " T β `r0, 1q ˘_ sup kě0 T β `r2 k , 2 k`1 q ˘. Moreover, as in (4.2) we have We show the following Lemma.

T β `r2 k , 2 k`1 q ˘pdq " sup s: EntpsqPr1,2q
Lemma 4.1. For any a ă α, we have that there is a constant c a ą 0 such that for any t ą 1 we get

P ´sup sPD,Entpsqď2
πpsq ą t ¯ď c a t ´a .

From this lemma and (4.5), we get that for any t ě ´1 and any k large enough so that β ´12 ´k 2α 2 ´k ą 2, we get

P ´Tβ `r2 k , 2 k`1 q ˘ą t ¯ď P ´sup sPD,Entpsqď2 πpsq ą β ´12 ´k 2α pt `2k q ď c a β a 2 k a 2α `t `2k ˘´a . (4.6)
Then, for any t ě 1 and a ă α, we get by a union bound that

P `Tβ ą t ˘ď 8 ÿ k"0 P ´Tβ `r2 k , 2 k`1 q ˘ą t ď c 1 a 2 a β a t ´a log 2 t ÿ k"0 2 k a 2α `c1 a 2 a β a ÿ kąlog 2 t 2 ´ak `1´1 2α ď c 2 a β a t ´at a 2α `c2 a t ´a`1 ´1 2α ˘ď 2c 2 a β a t ´a`1 ´1 2α ˘,
where we used that t `2k ě t{2 if k ď log 2 t, and t `2k ě 2 k {2 if k ą log 2 t. For the second sum we also used that 1 ´1 2α ą 0 when α ą 1{2. In particular, this shows that for any δ ą 0, there is some constant c δ,β ą 0 such that for any t ě 1

P `Tβ ą t ˘ď c δ,β t ´pα´1 2 q`δ , (4.7) 
which proves that ErpT β q υ s ă 8 for any υ ă α ´1{2.

Proof of Lemma 4.1. Let us recall that Entpsq ď 2 implies that max |s| ď 2. Therefore we can restrict our Poisson Point Process to R `ˆr0, 1s ˆr´2, 2s. In this case (cf. Section 5.1 below) we rewrite a realization of the Poisson Point Process by using its ordered statistic. We introduce pY i q iPN be an i.i.d. sequence of uniform random variables on r0, 1s ˆr´2, 2s and pM i q iPN be a random sequence independent of pY i q iPN defined by M i " 4 1{α pE 1 Èi q ´1{α with pE j q jě1 an i.i.d. sequence of Expp1q random variables. In such a way P pdq " pM i , Y i q iPN and πpsq " ř 8 i"1 M i 1 tY i Psu . The proof is then a consequence of Theorem 2.1 (with B " 1), which allows to use the same ideas as in [START_REF] Hambly | Heavy tails in last-passage percolation[END_REF]Proposition 3.3] -we develop the argument used in [START_REF] Hambly | Heavy tails in last-passage percolation[END_REF] in a more robust way, which makes it easier to adapt to the discrete setting. Using the notations introduced in Section 1, for any i ě 0, we denote Υ i " tY 1 , . . . , Y i u (Υ 0 " H), and let ∆ i " ∆ i psq " s X Υ i be the set of the i largest weights collected by s. The E-LPP can be written here as L p2q i :" max s:Entpsqď2 |∆ i psq| -we drop here the dependence on t, x.

Using that M i is a non-increasing sequence, we write πpsq " 8 ÿ j"0

2 j`1 ´1 ÿ i"2 j M i 1 tY i Psu ď 8 ÿ j"0 M 2 j L p2q 2 j`1 . (4.8)
Then, we fix some δ ą 0 such that 1{α ´1{2 ą 2δ, and we let C " ř 8 j"0 2 jp1{2´1{α`2δq : we obtain via a union bound that

P ´sup Entpsqď2 πpsq ą t ¯ď 8 ÿ j"0 P ´M2 j L p2q 2 j`1 ą 1 C t 2 jp1{2´1{α`2δq ď 8 ÿ j"0 " P ´Lp2q 2 j`1 ą C 1 log t p2 j`1 q 1{2`δq ¯`P ´M2 j ą C 2 t log t p2 j q ´1{α`δ ¯ı . (4.9)
Here C 1 is a constant that we choose large in a moment, and C 2 is a constant depending on C, C 1 -we also work with t ě 2 for simplicity.

For the first probability in the sum, we obtain from Theorem 2.1-(i) that provided

C 1 plog tq2 jδ ě 2C 1{2 0 P ´Lp2q 2 j`1 ą C 1 log t p2 j`1 q 1{2`δq ¯ď ´1 2 ¯C1 plog tq2 jδ ď t ´log 2 C 1 2 jδ .
Hence, for t sufficiently large we get that 8 ÿ j"0 P ´Lp2q 2 j`1 ą C 1 log t p2 j`1 q 1{2`δq ¯ď ct ´C1 log 2 ď ct ´a (4.10)

provided that we fixed C 1 large.

For the second probability in the sum, recall that M i pdq " 4 1{α Gammapiq ´1{α , so that for any a ă α, Erpi 1{α M i q a s is bounded by a constant independent of i. Therefore, Markov's inequality gives that P ´M2 j ą C 2 t log t p2 j q ´1{α`δ ¯ď cplog tq a t ´ap2 j q ´aδ , so that 8 ÿ j"0 P ´M2 j ą C 2 t log t p2 j q ´1{α`δ ¯ď cplog tq a t ´a . (4.11)

Plugging (4.10) and (4.11) into (4.9), we obtain that for any a 1 ă a ă α there are constants c ą 0 such that for any t ě 2

P ´sup

Entpsqď2 πpsq ą t ¯ď 2cplog tq a t ´a ď c 1 t ´a1 , which concludes the proof. Letting δ Ó 0, we get that the right hand side converges to βπps pεq β q ´Entps pεq β q ě T β ´ε. Since ε is arbitrary, one concludes that lim δÒ0 T β´δ " T β , that is β Þ Ñ T β is left-continuous.

Right-continuity. It remains to prove that a.s. β Þ Ñ T β is right-continuous. We prove a preliminary result. Lemma 4.2. For any K ą 0, P-a.s. there exists B 0 ą 0 such that for any 0 ď β ď K

T β " T β `r0, B 0 s ˘, (4.12) 
where T β `r0, B 0 s ˘is defined in (4.4).

Proof. Let us recall that T β " T β `r0, 1q ˘_ sup kě0 T β `r2 k , 2 k`1 q ˘. Using (4.6) with t " ´1, for any a ă α we have that

P ´Tβ `r2 k , 2 k`1 q ˘ą ´1¯ď c a β a 2 k a 2α `2k ´1˘´a ď c a,K 2 kp 1 2α ´1q .
Since 1 2α ´1 ă 0, by Borel-Cantelli lemma we obtain that P-a.s. there exists k 0 ą 0 such that T β `r2 k , 2 k`1 qq ď ´1 for all k ě k 0 . This concludes the proof.

Then, since we now consider paths with entropy bounded by B 0 , we can restrict the Poisson Point Process P to R `ˆr0, 1sˆr´?2B 0 , ? 2B 0 s. In this case we write a realization of the Poisson Point Process by using its ordered statistic. More precisely we introduce M i :" p8B 0 q 1{2α pE 1 `¨¨¨`E i q ´1{α , where pE i q iPN is an i.i.d. sequence of exponential of mean 1 and pY i q iPN is a i.i.d. sequence of uniform random variables on r0, 1s ˆr´?2B 0 , ? 2B 0 s, independent of pE i q iPN . Then, P pdq " pM i , Y i q iPN and πpsq " ř 8 i"1 M i 1 tY i Psu . For any P N, we let π p q :" ř i"1 M i 1 Y i Ps be the "truncated" energy of a path: we can write for any β ă K, and any δ ą 0 such that β `δ ď K T β`δ " T β`δ `r0, B 0 s ˘ď sup sPD,EntpsqďB 0 pβ `δqπ p q psq ´Entpsq ( `pβ `δq sup sPD,EntpsqďB 0 ˇˇπpsq ´πp q psq ˇˇ.

Then, we show that max sPD,EntpsqďB 0 ˇˇπpsq ´πp q psq ˇˇa.s.

Ý ÝÝ Ñ Ñ8 0 . (4.13) 
Hence, for any fixed ε, we can a.s. choose some ε such that for any β ă K and any δ ą 0 with β `δ ď K

T β ď T β`δ ď sup sPD,EntpsqďB 0 pβ `δqπ p q psq ´Entpsq ( `Kε .
Then, letting δ Ó 0, and since the supremum can now be reduced to a finite set (we consider only points), we get that for any β ă K

T β ď lim δÓ0 T β`δ ď sup sPD,EntpsqďB 0 βπ p q psq ´Entpsq ( `ε ď T β `ε .
Since ε is arbitrary, this shows that lim δÓ0 T β`δ " T β a.s., that is β Þ Ñ T β is right-continuous. It remains to prove (4.13). For any i P N we consider Υ i " tY 1 , . . . , Y i u and for any given path s we define ∆ i " ∆ i psq " sXΥ i the set of the i largest weights collected by s. Then, let L pB 0 q i " sup sPD B 0 |∆ i psq|, as introduced in (2.2). Realizing that 1 tY i Psu " |∆ i psq|´|∆ i´1 psq|, and integrating by parts (as done in [START_REF] Hambly | Heavy tails in last-passage percolation[END_REF]), we obtain for any s P D B 0 πpsq ´πp q psq "

ÿ ią M i 1 tY i Psu " lim nÑ8 n ÿ i" `1 M i `|∆ i | ´|∆ i´1 | " lim nÑ8 ˆn´1 ÿ i" `1 |∆ i |pM i ´Mi`1 q `Mn |∆ n | ´M |∆ | ď 8 ÿ i" `1 L pB 0 q i pM i ´Mi`1 q `lim sup nÑ8 M n L pB 0 q n . (4.14) 
At this stage, the law of large numbers gives that lim nÑ8 n 1{α M n " p8B 0 q 1{2α a.s., and Corollary 2.2 gives that lim sup nÑ8 n ´1{2 L pB 0 q n ă `8 a.s. Since α ă 2, we therefore conclude that lim sup nÑ8 M n L pB 0 q n " 0 a.s. We let U :" ř ią L pB 0 q i pM i ´Mi´1 q. We are going to show that there exists some 0 such that ř ią 0 L pBq i pM i ´Mi´1 q ă 8 a.s., and thus lim Ñ8 U " 0 a.s. We show that ErU 2 0 s is finite for 0 large enough. For any ε ą 0, by Cauchy-Schwarz inequality we have that

U 0 ď ´ÿ ią 0 `i´1 2 ´ε˘2 ¯1{2 ´ÿ ią 0 `i´1 2 `εL pB 0 q i pM i ´Mi`1 q ˘2¯1 {2 .
Then, we get that for 0 large enough

ErU 2 0 s ď C ÿ ią 0 i 1`2ε E " pL pBq i q 2 ‰ E " pM i ´Mi´1 q 2 ‰ ď C 1 B 0 ÿ ią 0 i 1`2ε ˆi ˆi´2´2{α ă `8 .
Here, we used Corollary 2.2 and a straightforward calculation that gives E " pM i ´Mi´1 q 2 ‰ ď ci ´2´2{α for i large enough (see for instance Equation (7.2) in [START_REF] Hambly | Heavy tails in last-passage percolation[END_REF]). Provided ε is small enough so that 2ε ´2{α ă ´1 we obtain that ErU 2 0 s ă 8. 4.6. Existence and uniqueness of the maximizer. As a consequence of Lemma 4.2, to show that the supremum is attained and is unique in (2.9), it is enough to prove the following result. Proof. Our first step is to show that D B is compact for the uniform norm } ¨}8 . Let us observe that for any s : r0, 1s Ñ R, the condition Entpsq ď B implies that |spxq ´spyq| ď ż x y |s 1 ptq|dt ď p2Bq 1{2 |x ´y| 1{2 , @ x, y P r0, 1s, so that s belongs to the Hölder Space C 1{2 pr0, 1sq. Hence, D B is included in C 1{2 pr0, 1sq which is compact for the uniform norm } ¨}8 by the Ascoli-Arzelà theorem. We therefore only need to show that D B is closed for the uniform norm } ¨}8 . For this purpose we consider a convergent sequence s n and we denote by s its limit. Since Entps n q " 1 2 }s 1 n } 2 L 2 for all n, we have that ps 1 n q nPN belongs to the (closed) ball of radius p2Bq 1{2 of L 2 pr0, 1sq. By Banach-Alaoglu theorem, the sequence ps 1 n q nPN contains a weakly convergent subsequence. This means that there exist n k and s ‹ such that

ż 1 0 ϕpxqs 1 n k pxqdx Ý ÝÝ Ñ kÑ8 ż 1 0
ϕpsqs ‹ pxqdx, @ϕ P L 2 pr0, 1sq.

By uniqueness of the limit (and taking ϕpxq " 1 tr0,ysu pxq), this relation implies that spyq " ş y 0 s ‹ pxqdx, that is s 1 " s ‹ almost everywhere. Since the L 2 norm is weakly lower semicontinuous by the Hahn-Banach theorem -that is }s ‹ } L 2 ď lim inf kÑ8 }s 1 n k } L 2 -we obtain that s P D B , so D B is closed. As a by-product of this argument we also have that the entropy function s Þ Ñ Entpsq is lower semi-continuous on pD B , } ¨}8 q.

Existence of the maximizer. Since D B is compact, the existence of the maximizer comes from the fact that the function

t β psq :" βπpsq ´Entpsq (4.15)
is upper semi-continuous, thanks to the extreme value theorem tells. Since we have already shown that s Þ Ñ Entpsq is lower semi-continuous, we only need to prove the following. Proof. We recall that if s P D B then max tPr0,1s |sptq| ď ? 2B. Therefore, using the same notations as above, we can write a realization of the Poisson Point Process P by using its ordered statistic: P " pM i , Y i q iPN , πpsq " ř 8 i"1 M i 1 tY i Psu , and recall that for any P N we let π p q :" ř i"1 M i 1 tY i Psu . Thanks to (4.13), we only need to prove that for any fixed P N the function s Þ Ñ π p q psq is upper semi-continuous: then πpsq, as the uniform limit of π p q , is still upper semi-continuous.

For any s P D B we let ι s :" Υ zts X Υ u be the set of all points of Υ " tY 1 , . . . , Y u that are not in s. Since there are finitely many points, we realize that there exists η " ηps, q ą 0 such that d H pι s , graphpsqq ą η, with d H is the Hausdorff distance.

Given s P D B , we consider a sequence ps n q n , s n P D B that converges to s, lim nÑ8 }s n ś} 8 " 0. We observe that whenever }s n ´s} 8 ď η{2, we have that d H pι s , graphps n qq ą η{2. This means that for n large enough ts n X Υ u Ă ts X Υ u , which implies that π p q psq ě lim sup nÑ8 π p q ps n q.

Uniquenes of the maximizer. The strategy is very similar to the one used in [START_REF] Auffinger | Directed polymers in random environment with heavy tails[END_REF]Lemma 4.1] or [START_REF] Hambly | Heavy tails in last-passage percolation[END_REF]Lemma 4.2]. For any s P D B , we let Ipsq :" ts X Υ 8 u, where we Υ 8 " tY i , i P Nu.

Let us assume that we have two maximizers s 1 ‰ s 2 . Since Υ 8 is dense in r0, 1s r´?2B, ?

2Bs we have that Ips 1 q ‰ Ips 2 q. In particular, there exists i 0 such that Y i 0 P Ips 1 q and Y i 0 R Ips 2 q, and since s 1 and s 2 are two maximizers of (4.15) Conditioning on pY j q jPN and pM j q jPN,j‰i 0 we have that the l.h.s. has a continuous distribution -the distribution of M ´α i 0 conditional on pY j q jPN and pM j q jPN,j‰i 0 is uniform on the interval rM ´α i 0 ´1, M ´α i 0 `1s -, while the r.h.s. is a constant -it is independent of M i 0 . Therefore the event (4.16) has zero probability, and by sigma sub-additivity we get that P `Ips 1 q ‰ Ips 2 q ˘" 0, which contradicts the existence of two distinct maximizers.

PROOF OF PROPOSITION 2.6 AND THEOREM 2.7

Let us state right away a lemma that will prove to be useful in the rest of the paper. Lemma 5.1. For any η ą 0, there exists a constant c such that, for any t ą 1 and any ď nh, we have P ´M pn,hq ą tmp nh q ¯ď pctq ´p1´ηqα .

Proof. We simply write that by a union bound P ´M pn,hq r ą tmp nh r q ¯ď ˆnh r ˙P´ω 1 ą tmp nh r q ¯r ď ´c nh r P `ω1 ą tmp nh r q ˘¯r .

Then, since Ppω 1 ą xq is regularly varying with exponent ´α, Potter's bound (cf. [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its applications[END_REF]) gives that there is a constant c η such that for any t ě 1 P `ω1 ą tmp nh r q ˘ď c η t ´p1´ηqα P `ω1 ą mp nh r q ˘" c η t ´p1´ηqα nh r ,

where we used the definition of mp¨q in the last identity. This concludes the proof. 

where pY i q iPN is an i.i.d. sequence of uniform random variables on r0, 1s ˆr´q, qs. For the continuum limit for the weight sequence pM pn,qhq r q |Λ n,qh | r"1 , we use some basic facts of the classical extreme value theory (see e.g., [START_REF] Resnick | Extreme values, regular variation and point process[END_REF]), that is for all P N,

´Ă M pn,qhq i :" M pn,qhq i mpnhq , i " 1, . . . , ¯pdq Ñ `Mi , i " 1, . . . , ˘, (5.2) 
where pM i q iPN is the continuum weight sequence. The sequence pM i q iě1 can be defined as M i :" p2qq 1{α pE 1 `¨¨¨`E i q ´1 α , where pE i q iPN is an i.i.d. sequence of exponential random variables of mean 1, independent of the Y i 's. In such a way pM i , Y i q iPN is the ordered statistic associated with a realization of a Poisson Point Process on r0, 8q ˆr0, 1s ˆr´q, qs of intensity µpdw, dt, dxq " α 2 w ´α´1 1 twą0u dwdtdx.

5.2. Proof of Theorem 2.7. For any q ą 0, we consider the Poisson Point Process restricted to r0, 1s ˆr´q, qs, and we label its elements according to its ordered statistic pM i , Y i q iPN . For any ∆ Ă r0, 1s ˆr´q, qs we define π p q p∆q " ř i"1 M i 1 tY i P∆u and π pą q p∆q :" πp∆q πp q p∆q. In analogy with the discrete setting (cf. (2.16)), we define T pą q ν,q " sup sPMq νπ pą q psq ´Entpsq ( , T p q ν,q " sup sPMq νπ p q psq ´Entpsq ( .

(5.3)

We first show the convergence (2.20) of the large-weights variational problem, before we prove (2.19).

Convergence of the large weights. Note that the maximum of T β n,h ,p q n,qh and T p q ν,q are achieved on Υ " Υ pqq and Υ " Υ pqq respectively, that is

T β n,h ,p q n,qh " max ∆ĂΥ β n,h Ω p q n,h p∆q ´Entp∆q ( , T p q ν,q " sup ∆ĂΥ νπ p q p∆q ´Entp∆q ( , (5.4) 
where Υ pqq (resp. Υ pqq) is the set of the locations of the largest weights inside Λ n,qh (resp. Λ 1,q ). Since we have only a finite number of points, the convergence (2.20) is a consequence of (5.1) and (5.2) and the Skorokhod representation theorem.

Restriction to the large weights. To show the convergence (2.19), it is therefore enough to control the contribution of the large weights. Let δ ą 0 such that 1 α ´1 2 ą δ. Using Potter's bound (cf. [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its applications[END_REF]) we have that `βn,h mpnh{ q ˘4 3

´ 2 n h 2 ¯1 3 ď c h 2 n

´4 3 p 1 α ´1 2 ´δq .
Plugging it into (2.18) and taking b " b ,ε :" ε 

19).

Proof of (2.21). This is a simple consequence of the monotonicity of Þ Ñ T p q ν,q and of q Þ Ñ T ν,q (together with the fact that T ν is well defined). where we use that p β satisfies the equation p β " β n,h mpnhqp p βn{h 2 q 1{4 . We then need the following lemma, analogous to Lemma 4.1. n,h p∆q ě 2 k´1 bmpnhqp p βn{h 2 q 1{4 ¯ď cp2 k bq ´3a{4 , so that summing over k in (5.7), we get Proposition 2.6.

Proof of

Proof of Lemma 5.2. We mimic here the proof of Lemma 4.1, but we need to keep the dependence on the parameters n, h, B. For i ě 0, we denote Υ i :" tY pn,hq 1 , . . . , Y pn,hq i u with the Y pn,hq j introduced in Section 2.3 (Υ 0 " H), and for any ∆ we let ∆ i :" ∆ X Υ i be the restriction of ∆ to the i largest weights. As in (4.8), we can write

1 mpnhqpBn{h 2 q 1{4 ˆsup ∆:Entp∆qďB Ω p q n,h p∆q ď log 2 ÿ j"0 Ă M 2 j r L 2 j`1 , (5.8) 
where Ă M i " M pn,hq i {mpnhq and r L i " L pBq i pn, hq{pBn{h 2 q 1{4 are the renormalized weights and E-LPP (we drop the dependence on n, h, B for notational convenience).

As in the proof of Lemma 4.1, we fix some δ ą 0 such that 1{α ´1{2 ą 2δ, and as for (4.9), the probability in Lemma 5.2 is bounded by log 2 ÿ j"0 " P ´r L 2 j`1 ą C 1 log t p2 j`1 q 1{2`δ ¯`P ´Ă M 2 j ą C 2 t log t p2 j q ´1{α`δ ¯ı .

(5.9)

For the first probability in the sum, we obtain from Theorem 2.1-(ii) that provided that C 1 plog tq2 jδ ě 2C 1{2 0 P ´r L 2 j`1 ą C 1 log t p2 j`1 q 1{2`δq ¯ď ´1 2 ¯C1 plog tq2 jδ ď t ´plog 2qC 1 2 jδ .

(5.10)

Then, the first sum in (5.9) is bounded by t ´a provided that C 1 had been fixed large enough.

  Discrete setting: upper bound. The proof follows the same idea as above: we skip most of the details. Define E pn,Bq k the set of k-uples in 1, n ˆZ that have entropy smaller than B: E pn,Bq k

4. 5 .

 5 Continuity of β Þ Ñ T β . An obvious and crucial fact that we use along the way is that for any realization of P, β Þ Ñ T β is non-decreasing.Left-continuity.Let us first show that β Þ Ñ T β is left-continuous, since it is less technical. Fix ε ą 0. For any β, there exists a path s pεq β with πps pεq β q ă 8 such that T β ď βπps pεq β q Éntps pεq β q `ε. Using this path s pεq β , we then simply write that for any δ ą 0 T β ě T β´δ ě pβ ´δqπps pεq β q ´Entps pεq β q .

Lemma 4 . 3 .

 43 For a.e. realization of P and for any B ą 0 we have that s β pBq " arg max sPD B βπpsq ´Entpsq ( exists, and it is unique. Here, we defined D B :" ts P D : Entpsq ď Bu.

Lemma 4 . 4 .

 44 For a.e. realization of P and for any B ą 0 the function s Þ Ñ πpsq is upper semi-continuous on pD B , } ¨}8 q.

4 3 p 1 α

 1 ´1 2 `δq , we obtain thatP ´n h 2 T β n,h ,pą q n,qh ě ε ¯ď c 1 b on n, h. Combined with(2.20) and the first part of (2.21), this gives the convergence(2.

p∆q ě 2 k´1 b mpnhq `p βn{h 2

 2 p∆q, with the choice d " b p β and p β :" pβ n,h mpnhqq 4{3 pn{h 2 q 1{3 , a union bound gives that P ´T β n,h ,p q

Lemma 5 . 2 .

 52 For any a ă α, there exists a constant c such that for any B ě 1, n, h ě 1, and any t ą 1 p∆q ě t ˆmpnhq `Bn{h 2 ˘1{4 ¯ď ct ´a Applying this lemma in (5.7) (with B " 2 k b p β, t " 2 3k{4´1 b 3{4 ), we get that for any k ě 0 P ´sup ∆ : Entp∆qď2 k b p β Ω p q

Corollary 2.2. For

  any b ą 0, there is a constant c b ą 0 such that, for any m ě 1, and any positive B, and any t, x, resp. n, h,

	(recall the definition (2.1)): as a consequence it holds that L	pn{2q m	
	E "ˆL pBq m pt, xq `pBt{x 2 q 1{4 ? m ˘^m	˙b	ď c b ; E "ˆL pBq m pn, hq `pBn{h 2 q 1{4 ? m ˘^m	˙b	ď c b .
	Remark 2.3. On may view Theorem 2.1 as a generalization of [11, Proposition 3.3]. More
	precisely, we recover [11, Proposition 3.3] by considering Λ n,n " n, n 2 and replacing the
	entropy condition Entp∆q ď B by a Lipschitz condition, that is considering only the sets
	∆ whose points can be interpolated using a Lipschitz path. Let us denote L pLipq m pnq the LPP
	obtained. Now observe that if ∆ satisfies the Lipschitz condition we have that Entp∆q ď n{2

  the set of k-uples in r0, ts ˆR (i.e. up to time t) that have entropy smaller than B:

	pt,Bq k Continuous setting. Let us consider E			
	E	pt,Bq k	"	#	`pt , x q ˘1ď ďk Ă r0, ts ˆR ;	0 ă t 1 ă ¨¨¨ă t k ă t ; Ent `pt , x q 1ď ďk ˘ď B	+	.
	We can compute exactly the volume of E	pt,Bq k	.	
	Lemma 3.1. We have, for any t ą 0 and B ą 0		
	`Ept,Bq Vol k				
									.21)
				3. PROOF OF THEOREM 2.1 AND COROLLARY 2.2

3.1. Proof of Theorem 2.1. We start with the proof in the continuous setting. The discrete setting follows the same lines and details will be skipped.

  Let us denote N k the number of sets ∆ Ă Υ m pt, xq with |∆| " k, that have entropy at most B. We write P `LpBq m pt, xq ě k ˘" PpN k ě 1q ď ErN k s . Since all the points are exchangeable, we get ErN k s " ˆm k ˙P´D σ P S k s.t. pZ σp1q , . . . , Z σpkq q P E

	`ck	˘k{2 and Γ `3k{2	`1˘ě `ck	˘3k{2 .
				pt,Bq
				k

  .4) Details are left to the reader. Again, we have P `LpBq m pn, hq ě k ˘ď ErN k s, where N k is the number of sets ∆ Ă Υ m Ă Λ n,h with |∆| " k, that have entropy at most B. Then,

			ErN k s "	˙P´D ˆm k	σ P S k s.t. pZ	pn,hq σp1q , . . . , Z	pn,hq σpkq q P E	k pn,Bq	¯,
	where pZ	pn,hq 1	pn,hq k , ¨¨¨, Z			

  The random sets ϕpPq and ψpPq are still two Poisson Point Processes with the same law, that is ϕpPq

					pdq " ψpPq. This implies that (recall the
	definition (2.8))						
		πpasq	pdq " a 1{α πpsq.		
	Therefore,						
	sup	βπpsq ´a2 Entpsq ( pdq "		sup	βa ´1{α πpsq ´Entpsq	(	.	(4.2)
	sPD,Entpsqă8			sPD,Entpsqă8		
	Consequently, for any α P p0, 2q, a 2 T β{a 2	pdq " T βa ´1{α . In particular, for any β ą 0 it holds
	true that for α ą 1{2					
		T β	pdq " β	2α 2α´1 T 1 .			(4.3)
	4.4. Finite moments of T					

β . We show that for α P p1{2, 2q ErpT β q υ s ă 8 for any υ ă α ´1{2, which readily implies that T β ă 8 a.s. For any interval rc, dq with 0 ď c ă d we let T β `rc, dq ˘:" sup sPD,EntpsqPrc,dq βπpsq ´Entpsq ( ,

  it means max

	This implies that						
			"		*		
				ÿ			
	βM i 0 " max s : Y i 0 RIpsq	t β psq ´max s : Y i 0 PIpsq	β	j,j‰i 0	M j 1 tY j Psu ´Entpsq	.	(4.16)

s : Y i 0 PIpsq t β psq " max s : Y i 0 RIpsq t β psq.

  be the rescaled permutation, i.e. a random permutation of the points of the set pr0, 1s ˆr´q, qsq X p N n ˆZ h q. Then for any fixed P N,

	pn,qhq r	, Y r pn,qhq	|Λ n,qh | q r"1
		pn,qhq r r"1 `r Y |Λ n,h | q pn,qhq 1 , . . . , r Y pn,qhq ˘pdq Ñ `Y1 , . . . , Y ˘, as n, h Ñ 8,

5.1. Continuum limit of the ordered statistic. For any q ą 0 let Λ n,qh " 1, n ˆ ´qh, qh and let pM be the ordered statistic in that box, cf. (2.13). If we rescale Λ n,qh by n ˆh, and we let p r Y

  Proposition 2.6. Let us first focus on T `r2 k´1 d, 2 k dq ˘ď β n,h sup

	Using that							
	T n,h β n,h ,p q				∆ : Entp∆qď2 k d	Ω	p q n,h p∆q ´2k´1 d, for k ě 1,
	T n,h β n,h ,p q	`r0, dq ˘ď β n,h	sup			
							β n,h ,p q n,h	. As in (4.4) in the continuous
	setting, we introduce, for any interval rc, dq,			
	T n,h β n,h ,p q	`rc, dq ˘:"	max ∆ĂΛ n,h ,Entp∆qPrc,dq	β n,h Ω	p q n,h p∆q ´Entp∆q	(	.	(5.6)
	Then, we realize that for any d ą 0			
		T n,h β n,h ,p q	" T				

β n,h ,p q n,h `r0, dq ˘_ sup kě1 T β n,h ,p q n,h `r2 k´1 d, 2 k dq ˘.

∆ : Entp∆qďd
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For the second probability in (5.9), we use Lemma 5.1 above to get that for any a ă α P ´Ă M 2 j ą C 2 t log t p2 j q ´1{α`δ ¯ď P ´M pn,hq

ą C 3 t log t p2 j q δ{2 mpnh2 ´j q ď cplog tq a t ´ap2 j q ´aδ . (5.11)

For the first inequality, we used Potter's bound to get that mpnh2 ´j q ď cmpnhqp2 j q ´1{α`δ{2 . We conclude that the second sum in (5.9) is bounded by a constant times plog tq a t ´a.

All together, and possibly decreasing the value a a (by an arbitrarily small anount), this yields Lemma 5.2.

Let us now turn to the case of T

. We first need an analogue of Lemma 5.2.

Lemma 5.3.

There exists a constant c such that for any B ě 1, n, h P N and 0 ď ď nh, for any t ą 1

Proof. Analogously to (5.8), we get that

Then, we get similarly to (5.10)-(5.11) that for any δ ą 0: (a) thanks to Theorem 2.1-(ii) we have P ´Lpn,hq

1{2 pBn{h 2 q 1{4 ě C 1 ? tp2 j`1 q 1{2`δ ¯ď ´1 2 ¯C1 ? mpnh{ q ě C 2 ? tp2 j q ´1{α`δ ¯ď ct ´α {3 p2 j q ´αδ {2 .

(5.14) Lemma 5.3 follows from a bound analogous to (5.9).

Then, setting p β " pβ nh mpnh{ qq 4{3 p 2 n{h 2 qq 1 3 so that we have p β " β n,h mpnh{ q 1{2 p p β n{h 2 q 1{4 , we obtain similarly to (5.7) that

This concludes the proof of Proposition 2.6.