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Abstract. We present a numerical scheme for the solution of Euler equations based on stag-
gered discretizations and working either on structured schemes or on general simplicial or tetra-
hedral/hexahedral meshes. The time discretization is performed by a fractional-step or segregated
algorithm involving only explicit steps. The scheme solves the internal energy balance, with cor-
rective terms to ensure the correct capture of shocks, and, more generally, the consistency in the
Lax-Wendroff sense. To keep the density, the internal energy and the pressure positive, conditionally
positivity-preserving convection operators for the mass and internal energy balance equations are de-
signed by a MUSCL-like procedure: first, second-order in space fluxes are computed, then a limiting
procedure is applied. This latter is purely algebraic: it does not require any geometric argument and
thus works on quite general meshes; moreover, it keeps the pressure constant at contact discontinu-
ities. The construction of the fluxes does not need any Riemann or approximate Riemann solver,
and yields thus a particularly simple algorithm. Artificial viscosity is added in order to reduce the
oscillations of the scheme. Numerical tests confirm the accuracy of the scheme.
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1. Introduction. The main objective of this paper is to develop and test a
numerical scheme for the simulation of non viscous compressible flows modeled by
the Euler equations for an ideal gas:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1.1b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (1.1c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1.1d)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure, total
energy and internal energy respectively, and γ > 1 is a coefficient specific to the
considered fluid. The problem is supposed to be posed over Ω× (0, T ), where Ω is an
open bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval.
System (1.1) is complemented by initial conditions for ρ, e and u, denoted by ρ0, e0
and u0 respectively, with ρ0 > 0 and e0 > 0, and by a boundary condition which we
suppose to be u · n = 0 at any time and a.e. on ∂Ω, where n stands for the normal
vector to the boundary.

Let us list here the essential features of the proposed numerical scheme:

- We use a staggered arrangement of the unknowns, on general simplicial or quad-
rangular/hexahedral meshes. The scalar variables, namely density, pressure and
thus, to allow a straightforward formulation of the equation of state, internal en-
ergy, are approximated by piecewise constant functions over the cells while the
velocity is approximated at the faces of the cells. Two types of discretizations
are used: the celebrated MAC scheme [24] on rectangular Cartesian meshes, and a
finite volume scheme using the discontinuous linear finite element degrees of free-
dom on simplices or hexahedra (3D) or quadrangles (2D); these finite elements are
known as Crouzeix-Raviart for simplices, and Rannacher-Turek for hexhahedra or
quadrangles, so we shall denote these discretizations by CR or RT in the sequel.
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The MAC scheme involves only the normal component of the velocity on each face
(3D) or edge (2D), while the CR/RT schemes demand the approximation of the
full velocity on the faces or edges; the latter scheme is therefore more costly but
allows for more general meshes.

- Balance equations are solved successively, and each step is explicit, in the sense
that apart from the time-derivative, all terms involve only known quantities at this
stage and thus do not require any linear system solver; however these quantities are
not necessarily beginning-of-step quantities, so that, strictly speaking, the scheme
is not explicit for the full system.

- The energy equation solved by the scheme is the internal energy balance, see
Equations (3.2)-(3.3) below; this offers two advantages: first of all, it allows to
preserve, by construction of the scheme, the positivity of the internal energy;
in addition, it avoids building an approximation of the total energy which, for
staggered discretizations, is a ”composite” variable, in the sense that it combines
quantities discretized on the cells and at the faces. Note that a blunt discretization
of the internal energy balance is known to yield wrong shock solutions; a corrective
term is added here to circumvent this problem.

- The positivity of the scheme, in the sense that the approximate density and internal
energy, and thus the pressure, are positive, is obtained by building a positivity-
preserving convection operator for both the mass and internal energy balance
equations. For a first-order scheme, it consists in using an upwinding with respect
to the material velocity only [27]; here, a higher order scheme is sought, and thus
a MUSCL-like procedure is developed, see [41] for the original MUSCL scheme:
we compute formally second-order in space fluxes and then apply a limiting pro-
cedure to obtain positivity under a CFL-like condition, since we use a explicit
time discretization. Inspired from the work performed in [34] for the transport
equation, this limiting step is purely algebraic: it does not require any geometric
argument and thus works on quite general meshes. It is carefully designed to keep
the pressure constant in the zones where it actually should be, and in particular
across contact discontinuities.
Such a scheme is often referred to in the literature as a ”flux splitting scheme”,
since it may be obtained by

- splitting the system by a two-step technique, usually into a ”convective” and
”acoustic” part,

- applying a standard scheme to each part; for the convection system, such a
first order scheme yields an upwinding with respect to the material velocity;

- summing both steps to obtain the final flux.

Works in this direction may be found in [38, 33, 45, 32, 40]. Here, strictly fol-
lowing this line seems difficult, since we work on staggered meshes and with a
non-conservative formulation of the system, and obtain some non-standard fluxes;
in particular, the pressure gradient is discretized as the dual of the velocity diver-
gence, and thus essentially centered. However, the scheme used here presents sim-
ilarities with the above references, and its derivation does not use the ingredients
usual in the context of hyperbolic systems, in particular, Riemann or approximate
Riemann solvers, see e.g. [39, 19, 6] for surveys.

- Finally, the limiting procedure introduces a rather low stabilizing viscosity in the
scheme: roughly speaking, the numerical viscosity is at most scaled by the material
velocity, and this may not be sufficient in the zones where the local Mach number
is low. An alternative numerical diffusion for a staggered scheme, obtained thanks
to a kinetic approach and which does not vanish with the velocity, may be found
in [4]. Here we follow a different line: to cope with this problem, we add in the
scheme a non-linear diffusion, in the sense that it depends on the solution, in the
spirit of [21, 22, 28]. However, this diffusion is only introduced in the momentum
balance equation; indeed, in the present context, its main purpose is to get a better
approximation of the (1D) contact discontinuity, where the density and internal
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energy are discontinuous while the velocity is constant, and which is known to
be the part of the solution where the scheme diffusion spoils the accuracy of the
approximation.

The work presented here is an extension of [27]: indeed, the scheme proposed in
[27] is only first-order in space and stabilization through a non-linear viscosity is not
implemented; numerical tests are provided to show that the new scheme is much more
accurate than its first-order variant; in addition, we observe that the straightforward
formulation of the fluxes yields a low cpu-time consuming algorithm since it does not
require any Riemann or approximate Riemann solver.

Note that implicit and partially implicited variants of the scheme [27] have been
presented in [25, 20] under the form of pressure-correction algorithms, for Euler and
Navier-Stokes equations respectively, which are shown to be unconditionally stable,
i.e. stable irrespectively of the time and space steps. These schemes boil down to
usual pressure correction schemes for incompressible flows when the Mach number
tends to zero, with inf-sup stable discretizations. Note also that weak (Lax-Wendroff
type) consistency results are shown for this class of schemes with a first order ap-
proximation [27]. On going work is conducted to prove the weak consistency for the
scheme presented here. This paper is organized as follows. The space discretization is

described in Section 2, and the scheme is given in Section 3. Numerical experiments
are presented in Section 4.

2. Meshes and unknowns. In this section, we focus on the discretization of
a multi-dimensional domain (i.e. d = 2 or d = 3); the one-dimensional case is easily
obtained from the present description.

Let M be a mesh of the domain Ω, supposed to be regular in the usual sense of
the finite element literature, e.g. [11]. The cells of the mesh are chosen according to
the geometry of the domain:

- for a general domain Ω, they can be either non-degenerate quadrilaterals (d = 2)
or hexahedra (d = 3), or simplices, both types of cells being possibly combined in
a same mesh,

- for a domain whose boundaries are hyperplanes normal to a coordinate axis, they
can be chosen to be rectangles (d = 2) or rectangular parallelepipeds (d = 3),
whose faces are then also necessarily normal to a coordinate axis.

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the
element K ∈ M respectively. The set of faces included in the boundary of Ω is
denoted by Eext and the set of internal faces (i.e. E \ Eext) is denoted by Eint; a face
σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K|
the measure of K and by |σ| the (d− 1)-measure of the face σ.

For any cell shape, the degrees of freedom for the pressure, the density and the
internal energy (i.e. the discrete pressure, density and internal energy unknowns) are
associated to the cells of the mesh M, and are denoted by:

{

pK , ρK , eK , K ∈ M
}

.

Let us now turn to the degrees of freedom for the velocity (i.e. the discrete velocity
unknowns), and their associated cell(s), referred to in the following as the dual cell(s).

- General meshes – The degrees of freedom are the same for all the velocity
components and are located at the center of the faces of the mesh, so the set of
degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

In this case, the discretization thus shares the same unknowns as the low-order
nonconforming Rannacher-Turek [35] or Crouzeix-Raviart [14] elements, and is
referred to in the following as RT and CR discretizations.
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Fig. 2.1. Notations for control volumes and dual cells – Left: finite-elements-based dis-
cretizations (the present sketch illustrates the possibility, implemented in the open-source soft-
ware CALIF3S [10] developed at IRSN, of mixing simplicial (Crouzeix-Raviart) and quadrangular
(Rannacher-Turek) cells) – Right: MAC discretization, dual cell for the y-component of the velocity.

When K ∈ M is a simplex, a rectangle or a cuboid, for σ ∈ E(K), we define DK,σ

as the cone with basis σ and with vertex the mass center of K (see Figure 2.1). We
thus obtain a partition of K in m sub-volumes, where m is the number of faces of
the mesh, each sub-volume having the same measure |DK,σ| = |K|/m. We extend
this definition to general quadrangles and hexahedra, by supposing that we have
built a partition still of equal-volume sub-cells, and with the same connectivities.
As shown in Figure 2.1, these sub-volumes may be of any shape; they do not need
to be actually constructed when implementing the scheme. Note that this is of
course always possible, but that such a volume DK,σ may be no longer a cone;
indeed, if K is far from a parallelogram, it may not be possible to build a cone
having σ as basis, the opposite vertex lying in K and a volume equal to |K|/m.
The volume DK,σ is referred to as the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by
Dσ = DK,σ ∪ DL,σ; for an external face σ ∈ Eext ∩ E(K), Dσ is just the same
volume as DK,σ.

- Structured meshes: the MAC scheme [24, 23] – The degrees of freedom for the
ith component of the velocity, 1 ≤ i ≤ d, are defined at the centre of the faces
σ ∈ E(i) where E(i) ⊂ E is the subset of the faces of E which are perpendicular to
the ith unit vector of the canonical basis of Rd; so the whole set of discrete velocity
unknowns reads:

{

uσ,i, σ ∈ E(i), 1 ≤ i ≤ d
}

.

For each component, the MAC dual mesh only differs from the RT or CR dual mesh
by the choice of the half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the
rectangle or rectangular parallelepiped of basis σ and of measure |DK,σ| = |K|/2.

For any type of mesh, we denote by |Dσ| the measure of the dual cell Dσ, and by
ǫ = Dσ|Dσ′ the face separating two diamond cells Dσ and Dσ′ . The set of the faces
of a dual cell Dσ is denoted by Ẽ(Dσ).

Finally, we need to deal with the wall boundary condition, i.e. u · n = 0. Since
the velocity unknowns lie on the boundary (and not inside the cells), these conditions
are taken into account in the definition of the discrete spaces. To avoid technicalities
in the expression of the schemes, we suppose throughout this paper that the boundary
is a.e. normal to a coordinate axis, (even in the case of the RT or CR discretizations),
which allows to simply set to zero the corresponding velocity unknowns; defining by

E(i)
ext ⊂ Eext the subset of the faces of Eext which are perpendicular to the ith unit
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vector of the canonical basis of Rd, we set:

for i = 1, . . . , d, ∀σ ∈ E(i)
ext, uσ,i = 0. (2.1)

Therefore, there are no degrees of freedom for the velocity on the boundary for the
MAC scheme, and there are only d− 1 degrees of freedom on each boundary face for
the CR and RT discretizations, which depend on the orientation of the face. In order
to be able to write a unique expression of the discrete equations for both MAC and

CR/RT approximations, we introduce, for 1 ≤ i ≤ d, the set of faces E(i)
S associated to

the degrees of freedom of the ith component of the velocity (S stands for “scheme”):

E(i)
S =

∣

∣

∣

∣

∣

E(i) \ E(i)
ext for the MAC scheme,

E \ E(i)
ext for the CR or RT schemes.

For both schemes, we define Ẽ(i), for 1 ≤ i ≤ d, as the set of faces of the dual mesh
associated to the ith component of the velocity. For the RT or CR discretizations,
the sets Ẽ(i) does not depend on the component (i.e. of i), up to the elimination of
some unknowns (and so some dual cells and, finally, some external faces) to take the
boundary conditions into account. For the MAC scheme, Ẽ(i) depends on i; note that
each face of Ẽ(i) is perpendicular to a unit vector of the canonical basis of Rd, but not
necessarily to the ith one.

General domains can be addressed (of course, with the CR or RT discretizations)
by redefining, through linear combinations, the degrees of freedom at the external
faces, so as to introduce the normal velocity as a new degree of freedom.

3. The numerical scheme. We build in this section a scheme for the Euler
equations (1.1). We recall that the conservative energy equation of the system is the
total energy equation:

∂t(ρE) + div
(

ρE u
)

+ div(pu) = 0. (3.1)

Let us suppose that the solution is regular, and let Ek be the kinetic energy, defined by
Ek = 1

2 |u|2. Taking the inner product of (1.1b) by u yields, after formal compositions
of partial derivatives and using the mass balance (1.1a):

∂t(ρEk) + div
(

ρEk u
)

+∇p · u = 0. (3.2)

This relation is referred to as the kinetic energy balance. Substracting this relation
from the total energy balance (3.1), we obtain the internal energy balance equation:

∂t(ρe) + div(ρeu) + p divu = 0. (3.3)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of
(3.3) may be recast as a transport operator: ∂t(ρe)+div(ρeu) = ρ [∂te+u·∇e],

- and, from the equation of state, the pressure vanishes when e = 0,

this equation implies, if e ≥ 0 at t = 0 and with suitable boundary conditions, that
e remains non-negative at all times. Solving this equation instead of the total energy
equation seems appealing to preserve the positivity of the internal energy by construc-
tion of the scheme. Furthermore it avoids to introduce a discrete approximation for
the total energy which would not be straightforward since the internal energy and the
kinetic energy are not discretized on the same grid. We thus choose here to design
a scheme solving the internal energy balance. However, the internal energy being a
non-conservative variable, a raw discretization of (3.3) can lead to non-consistent so-
lutions (wrong shock predictions for example). We overcome this difficulty by adding
as in [27] a corrective term in the discrete internal energy balance equation; this point
is discussed in Section 3.2 below.
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The presentation of the scheme is organized as follows. We first give the general
form of the scheme (Section 3.1). Then we detail the construction of the corrective
terms in the energy balance (Section 3.2). The next section (Section 3.3) is devoted
to the stability analysis of the scheme; we prove that, under a CFL condition, the
convex set of admissible states is preserved (so, in other words, ρ > 0, e > 0 and
p > 0) and show that the velocity and pressure are kept constant at the contact
discontinuity. These results are obtained thanks to some abstract assumptions on the
approximation of the density and internal energy at the face, in the discretization of
the mass and internal energy convection term, respectively. We build in Section 3.4
a MUSCL type limiting procedure which allows to satisfy these assumptions, so that
the density and energy convection operator is fully specified. Finally, Section 3.5 is
devoted to the design of the artificial viscosity used to stabilize the scheme.

3.1. General form of the scheme. Let (tn)0≤n≤N , with 0 = t0 < t1 < . . . <
tN = T , define a partition of the time interval (0, T ), which we suppose uniform for
the sake of simplicity, and let δt = tn+1 − tn for 0 ≤ n ≤ N − 1 be the (constant)
time step. We consider a fractional step scheme, which involves only explicit steps
and reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn
K,σ = 0, (3.4a)

∀K ∈ M,
|K|
δt

(ρn+1
K en+1

K − ρnKenK) +
∑

σ∈E(K)

Fn
K,σe

n
σ + |K| pnK (divu)nK = Sn

K , (3.4b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (3.4c)

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

un
σ,i) +

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫu

n
ǫ,i

+
∑

ǫ∈Ẽ(Dσ)

νn+1
ǫ (un

σ,i − un
σ′,i) + |Dσ| (∇p)n+1

σ,i = 0,
(3.4d)

where the terms introduced for each discrete equation are defined hereafter.

Discrete mass balance. Equation (3.4a) is obtained by the discretization of the
mass balance equation (1.1a) over the primal mesh, and Fn

K,σ stands for the mass
flux across σ outward to the cell K, which, because of the wall condition, vanishes on
external faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, Fn
K,σ = |σ| ρnσ un

K,σ, (3.5)

where un
K,σ is an approximation of the normal velocity to the face σ to the cell K.

This latter quantity is defined by:

un
K,σ =

∣

∣

∣

∣

∣

∣

un
σ,i e

(i) · nK,σ for σ ∈ E(i) in the MAC case,

un
σ · nK,σ in the CR and RT cases,

(3.6)

where e(i) denotes the ith vector of the orthonormal basis of Rd. The density at the
face σ = K|L is approximated by a MUSCL type technique, detailed in Section 3.4.
We only state here the algebraic condition which we require for this reconstruction,
which is that for any K ∈ M and for any σ ∈ E(K) ∩ Eint, there exists αK

σ ∈ [0, 1]
and MK

σ ∈ M such that:

ρnσ − ρnK =

∣

∣

∣

∣

∣

∣

αK
σ (ρnK − ρMK

σ
) if un

K,σ ≥ 0,

αK
σ (ρMK

σ
− ρnK) otherwise.

(3.7)
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Note that this condition gives a mean to compute ρnσ in such a way that the scheme
remains stable; it is, of course, satisfied by the upwind scheme, for which αK

σ =
1, and, for an edge σ = K|L, MK

σ is the upwind cell to σ, that is MK
σ = K if

un
K,σ ≥ 0 and MK

σ = L otherwise. It can be shown that in the one dimensional case,
this condition is a consequence of the slope limitation procedure implemented for
instance in the “minmod” and the “double minmod” schemes as defined in e.g. [42].
However, extending the technique of slope limitation to unstructured meshes in the
multidimensional case is known to be intricate, while Condition (3.7) may be ensured
by a simple limiting algorithm defining an admissible interval for the interface values,
as in [34, section 3.2.2], see section 3.4 below.

Discrete momentum balance. The discrete momentum balance (3.4d), is obtained
by discretizing the momentum balance equation (1.1b) on the dual cells associated to
the faces of the mesh. Up to the addition of the viscosity term

∑

ǫ∈Ẽ(Dσ)
νn+1
ǫ (un

σ,i −
un
σ′,i) with νn+1

ǫ ≥ 0, this equation is the same as in [27], and we refer to this work

for details. The first task is to define the values ρn+1
Dσ

and ρnDσ
, which approximate

the density over the dual cell Dσ at time tn+1 and tn respectively, and the discrete
mass flux through the dual face ǫ outward to the domain Dσ, denoted by Fn

σ,ǫ; the
guideline for their construction is that a finite volume discretization of the mass
balance equation over the diamond cells, of the form

∀σ ∈ E , |Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ = 0, (3.8)

must hold in order to be able to derive a discrete kinetic energy balance (see Section
3.2 below). The density on the dual cells is given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1,

|Dσ| ρkDσ
= |DK,σ| ρkK + |DL,σ| ρkL. (3.9)

For the MAC scheme, the flux on a dual face is computed as follows [26]):

- if the dual face is located on two primal faces, then the dual flux is half the sum
of the fluxes on the two primal faces;

- if the dual face is located in between two primal faces, the dual flux is again half
of the sum of the fluxes on these two primal faces.

In the case of the CR and RT schemes, the flux through a dual face ǫ included in
the primal cell K is computed as a linear combination of the mass fluxes (Fn

K,σ)σ∈E(K)

defined by and the discrete mass balance (3.4a); note that the coefficients of this
linear combination are constant: they do not depend on the cell itself, but only on
the number of its faces. We refer to [1, 18] for a detailed construction of this
approximation. Let us remark that a dual face lying on the boundary is then also
a primal face, and the flux across this face is zero, because of the wall boundary
condition. Therefore, the values un

ǫ,i are only needed at the internal dual faces, and
we make the upwind choice for their discretization:

for ǫ = Dσ|Dσ′ , un
ǫ,i =

∣

∣

∣

∣

∣

un
σ,i if Fn

σ,ǫ ≥ 0,

un
σ′,i otherwise.

(3.10)

The last term (∇p)n+1
σ,i stands for the ith component of the discrete pressure

gradient at the face σ. The gradient operator is built as the transpose of the discrete
operator for the divergence of the velocity, the discretization of which is based on the
primal mesh. Let us denote the following natural approximation of the divergence of
un+1 over K ∈ M by (divu)n+1

K , with

for K ∈ M, (divu)n+1
K =

1

|K|
∑

σ∈E(K)

|σ| un+1
K,σ . (3.11)
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The components of the pressure gradient are given by:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i), (3.12)

so that, thanks to the conservativity property uK,σ = −uL,σ for σ = K|L, the follow-
ing duality relation with respect to the L2 inner product:

∑

K∈M

|K| pn+1
K (divu)n+1

K +

d
∑

i=1

∑

σ∈E
(i)
S

|Dσ| un+1
σ,i (∇p)n+1

σ,i = 0. (3.13)

Note that, because of the wall boundary conditions, the discrete gradient does not
need to be defined at the external faces.

Discrete internal energy balance. Equation (3.4b) is an approximation of the in-
ternal energy balance over the primal cell K. For the discretization of the internal
energy at the primal faces we use the same MUSCL technique as for the density to en-
sure the positivity of the convection operator, see Section 3.4; hence, for any K ∈ M
and any σ ∈ E(K) ∩ Eint, there exists αK

σ ∈ [0, 1] and MK
σ ∈ M such that:

enσ − enK =

∣

∣

∣

∣

∣

∣

αK
σ (enK − enMK

σ
), if Fn

K,σ ≥ 0,

αK
σ (enMK

σ
− enK), otherwise.

(3.14)

The discrete divergence of the velocity, (divu)nK , is defined by (3.11). The right-hand
side, Sn

K , is derived using consistency arguments in the next section; at the first time
step, it is simply set to zero:

∀K ∈ M, S0
K = 0.

Finally, the initial approximations for ρ, e and u are given by the average of the
initial conditions ρ0 and e0 on the primal cells and of u0 on the dual cells:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, and e0K =
1

|K|

∫

K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S , u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(3.15)

These average values may be obtained by a quadrature formula if need be.

3.2. Discrete kinetic energy balance and corrective source terms. Equa-
tion (3.16) below is a discrete analogue of the kinetic energy balance equation (3.2),
with some additional terms due to the artificial viscosity present in the scheme.

At the continuous level, the kinetic energy balance is obtained by taking the inner
product of the momentum balance equation by the velocity and using twice the mass
balance equation. At the discrete level, the computation is essentially the same for
the convection term, provided that a momentum balance and a mass balance hold
on the same cell, which is ensured by construction of the dual densities and mass
fluxes (Relation (3.8)). For the artificial diffusion term implemented in the scheme,
the algebraic manipulations performed at the discrete level are reminiscent of the
continuous identity −uidiv(µ∇ui) = −div(µui∇ui)+µ|∇ui|2. The conservative term
is left at the left-hand side of the equation, while the dissipation term is considered
as a residual.

Lemma 3.1 (Discrete kinetic energy balance). A solution to the system (3.4)

8



satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E(i)
S and 0 ≤ n ≤ N − 1:

1

2

|Dσ|
δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(un
σ,i)

2
]

+
1

2

∑

ǫ=Dσ |Dσ′∈Ẽ(Dσ)

Fn
σ,ǫ un

σ,iu
n
σ′,i + |Dσ| (∇p)n+1

σ,i un+1
σ,i

+
1

2

∑

ǫ=Dσ|Dσ′∈Ẽ(Dσ)

µn
ǫ (u

n
σ,i − un

σ′,i) (u
n
σ,i + un

σ′,i) = −Rn+1
σ,i , (3.16)

with

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − un

σ,i)
2 +

1

2

∑

ǫ=Dσ |Dσ′∈Ẽ(Dσ)

µn
ǫ (u

n
σ′,i − un

σ,i)
2

+
∑

ǫ=Dσ|Dσ′∈Ẽ(Dσ)

(

µn
ǫ − Fσ,ǫ

2

)

(un+1
σ,i − un

σ,i) (u
n
σ,i − un

σ′,i), (3.17)

and where µn
ǫ = |Fn

σ,ǫ|/2 + νn+1
ǫ .

Proof. We begin by rewriting the momentum balance equation (3.4d) so that the

upwinding (3.10) now appears as a diffusion term. For 1 ≤ i ≤ d and σ ∈ E(i)
S and

0 ≤ n ≤ N − 1, we have:

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

un
σ,i) +

∑

ǫ

Fn
σ,ǫ

un
σ,i + un

σ′,i

2

+
∑

ǫ

µn
ǫ (u

n
σ,i − un

σ′,i) + |Dσ| (∇p)n+1
σ,i = 0,

with µn
ǫ = |Fn

σ,ǫ|/2 + νn+1
ǫ and where, in this relation and throughout the proof, we

denote by
∑

ǫ the sum over the internal faces of Dσ, the neighbouring diamond cell
being Dσ′ (i.e. ǫ = Dσ|Dσ′). We multiply this relation by un+1

σ,i . The treatment of
the first two terms (i.e. the time derivative and the convection term) is similar to the
proof of [27, Lemma A.2], with differences induced by the fact that the discretization
is centered; we give it here in extenso for the reader’s convenience. To this purpose,
we now remark that, thanks to the mass balance equation (3.8), for any families (znσ )

and (znǫ ), σ ∈ E(i)
S , ǫ ∈ Ẽ(i)

S , 0 ≤ n ≤ N − 1, we have:

|Dσ|
δt

(ρn+1
Dσ

zn+1
σ −ρnDσ

znσ )+
∑

ǫ

Fn
σ,ǫz

n
ǫ =

|Dσ|
δt

ρn+1
Dσ

(zn+1
σ −znσ)+

∑

ǫ

Fn
σ,ǫ (z

n
ǫ −znσ).

(3.18)

If (znσ ) and (znǫ ) are approximations of a continuous variable z, the left and right
hand sides may be seen as a discretization of ∂t(ρ z)+ div(ρ z u) and ρ ∂tz+ ρu ·∇z,
respectively, so this simple computation is the discrete analogue of the passage from
the conservative form to the non-conservative form of a balance equation. So, passing
to the non-conservative form, we have:

|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρnDσ

un
σ,i) +

∑

ǫ

Fn
σ,ǫ

un
σ,i + un

σ′,i

2

=
|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − un

σ,i) +
∑

ǫ

Fn
σ,ǫ

un
σ′,i − un

σ,i

2
.

Multiplying this relation by un+1
σ,i , introducing un

σ,i instead of un+1
σ,i in factor of the

convection term (with a residual term) and using twice the identity 2a(a − b) =

9



a2 − b2 + (a− b)2, we get

T1 =
[ |Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

un
σ,i) +

∑

ǫ

Fn
σ,ǫ

un
σ,i + un

σ′,i

2

]

un+1
σ,i

=
|Dσ|
2δt

ρn+1
Dσ

(

(un+1
σ,i )2 − (un

σ,i)
2
)

+
∑

ǫ

Fn
σ,ǫ

(un
σ′,i)

2 − (un
σ,i)

2

4
+R1 +R2,

with:

R1 =
|Dσ|
2δt

ρn+1
Dσ

(un+1
σ,i − un

σ,i)
2 + (un+1

σ,i − un
σ,i)

∑

ǫ

Fn
σ,ǫ

un
σ,i + un

σ′,i

2
,

R2 = −
∑

ǫ

Fn
σ,ǫ

(un
σ′,i − un

σ,i)
2

4
.

We now put T1 under conservative form, using once again (3.18):

T1 =
|Dσ|
2δt

(

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(un
σ,i)

2
)

+
∑

ǫ

Fn
σ,ǫ

(un
σ′,i)

2 + (un
σ,i)

2

4
+R1 +R2.

Finally, we observe that the remainder term R2 is conservative, and choose to add it
in the convection term of T1, which yields:

T1 =
|Dσ|
2δt

(

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(un
σ,i)

2
)

+
∑

ǫ

Fn
σ,ǫ

un
σ′,i u

n
σ,i

2
+R1.

For the diffusion term, we just use the following elementary computation:

(un
σ,i − un

σ′,i) u
n+1
σ,i = (un

σ,i − un
σ′,i) (u

n+1
σ,i − un

σ,i)

+
1

2
(un

σ,i − un
σ′,i)

2 +
1

2
(un

σ,i − un
σ′,i)(u

n
σ,i + un

σ′,i).

The last term of this expression is conservative, and thus kept at the left-hand side
of the discrete kinetic energy balance, while the other two terms are considered as
residual terms, which yields the result.

The residual terms Rn+1
σ,i may be seen as a numerical dissipation generated by the

numerical diffusion. Because of the discontinuous solutions that exist in the case of
the inviscid Euler equations, these terms do not tend to zero with the mesh and time
steps, but subsist as measures borne by the shocks (see [20, Remark 4.1]), contrary
to the numerical diffusion terms in conservative form, which do tend to zero. In
order for the scheme to be consistent with the total energy balance, we thus need to
compensate this dissipation in the internal energy balance by adding the corrective
terms Sn

K in (3.4b). Because of the staggered discretization, the kinetic energy balance
is associated to the dual mesh while the internal energy balance is discretized on the
primal mesh and we are not able to recover a local total energy balance since and a
direct term-to-term compensation is not possible. Hence the correction terms (Sn+1

K )
are built by dispatching the terms (Rn+1

σ,i ) given by (3.17) on the neighbouring primal

cells. For K ∈ M, Sn+1
K is computed as Sn+1

K =
∑d

i=1 S
n+1
K,i with:

Sn+1
K,i =

1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(

un+1
σ,i − un

σ,i

)2
+

∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅

Sn+1
K,ǫ,i, (3.19)

where Sn+1
K,ǫ,i stands for the contribution of ǫ to Sn+1

K,i , which we now define.

Step 1 - To this purpose, our first task is, for a given dual face ǫ, to gather the
remainders (3.17) associated to the two neighbour dual cells. Let σu

ǫ and σd
ǫ be the

two primal faces such that ǫ = Dσd
ǫ
|Dσu

ǫ
and Fn

σd
ǫ ,ǫ

≤ 0 (i.e. Dσd
ǫ
is the dual cell
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located downstream ǫ, see Figure 3.1). Then, we get for ǫ the following contribution
from the upstream dual cell:

(Ru
ǫ,i)

n+1 =
1

2

( |Fn
σu
ǫ ,ǫ|
2

+ νn+1
ǫ

)

(un
σu
ǫ ,i

− un
σd
ǫ ,i

)2

+ νn+1
ǫ

(

un+1
σu
ǫ ,i

− un
σu
ǫ ,i

)

(un
σu
ǫ ,i

− un
σd
ǫ ,i

). (3.20)

The contribution of the downstream dual cell reads:

(Rd
ǫ,i)

n+1 =
1

2

(

|Fn
σd
ǫ ,ǫ

|
2

+ νn+1
ǫ

)

(un
σd
ǫ ,i

− un
σu
ǫ ,i)

2

+
(

|Fn
σd
ǫ ,ǫ

|+ νn+1
ǫ

) (

un+1
σd
ǫ ,i

− un
σd
ǫ ,i

)

(un
σd
ǫ ,i

− un
σu
ǫ ,i

). (3.21)

Gathering both terms, we obtain that Rn+1
ǫ,i = (Rd

ǫ,i)
n+1 + (Ru

ǫ,i)
n+1 .

Step 2 - Let us now distribute Rn+1
ǫ,i in Sn+1

K,ǫ,i. There are two different cases.

Case ǫ ⊂ K. If ǫ is included in K, we just set Sn+1
K,ǫ,i = Rn+1

ǫ,i . This is the only
situation to consider for the RT and CR discretizations. It is also the case for dual
faces which are normal to e(i) for the MAC scheme.

Case ǫ partly included in ∂K. For the MAC scheme, some dual faces are partly
included in ∂K, as depicted in Figure 3.1; let us first consider the case where K is
upstream to ǫ (or, in other words, the case where σu

ǫ is a face of K, see Figure 3.1).
Let L be the other upstream primal cell to ǫ (or, in other words, the cell such that
σu
ǫ = K|L). Then we set:

Sn+1
K,ǫ,i =

|K|
|K|+ |L|

[

(Ru
ǫ,i)

n+1 −
|Fn

σu
ǫ ,ǫ|
4

(un
σu
ǫ ,i − un

σd
ǫ ,i

)2
]

=
|K|

|K|+ |L| ν
n+1
ǫ

[1

2
(un

σu
ǫ ,i

− un
σd
ǫ ,i

)2 +
(

un+1
σu
ǫ ,i

− un
σu
ǫ ,i

)

(un
σu
ǫ ,i − un

σd
ǫ ,i

)
]

.

(3.22)

If K is a downstream cell, we set:

Sn+1
K,ǫ,i =

|K|
|K|+ |L|

[

(Rd
ǫ,i)

n+1 +
|Fn

σu
ǫ ,ǫ|
4

(un
σd
ǫ ,i

− un
σu
ǫ ,i

)2
]

=
|K|

|K|+ |L|
(

|Fn
σd
ǫ ,ǫ

|+ νn+1
ǫ

)

[1

2
(un

σd
ǫ ,i

− un
σu
ǫ ,i)

2

+
(

un+1
σd
ǫ ,i

− un
σd
ǫ ,i

)

(un
σd
ǫ ,i

− un
σu
ǫ ,i)

]

.

(3.23)

The expression of the terms (Sn+1
K )K∈M may be justified by showing that, with

this choice, under some compactness assumptions, we may pass to the limit in the
scheme to show that any possible limit of approximate solutions is indeed a weak
solution to the Euler equations. We may already note here that:

∑

K∈M

Sn+1
K −

d
∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0, (3.24)

and so, by summing the kinetic energy balance over the component and faces and
the internal energy balance over the cells, we observe that the integral of the total
energy over the domain Ω is conserved. As already mentioned, a local conservation
is more difficult to obtain because of the staggered discretization: the internal energy
is defined on the primal cells and the kinetic energy on the dual cells.
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Fσu
ǫ ,ǫ ≥ 0

σ
u ǫ

σ
d ǫ

ǫ

Dσu
ǫ

Dσd
ǫ

K L

Fig. 3.1. Notations for the construction of the corrective term SK,1, in the MAC case, for a
dual face lying on the primal cells boundaries. ǫ: considered dual edge. Dσu

ǫ
: upstream dual cell.

Dσd
ǫ
: downstream dual cell. K,L: upstream cells.

3.3. Stability results. The following positivity result is a consequence of the
MUSCL interpolation of the density in (3.4a), as proved in [34, Theorem 3.2].

Lemma 3.2 (Positivity of the density). Let ρ0 be given by (3.15). Then, since ρ0
is assumed to be a positive function, ρ0 > 0. Let us assume that the following CFL
condition holds:

δt ≤ |K|
∑

σ∈E(K)

|σ| (1 + αK
σ )(un

K,σ)
+
, ∀K ∈ M, for 0 ≤ n ≤ N − 1, (3.25)

where, for a ∈ R, a+ ≥ 0 is defined by a+ = max(a, 0) and αK
σ is introduced in (3.7).

Then the solution to the scheme (3.4) satisfies ρn > 0, for 1 ≤ n ≤ N .

The MUSCL interpolation of the internal energy at the face, together with the
definition (3.19) of (Sn+1

K )K∈M allow to prove that, under a CFL condition, the
scheme also preserves the positivity of e.

Lemma 3.3 (Positivity of the internal energy). We assume that the CFL condi-

tion (3.25) holds. In addition, let the following additional CFL relations be satisfied

for 0 ≤ n ≤ N − 1:

δt ≤ |K| ρnK
(γ − 1) ρnK

∑

σ∈E(K)

|σ| (un
K,σ)

+ +
∑

σ∈E(K)

(1 + αK
σ ) (Fn

K,σ)
+
, ∀K ∈ M, (3.26a)

δt ≤ |DK,σ| ρnK
∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

νn+1
ǫ + |Fn

σ,ǫ|
, ∀K ∈ M, ∀σ ∈ E(K). (3.26b)

Then the solution to the scheme (3.4) satisfies en > 0, for 1 ≤ n ≤ N .

Proof. Let n such that 0 < n ≤ N − 1 be given, and let us assume in a first step
that enK ≥ 0 and Sn

K ≥ 0 for all K ∈ M. Because (3.25) is satisfied we have ρnK ≥ 0
and ρn+1

K ≥ 0. The definition (3.14) of the internal energy at the face yields that, for
K ∈ M and σ ∈ E(K), there exists αK

σ ∈ [0, 1] and MK
σ ∈ M such that:

Fn
K,σe

n
σ = (Fn

K,σ)
+
[

(αK
σ + 1) enK − αK

σ enMK
σ

]

− (Fn
K,σ)

−
[

(1 − αK
σ ) enK + αK

σ enMK
σ

]

,

where, for a ∈ R, a− = −min(a, 0). Let us use this expression in the internal energy
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balance (3.4b), expressing the pressure thanks to the equation of state (3.4c) to obtain:

|K|
δt

ρn+1
K en+1

K =
[ |K|
δt

ρnK−
∑

σ∈E(K)

(1+αK
σ )(Fn

K,σ)
+−(γ−1) ρnK

∑

σ∈E(K)

|σ| (un
K,σ)

+
]

enK

+
∑

σ∈E(K)

αK
σ |Fn

K,σ| enMK
σ
+

∑

σ∈E(K)

(1− αK
σ ) (Fn

K,σ)
−enK

+ (γ − 1) ρnKenK
∑

σ∈E(K)

|σ|(un
K,σ)

− + Sn
K .

Then we get en+1
K > 0 under the CFL condition (3.26a).

Let us now derive a condition for the non-negativity of the source term Sn
K . We

begin by deriving a lower bound for the contributions associated to the diffusion
(artificial diffusion or consequence of the upwinding) at the dual faces. Let i ∈ J1, dK

and ǫ = Dσ|Dσ′ ∈ Ẽ(i)
S be such that ǫ ∩ K̄ 6= ∅. Let us first consider the case of an

internal dual face, where this quantity Sn
K,ǫ,i is the sum of the two terms given by

(3.20) and (3.21). Both σ and σ′ are thus faces of K. Supposing, without loss of
generality, that Dσ (resp. Dσ′) is the upstream (resp. downstream) dual cell, we get:

Sn
K,ǫ,i =

( |Fn
σ,ǫ|
2

+ νn+1
ǫ

)

(un
σ,i − un

σ′)2 + νn+1
ǫ

(

un+1
σ,i − un

σ,i

)

(un
σ,i − un

σ′,i)

+
(

|Fn
σ,ǫ|+ νn+1

ǫ

) (

un+1
σ′,i − un

σ′,i

)

(un
σ′,i − un

σ,i).

By Young’s inequality, we thus get:

Sn
K,ǫ,i ≥ −νn+1

ǫ

2

(

un+1
σ,i − un

σ,i

)2 − |Fn
σ,ǫ|+ νn+1

ǫ

2

(

un+1
σ′,i − un

σ′,i

)2
.

We now turn, for the MAC scheme only, to the case of dual faces which partly lie on
the boundary of the cell K. Let σ be a face of K (so that σ′ is not). The quantity
Sn
K,ǫ,i is now given either by (3.22) or (3.23) and takes the form

Sn
K,ǫ,i = ξ

[1

2
(un

σ,i − un
σ′,i)

2 +
(

un+1
σ,i − un

σ,i

)

(un
σ,i − un

σ′,i)
]

with ξ ≤ |Fn
σ,ǫ|+ νn+1

ǫ . So, once again by Young’s inequality:

Sn
K,ǫ,i ≥ −|Fn

σ,ǫ|+ νn+1
ǫ

2

(

un+1
σ,i − un

σ,i

)2
.

Reordering the terms in (3.19) then yields:

Sn
K,i ≥

∑

σ∈E(K)∩E
(i)
S

[1

2
ρn+1
K

|DK,σ|
δt

− 1

2

∑

ǫ∈Ẽ(Dσ),ǫ∩K̄ 6=∅

νn+1
ǫ + |Fσ,ǫ|n

]

(

un+1
σ,i − un

σ,i

)2
.

The positivity of Sn
K,i is then ensured, provided that:

δt ≤ min
σ∈E(K)

|DK,σ| ρn+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

νn+1
ǫ + |Fn

σ,ǫ|
.

This concludes the proof.

The upwind version of the scheme studied in [27] preserves the contact disconti-
nuities if the pressure is a function of the product ρe, which is the case of the perfect
gas EOS (1.1d) considered here; indeed, if the pressure and velocity are constant
through a contact discontinuity at time tn, then they remain so at time tn+1. We
show in Proposition 3.4 below that under a condition which correlates the MUSCL
reconstructions of the face values eσ and ρσ, the scheme (1.1a)-(1.1b) also preserves
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1D contact discontinuities. A MUSCL-like scheme which ensures this condition is
presented in Section 3.4 below; note that the proposition below is proved for a perfect
gas EOS; however it holds for any EOS such that p is a function of the product ρe.

Proposition 3.4 (Preservation of the contact discontinuities). Let us suppose

that u0 = u and p0 = p, u and p constant. Additionally assume that

∀n ∈ [[1, N ]], ∀σ ∈ Eint, σ = K|L, ∃ κn
σ ∈ [0, 1] ; ρnσe

n
σ

= κn
σρ

n
KenK + (1− κn

σ)ρ
n
Le

n
L, (3.27)

then ∀n ∈ [[1, N ]] and ∀K ∈ M, un
K = u and pnK = p.

Proof. Without loss of generality, we restrict ourselves to the one-dimensional
case. A cell K ∈ M is then denoted K = [σ′, σ], where σ′ and σ are the two
interfaces of K. Assume that the proposition is true for all k ∈ [[0, n]] and for all
K = [σ′, σ] ∈ M. It is easy to see that Sn

K = 0 and (divu)nK = 0. The internal energy
equation (3.4b) for K = [σ′, σ] then reads:

|K|
δt

(

ρn+1
K en+1

K − ρnKenK
)

+ u
(

ρnσe
n
σ − ρnσ′enσ′

)

= 0.

From the EOS (3.4c), we get that ρnKenK =
p

γ − 1
, ∀K ∈ M, and so

ρnσe
n
σ = κn

σρ
n
KenK + (1 − κn

σ)ρ
n
Le

n
L =

p

γ − 1
, ∀σ ∈ Eint, σ = K|L.

Thus: ρn+1
K en+1

K = ρnKenK and pn+1
K = p, ∀K ∈ M, and ∇pn+1

σ = 0 ∀σ ∈ Eint, σ =
K|L. Denoting by Fn

K and Fn
L the numerical fluxes Fn

σ,ǫ on the dual interfaces ǫ
included in K and L respectively, and noting that un

ǫ = u for both interfaces, the
momentum equation (3.4d) then reads:

|Dσ|
δt

(ρn+1
Dσ

un+1
Dσ

− ρnDσ
un
Dσ
) + (Fn

K − Fn
L )u = 0.

Together with the discrete dual mass balance (3.8) which reads

|Dσ|
δt

(ρn+1
Dσ

− ρnDσ
) + (Fn

K − Fn
L ) = 0,

we obtain that

|Dσ|
δt

ρn+1
Dσ

(un+1
σ − u) = 0,

and therefore un+1
σ = u ∀σ ∈ Eint, which concludes the proof of the proposition.

3.4. A MUSCL-like interpolation. As already mentioned when introducing
the general form of the scheme (3.4), the upwinding process is performed equation-per-
equation, on the basis of the material velocity only; a MUSCL-like strategy is applied
only for the density and internal energy balance equations. It is not applied on the
momentum balance for the following reasons: first of all, as already mentioned, most
of the numerical diffusion occurs at the contact discontinuities, where the velocity is
constant. To increase the accuracy or the scheme, it is therefore natural to implement
the MUSCL procedure on the density and internal energy which are discontinuous
at the contact discontinuities. Moreover, the kinetic energy remainder contains a
negative term from the time discretization and a positive term from the numerical
space diffusion; if the latter one is reduced by a MUSCL-like procedure, then the sign
of the remainder is no longer controlled. Also, the scheme is only stabilized by an
artificial diffusion in the momentum equation, and this diffusion must be important
enough to kill the oscillations. Experience shows that this procedure gives better
results than adding diffusion everywhere. Finally, this additional diffusion in the
momentum balance helps to recover an entropy inequality, as we recently showed in
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[17]. The objective of this section is to detail this algorithm, thus, precisely speaking,
the approximation of the density and internal energy at the primal face in equations
(3.4a) and (3.4b) respectively.

As a consequence of this equation-per-equation process, the problem that we face
is close to the program realized in [34], namely to build an approximation for a con-
vection operator (satisfying a maximum principle) which is formally second order
in space when the solution is regular, and preserves the range of variation of the un-
knowns even in case of shocks, by an adequate flux limiting procedure. The algorithm
presented here is thus an extension of the scheme developped in [34]; in particular,
contrary to most MUSCL reconstructions which use slope estimation and limiting,
see e.g. [3, 39] for reviews and [31, 5, 8, 9] for recent works, the limiting technique is
here directly derived from stability conditions which are purely algebraic, in the sense
that they do not require any geometric computation, and thus work with arbitrary
meshes.

Compared to [34], the algorithm is however complicated by the requirement that
the scheme should preserve pressure-constant zones, to avoid to destabilize the com-
putation of contact discontinuities, or more precisely, of the one-dimensional contact
discontinuity, across which the velocity is constant, the more difficult problem posed
by slip interfaces in 2D or 3D being out of the scope of this study. In fine, this is
realized by imposing to the face pressure (i.e. the pressure obtained by applying the
equation of state to the face density and internal energy) to be a convex interpola-
tion of the pressure in the two neighbouring cells. This condition leads to a limiting
procedure which takes into account both mass and internal energy equations, so that
we somehow loose here our equation decoupling strategy.

As often in MUSCL techniques, the algorithm consists in two steps: first compute
a tentative second-order approximation (here for the density only) and then apply a
limiting procedure. We describe these two steps successively in the following. For the
sake of clarity, we omit in this section all the superscripts relative to the time step
number.

Computation of a tentative value for the density – For an edge σ ∈ Eint
and K ∈ M, let us call xσ and xK the mass center of σ and K respectively. Let
σ ∈ Eint be a given internal face. We suppose that we have computed a set of real
coefficients (ζLσ ) such that:

xσ =
∑

L∈M

ζLσ xL,
∑

L∈M

ζLσ = 1. (3.28)

Then, for a known ρM = (ρK)K∈M, we define the interpolation of the density at the
face ρ̃σ by:

∀σ ∈ Eint, ρ̃σ =
∑

L∈M

ζLσ ρL (3.29)

In practice, the cells L ∈ M used in Relation (3.28) are chosen as close as possible to
σ, and a convex interpolation (i.e. positive real numbers (ζLσ )) is preferred each time
it is possible. For structured discretization, the value at the internal face σ = K|L
is obtained as a weighted average of ρK and ρL. For a detailed description of the
implemented interpolation algorithm in the general case, the reader is referred to
[34].

Limiting procedure – Let σ ∈ Eint, σ = K|L, and let us suppose that the flow
goes from K to L, i.e. FK,σ ≥ 0. We now recall the conditions which were used to
prove that the density and the internal energy remain positive, gathering the condition
used for the cell K and the condition used for L. For the density, we get that there
exists αρ

σ ∈ [0, 1], βρ
σ ∈ [0, 1] and Mρ

σ ∈ M such that
∣

∣

∣

∣

∣

ρσ − ρK = αρ
σ (ρK − ρMρ

σ
),

ρσ − ρL = βρ
σ (ρK − ρL).

(3.30)
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Similarly, we have for the internal energy that there exists αe
σ ∈ [0, 1], βe

σ ∈ [0, 1] and
M e

σ ∈ M such that
∣

∣

∣

∣

∣

eσ − eK = αe
σ (eK − eMρ

σ
),

eσ − eL = βe
σ (eK − eL).

(3.31)

For the sake of simplicity, we suppose that the ”upstream cells” Mρ
σ and M e

σ are the
same and, from now on, we denote this cell by Mσ. We have shown in [34] that Equa-
tion (3.30) (respectively Equation (3.31)) defines an admissible interval for ρσ (resp.
eσ), and that a limiting procedure may be obtained by just projecting the tentative
value for the density ρ̃σ (resp. internal energy ẽσ) at the face on this interval. Here,
the situation is more complicated, since we also need to comply with the condition
required for the scheme to keep the pressure constant at contact discontinuities, which
states that the product ρσ eσ must be equal to ρK eK and ρL eL when these quantities
are the same (recall that we use here the fact that the equation of state is such that
the pressure only depends on the product ρ e). In fact, we require here the more
restrictive assumption that ρσ eσ is a convex combination of ρK eK and ρL eL, i.e.
that there exists κσ ∈ [0, 1] so that:

ρσ eσ = κσ ρK eK + (1− κσ) ρL eL. (3.32)

Our aim is now to find an admissible interval for ρσ and eσ such that (3.30), (3.31)
and (3.32) hold.

Let us first deal with(3.30). Combining both relations, we obtain that αρ
σ and βρ

σ

satisfy:

βρ
σ = 1− αρ

σ

rρσ
, with rρσ =

ρL − ρK
ρK − ρMσ

. (3.33)

From this relation, it appears that (3.30) is satisfied (or, in other words, αρ
σ ∈ [0, 1]

and βρ
σ ∈ [0, 1]) provided that αρ

σ satisfies:

0 ≤ αρ
σ ≤

(

min
(

1, rρσ
))+

.

This observation suggests the following strategy: thanks to the link between the
value of ρσ and eσ induced by Equation (3.32), try to express the coefficients αe

σ and
βe
σ as a fonction of αρ

σ, and then express the limiting procedures produced by (3.31)
as limiting procedures for αρ

σ. To this purpose, we remark that the second relation of
(3.30) reads ρσ = βρ

σ ρK +(1−βρ
σ) ρL, and arbitrarily suppose that the product ρσ eσ

is given by the same interpolation between neighbouring cells values:

ρσ eσ = βρ
σ ρK eK + (1− βρ

σ) ρL eL,

i.e. we take κ = βρ
σ in (3.32). Note that many other choices would be possible, as, for

instance, κ = βe
σ. Dividing by ρσ yields:

eσ =
βρ
σ ρK
ρσ

eK +
(1− βρ

σ) ρL
ρσ

eL.

Since the right hand side may be seen as a convex interpolation between eK and eL,
we get that

βe
σ =

ρK
ρσ

βρ
σ, (3.34)

and also that βe
σ ∈ [0, 1], which may also be inferred directly from the fact that

ρσ = βρ
σ ρK + (1 − βρ

σ) ρL ≥ βρ
σ ρK . From (3.31), we derive the following relation,

which is the analogue of (3.33):

βe
σ = 1− αe

σ

reσ
, with reσ =

eL − eK
eK − eMσ

. (3.35)

16



Therefore, αe
σ = (1 − βe

σ) r
e
σ, and substituting βe

σ by its expression (3.34) and then
expressing βρ

σ as a function of αρ
σ thanks to (3.33) yields, after some agebraic manip-

ulations:

αe
σ =

ρL
ρσ

reσ
rρσ

αρ
σ. (3.36)

From this expression, and since we have already proven the existence of βe
σ ∈ [0, 1],

we get that there exists αe
σ ∈ [0, 1] such that (3.31), together with (3.30), are satisfied

if αρ
σ is such that:

0 ≤ αρ
σ ≤

(

min
(

1, rρσ ,
ρσ
ρL

rρσ
reσ

)

)+

.

This relation still does not provide an interval for αρ
σ, since it involves ρσ which

expression itself involves αρ
σ. But now, we just needto replace ρσ by an explicit lower

bound. As we already remarked, αρ
σ = 0 is always an admissible value, and so ρK

is also an admissible value for ρσ. Thus ρσ will be obtained by a projection of the
tentative value ρ̃σ on an interval containing ρK , which ensures that ρσ ≥ min (ρK , ρ̃σ).
Consequently, we finally choose for admissible interval for αρ

σ the interval Iα given
by:

Iα =
[

0,

(

min
(

1, rρσ,
min (ρK , ρ̃σ)

ρL

rρσ
reσ

)

)+
]

. (3.37)

The admissible interval for the density is thus Iρ with

Iρ =
{

ρK + α (ρK − ρMρ
σ
), α ∈ Iα

}

. (3.38)

Given ρ̃σ, the limiting algorithm consists in computing ρσ by projection on Iρ, which
yields αρ

σ; The coefficient αe
σ is then given by (3.36) and eσ is computed from the first

relation of (3.31).

We should note that the accuracy of this algorithm depends on the considered
variable:

- The approximation for ρ, in the absence of limiting procedure, is second order in
space.

- Then we derive from this approximation a value for the pressure, using the same
weighted average between the neighbouring cells values. In a structured discretiza-
tion, if no limiting procedure is active, this averaging formula is also the interpo-
lation formula, and thus the face pressure is also given by a second-order formula.
On the opposite, for unstructured discretizations, where the interpolation formula
(3.29) (more exactly, the analogue of (3.29) written for p) and the second relation
of (3.30) (still replacing ρ by p) are not the same, the second-order accuracy is lost.

- Finally, the internal energy is obtained from the density and the pressure; there-
fore, its approximation is in general first order, since it only satisfies that the face
value lies between the values in the two neighbouring cells. Its computation po-
tentially generates a limiting procedure of the fluxes. In particular, the definition
(3.37) of Iα implies that αρ

σ vanishes if either rρσ or reσ is non-positive, i.e. if either
ρ or e presents a local extrema.

Several variants of the present scheme may be designed, among which the follow-
ing:

- As mentioned above, the roles of ρ and e may be reversed, in the sense that
one may choose a ”limited second order” interpolation for e and p, and deduce ρ
from these values; to this purpose, one must choose κ = βe

σ, and start from the
non-limited approximation of e instead of the one for ρ.

- The present algorithm does not ensure that the value taken for e at the face will
lie in-between the second-order approximation and the upwind value. In the case
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K

L
σF

Fig. 3.2. Limiting process – For σ = K|L and with a constant advection field F , the possible
cadidates for the upstream cell Mσ are coloured in blue; the unique opposite cell is hatched.

of one-dimensional or structured discretizations, it may be done by restricting the
admissible range for βe

σ to βe
σ ∈ [β̃σ, 1], where β̃σ is the weight which yields for eσ

the second-order average between eK and eL. For uniform meshes, the admissible
interval is thus βe

σ ∈ [1/2, 1]. The results of such a choice would just be an additional
limitation of the algorithm.

- Finally, from a theoretical point of view, the upstream cell Mσ used in the first
relation of (3.30) and of (3.31) may be chosen arbitrarily in the mesh, but any
reasonable implementation of the algorithm should restrict this choice to the vicinity
of the face σ. Some possible alternatives are given in [34]. In the tests performed
here in the remaining of this paper, Mσ is always the opposite neighbour of the
upwind cell K (see Figure 3.2).

3.5. Artificial viscosity. Numerical experiments (see Section 4) show some
oscillations at shocks with the upwind scheme developed in [27], probably due to the
fact that the artificial viscosity brought by the upwinding behaves as the material
velocity only, and not as the celerity of waves; with the MUSCL algorithm, this
phenomenon is even enhanced since the numerical diffusion is reduced. To cure this
problem, we add some viscosity in the discrete momentum balance equation (while
the numerical diffusion in the other equations is left unchanged) and only where it is
needed, that is at the shocks. To this purpose, we test here two different methods,
inspired from the works [22] and [28] respectively, where the diffusion is evaluated
thanks to an a posteriori analysis of the solution.

The aim of this section is to describe the computation of this artificial viscosity,
i.e. the parameter νn+1

ǫ in Equation (3.4d). The process followed for this computation
is to first define a ”cell diffusion parameter” ζn+1

K on each primal cell K, and then
to deduce the ”dual face viscosity” from these cell values. For this latter step, two
situations may be encountered:

- The dual face ǫ is strictly included in a primal cell K; in this case, we take
νn+1
ǫ = |ǫ| ζn+1

K .

- The dual face ǫ lies on the boundary of four primal cells (in the MAC case);
then we take:

νn+1
ǫ = |ǫ| 1

4

∑

K∈N (ǫ)

ζn+1
K ,

where N (ǫ) is the set of cells adjacent to ǫ.

The remainder of this section is devoted to the description of the computation of the
(ζn+1

K )K∈M. According to this computation, these parameters are ”homogeneous to
the space step h” (or, equivalently, the time step, since the CFL number is bounded
away from zero and lower than 1), in the sense that ζn+1

K /h (formally) tends neither
to zero nor to infinity when the space and time steps tend to zero. Consequently, the
artificial diffusion term in (3.4d) produces a viscosity which scales as h2 in smooth
zones of the solution, as in [22, 28]. However, the scheme proposed here presents
two essential differences with these previous works, in order to gain precision at the
contact discontinuities while preserving stability: first, artificial diffusion is added
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only in the momentum balance equation (while it is introduced in all the equations
in [22, 28]); second, a first-order upwind discretization is kept in the convection term
of the momentum balance equation.

3.5.1. Entropic viscosity. The method, developed in [22], is based on the en-
tropy inequality satisfied by the weak solutions of the system, which reads:

∂tη + div(ηu) ≤ 0,

this inequality becoming an equality in the zones where the solution is smooth and
at contact discontinuities. The idea is to compute the numerical diffusion in the
momentum balance equation as a function of the entropy production, to introduce an
additional numerical dissipation at shocks. We use here the usual physical definition
of the entropy:

η(p, ρ) =
ρ

γ − 1
log

( p

ργ
)

.

The first step consists in computing the residual of the discrete entropy equations in
every element K of the mesh:

Rn+1
K =

1

δt

(

ηn+1
K − ηnK

)

+
1

|K|
∑

σ∈E(K)

|σ| ηnσ un
K,σ,

where ηnσ stands for a centered approximation of the entropy at the faces σ. Then we
compute a tentative diffusion parameter by:

˜̃
ζn+1
K = cE ρn+1

K hK |Rn+1
K |. (3.39)

where hK is the diameter of the cell K and cE is a calibration parameter. Note
that Rn+1

K is a formal discretization of ∂tη+div(ηu), and thus is a quantity formally

independent of the space and time steps; consequently,
˜̃
ζn+1
K scales as hK . Then

this parameter is limited to the (range of the) diffusion generated by the first-order
upwinding of the convection operator. For any face σ of the primal mesh adjacent to
a cell L, this latter reads ζn+1

σ = |ρnσ un
L,σ|/2, with ρnσ the face density used in the

mass balance equation. We then define a maximum value for the diffusion parameter
by:

ζn+1
max,K = cmax max

(

(ζn+1
σ )σ∈E(K)

)

,

where cmax is once again a calibration parameter and E(K) stands for a set of faces
located in the vicinity of K, whichs includes at least E(K). In the context of the
present applications, this set is in fact much larger, since it is composed of the faces of
the 3 left and 3 right cells toK in one dimension, and for structured 2D discretizations,
the faces of the cells of a 7×7 patch centered on K. Then we obtain a second tentative
diffusion parameter by:

ζ̃n+1
K = min

( ˜̃
ζn+1
K , ζn+1

max,K

)

.

Finally, ζn+1
K is computed as a weighted average of the parameters (ζ̃n+1

L )L∈M over
a patch around K. In one dimension, this patch includes the left and right cells of K
and K itself, and the weight is 2/3 for K and 1/3 for the other cells. For structured
discretizations in two dimensions, we use a 3× 3 patch centered on K, the weight is
8/9 for K and 1/9 for the other cells.

3.5.2. WLR viscosity. The second method is based on [28]. We first briefly
recall the ideas developped in this work, for a generic conservation law of unknown w
and flux f :

∂tw + divf(w) = 0. (3.40)
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A weak solution of (3.40) is a function w ∈ L1(0, T ; Ω) such that:

W(w, φ) =

∫ T

0

∫

Ω

[

w(x, t) ∂tφ(x, t) + f(x, t) ·∇φ(x, t)
]

dxdt

+

∫

Ω

w(x, 0)φ(x, 0) dx = 0,

for all test functions φ ∈ C1
0 (Ω × [0, T )). This identity is used in [28] to build, on

the basis of a discrete solution wh obtained by a finite difference method, a measure
of the local regularity of the solution. The discrete solution is identified to a function
of time and space, specific test functions φ (one per cell, let us say (φK)K∈M to keep
notations consistent with the rest of the present paper) are defined, and the quantities
(W(wh, φK))K∈M are used to track the discontinuities. On their basis, a stabilizing
diffusion is then introduced in the scheme.

Here, we use an adaptation of this strategy for the Euler equations and a finite
volume scheme. First, we do not compute the residual W for each equation, but just
for the mass balance:

W(ρ,u, φ) =

∫ T

0

∫

Ω

[

ρ(x, t) ∂tφt(x, t) + ρ(x, t)u(x, t) ·∇φ(x, t)
]

dxdt

+

∫

Ω

ρ(x, 0)φ(x, 0) dx.

As for the finite difference scheme treated in [28], we identify the discrete solution to
piecewise functions. We thus define:

ρ∆(x, t) =

N−1
∑

n=0

∑

K∈M

ρnK XK(x)X(tn,tn+1)(t),

u∆(x, t) =

N−1
∑

n=0

∑

K∈M

un
K XK(x)X(tn,tn+1)(t),

where XK and X(tn,tn+1) stand for the characteristic functions of the cell K and the
interval (tn, tn+1) and uK is an interpolation of the velocity on the primal mesh:

∀K ∈ M, uK =
1

|K|
∑

σ∈E(K)

|DK,σ|uσ.

The next step is to introduce a set of local polynomials (φn
K), for every K ∈ M and

for 0 ≤ n ≤ N − 1, to be used as test functions. We postpone the exact definition of
these polynomials for a while, and only state here the approximation property that
they have to satisfy for the subsequent theory to hold. For any φ ∈ C1

0 (Ω × [0, T ]),
we suppose that there exists (βn

K)K∈M, 0≤n≤N−1 ⊂ R such that:

φ(x, t) =
∑

K∈M

N−1
∑

n=0

βn
K φn

K(x, t) +O(∆2), (3.41)

where ∆ = max(h, δt). If we suppose that the test functions (φn
K) are local in the

sense that their integral behaves like δt hd (since the measure of their support also
behaves like δt hd), this condition ensures that

W(ρ∆,u∆, φ) =
∑

K∈M

N−1
∑

n=0

(

βn
KWn

K +O(∆d+3)
)

,

where the weak local residual (WLR), Wn
K , takes the following expression:

Wn
K =

∫ T

0

∫

Ω

ρ∆(x, t) ∂tφ
n
K(x, t) + ρ∆(x, t)u∆(x, t) ·∇φn

K(x, t) dx dt. (3.42)
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In the one-dimensional case, it is proven in [28] that, under the assumption (3.41),
these weak local residuals have the following properties:

|Wn
K | behaves as

∣

∣

∣

∣

∣

∣

∣

∆, near shock waves,

∆α, 1 < α ≤ 2, near contact waves,

∆3, in smooth regions.

These results are not proven in two and three dimensions; however the same behaviour
for |Wn

K |/∆d−1 is observed on numerical tests. These residuals are used to define a
tentative diffusion coefficient by:

ζ̃n+1
K = cm

1

δt∆d−1
|Wn+1

K |, (3.43)

with cm a calibration parameter. Finally, ζn+1
K is computed as a weighted average of

the parameters (ζ̃n+1
L )L∈M over a patch around K, exactly in the same way as for

the entropic viscosity.

In the applications presented in Section 4 below, we use for the polynomials
(φn

K)K∈M, 0≤n≤N−1 the same definition based on B-splines as in [28].

4. Numerical tests. We present in this section numerical tests to assess the
behaviour of the scheme. We first address the accuracy of the MUSCL technique
by performing a convergence study on a regular solution, posed on a two-dimensional
domain. Then we turn to Riemann problems, first in one then in two space dimensions.
In one dimension, the first test is a pure contact discontinuity, and allows to check
the importance of a flux construction keeping the velocity and the pressure constant
in such a situation. Then we check the accuracy of the MUSCL interpolation and
artificial viscosity techniques on several 1D numerical test cases. A convergence rate
analysis is performed, to compare upwind and MUSCL interpolations in the case of a
shock solution. We then turn to two classical two-dimensional benchmarks for Euler
solvers, featuring reflection phenomena, namely the so-called Mach 3 wind tunnel
with step and the double Mach reflection. Since all these tests use the MAC space
discretization, we complete the study by computing a high speed inviscid flow around
a cylinder with the Rannacher-Turek space discretization. For all the computations,
the fluid obeys the equation of state (1.1d) with γ = 1.4.

4.1. Convergence study for regular solutions. We begin with a test where
the velocity and pressure are constant at t = 0, and the density and internal energy
are smooth functions of space such that, to satisfy the equation of state, the product
ρ e is constant. Let the computational domain be the square Ω = (−1.2, 2)2 and ζ be
given by ζ = x2

1 + x2
2. The initial data is:

u =

[

1
1

]

, p = 1, ρ = 1 + 64 ζ3 (1− ζ)3 if ζ ≤ 1, ρ = 1 otherwise, e =
1

(γ − 1) ρ
.

The time interval is (0, 0.8) and, within this time interval and with suitable boundary
conditions on the frontier of the domain, the velocity and the pressure remain constant
and the density and internal energy are just transported; thus, the solution at t = 0.8
is obtained by a translation of vector (0, 8, 0.8)t of the initial density and internal
energy fields.

Computations are performed on a DELL Latitude E 7470 portable PC. The total
CPU time for a mesh of 640000 cells and 100 time steps is 180s, which yields a CPU
time per cell and time step slightly lower than 3 10−6s; this performance measure
is obtained using the CALIF3S CFD code [10] developed at the French Institut de
Radioprotection et de Sûreté Nucléaire, designed to deal with unstructured meshes
and can be strongly reduced (up to a factor near than 10) using a software dedicated
to uniform structured meshes only.

21



First of all, we observe that, thanks to the construction of the fluxes, the scheme
keeps the pressure and velocity constant, both for the first order upwind and MUSCL-
like variants. The density profiles obtained at t = 0.8 with an n×n regular grid with
n = 100 and δt = h/8 are shown on Figure 4.1, and the discrete L1 norm of the
density error for n = 100, 200, 400, 800 and still δt = h/8 is plotted on Figure 4.2.
This latter norm is defined by:

‖ǫρ‖L1
M

=
∑

K∈M

|K| |ρK − ρ(xK)|, with xK the mass center of K.

We observe that the MUSCL scheme is much more precise, but still first-order, which
we explain by the fact that the time discretization is still first-order. To check this
fact, we implement a second order Runge-Kutta scheme (also called Heun scheme),
which reads:

W n+ 1
3 = S(W n)

W n+ 2
3 = S(W n+ 1

3 )

W n+1 =
1

2
(W n +W n+ 2

3 ),

(4.1)

where W = (ρ, e, p,u) and the relation W n+ 1
3 = S(W n) means that the left-hand

side is obtained by applying the standard first-order in time explicit scheme to an
initial data given by W n. Note that, by construction, this scheme also keeps the
pressure and velocity constant if so does the first-order explicit scheme. Results are
reported also on Figures 4.1 and 4.2, and we observe that we now obtain a second
order convergence. However, the same test but with discontinuous initial density and
internal energy shows that the Runge-Kuntta time discretization adds an excessive
diffusion to the scheme, and that the full second-order scheme turns to be, for such
a solution, less accurate that the scheme combining a first-order time discretization
and a MUSCL-like expression of the fluxes. Since we address shock solutions in the
remainder of the paper, we thus keep this latter variant.

For solutions where the velocity varies, the proposed scheme is in any case no
better than first-order because of the standard upwind space discretization of the
momentum convection fluxes in the momentum balance equation. Here again, we
build a second-order scheme, and perform tests on a moving smooth barotropic vortex.
This second-order scheme is obtained thanks to the following two modifications, with
the following associated consequences:

- First, a second-order approximation of the face velocity in the above-mentioned
momentum fluxes is needed. Unfortunately, doing so, the non-negativity of the
corrective term in the internal energy balance is no-more ensured, and stability
properties are thus lost, at least from a theoretical point of view. Note that the
sign of this term may be recovered if a viscosity term is present.

- Second, a second-order time-discretization as (4.1) must be implemented. Note
that, in Relation (4.1), the scheme S is the standard explicit scheme, which means
in particular that the use of the end-of-step pressure in the momentum balance
equation is forbidden. However, we observed in [27] for the explicit first-order
scheme that using pn in the momentum balance may have as consequence the
appearance of non-entropic discontinuities in rarefaction waves; whether this is
still true with a Runge-Kutta discretization is unclear.

From these results, the extension to second-order that we obtain seems to be a good
candidate to solve the compressible Navier-Stokes equations (especially, if one wants
to keep explicit steps and thus an explicit discretization of the diffusion terms, for
small viscosity flows as addressed in Large Eddy Simulation applications), but the
inviscid case should deserve further work. Note however that, as already mentioned,
the full second order scheme always induces an excessive diffusion for shock solutions
so that in this case, the variant which is studied here should be preferred.
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Fig. 4.1. A 2D Regular problem with constant pressure and velocity – h = 0.032 and δt =
h/8 – Density along the line x2 = 0.8 at t = 0.8 obtained with three different schemes: first-
order time discretization (Euler scheme) and first order upwind convection scheme, first-order time
discretization and MUSCL convection scheme and Heun time discretization and MUSCL convection
scheme.
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Fig. 4.2. A 2D Regular problem with constant pressure and velocity – L1 errors on the density
at t = 0.8 obtained with three different schemes: first-order time discretization (Euler scheme) and
first order upwind convection scheme, first-order time discretization and MUSCL convection scheme
and Heun time discretization and MUSCL convection scheme. The space step is h = 3.2/n with
n = 100, 200, 400, 800 and the time step is δt = h/8.

4.2. One dimensional Riemann problems. This section is devoted to the
computation of one-dimensional Rieman problems. In all the tests, the computational
domain is Ω = (0, 1) and the initial discontinuity is located at x = 0.5.

Single contact discontinuity wave – First of all, we give a numerical evidence
of the necessity of a correlation between the face approximation of the density and
the internal energy. To this purpose, we compute a Riemann problem consisting in a
single contact discontinuity wave travelling to the right of the domain. It corresponds
to the following initial conditions:

left state:





ρL = 14.282
uL = 8.6898
pL = 1691.6



 ; right state:





ρR = 31.043
uR = 8.6898
pR = 1691.6



 .

The pressure fields obtained, at t = 0.02, respectively with and without a correla-
tion between the approximation of the density and of the internal energy at faces of
the cells, are shown on Figure 4.3. The computation referred to as ”non-correlated
approximation” is performed by applying the same interpolation/limiting procedure
used for the density bluntly to the internal energy, without imposing that the product
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Fig. 4.3. A 1D Riemann problem: single contact discontinuity – h = 0.001 and δt = h/40 –
Pressure at t = 0.02. Results obtained with a correlated (resp. non-correlated) face approximation
for ρ and e are drawn in red (resp. in blue). The analytical solution is the same as the discrete
solution obtained with the correlated approximation (non-visible black line).

ρ e at the face be an interpolation of ρ e at the two neighbour cells. As one can see, this
approximation generates oscillations of the pressure at the contact discontinuity; we
even observe in our computations that these oscillations tend to get worse with time.
In addition, pressure variations appear at the locations of zero-amplitude 1-shock and
3-shock waves. On the opposite, the proposed scheme yields a constant pressure with
respect to time and space, as in the continuous solution.

Two classical Riemann problems – We will now compare the upwind and the
MUSCL schemes on two Riemann problems classically used in the literature, namely
Test 4 and Test 5 from [39, Chapter 4]. In Test 4, the left and right states are:

left state:





ρL = 1
uL = 0

pL = 0.01



 ; right state:





ρR = 1
uR = 0
pR = 100



 .

The solution consists of a shock travelling to the left and a rarefaction wave travelling
to the right, separated by the contact discontinuity. We first evaluate the stability
of the scheme, by performing runs for increasing (and constant for each run) time
steps, until the computation blows up; for h = 0.001, strong oscillations are observed
for δt = h/18 and the computation fails for δt = h/17; since the maximal celerity of
waves (estimated from the analytical solution) is close to 17, the CFL number is close
to 1.

This stability limit is obtained without artificial viscosity; adding such a term
reduces the stability domain. Note hovever that, since the artificial diffusion is limited
by the viscosity generated by the first-order upwind scheme, the stability domain still
keeps the form δt ≤ C h (and not δt ≤ C h2, which would be characteristic of a
viscosity constant (in order of magnitude) with respect to the space step). Results
obtained at t = 0.035 with h = 0.001 and δt = h/30 are reported on Figure 4.4.
As seen on the internal energy and density profiles, the numerical diffusion at the
contact discontinuity is drastically reduced by the MUSCL approximation. At the
shock, the results of the upwind and the MUSCL scheme look similar: on one hand,
the compressive effect of the shock prevents the upwind scheme to be too dissipative,
and, on the other hand, the numerical dissipation introduced by the limiting procedure
in the MUSCL scheme seems to be sufficient.

In Test 5, the initial conditions are:

left state:





ρL = 5.99924
uL = 19.5975
pL = 460.894



 ; right state:





ρR = 5.99242
uR = −6.19633
pR = 46.0950



 .
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Fig. 4.4. A 1D Riemann problem: Test 4 of [39, Chapter 4] – h = 0.001 and δt = h/30 –
Results at t = 0.035. The upwind and MUSCL solutions are drawn in red and blue respectively, the
analytical solution corresponds to the black line.

In this test, the genuinely non-linear waves are two shocks travelling to the left. The
numerical stability analysis shows that, without artificial viscosity and for h = 0.001,
the scheme blows up for δt ≃ h/29 (while the greatest wave celerity is close to 30 in the
left state). Results obtained at t = 0.035 with h = 0.001 and δt = h/90 are reported
on Figure 4.5. One may observe on the density and the pressure some overshoots
at the 3-shock with the upwind scheme; this phenomenon is strengthened with the
MUSCL algorithm (results are not shown here). This problem is completely cured by
the WLR viscosity introduced in Section 3.5.2, with cm = 2 in Relation (3.43).

A convergence study for a shock solution – In addition, we perform a
convergence study, successively dividing by two the space and time steps (so keeping
the CFL number constant). We use the same test as in [27], i.e. Test 3 in [39, Chapter
4]. The left and right states are given by:

left state:





ρL = 1
uL = 0

pL = 1000



 ; right state:





ρR = 1
uR = 0

pR = 0.001



 .

The solution combines a rarefaction wave travelling to the left, the contact disconti-
nuity and a shock wave travelling to the right. The differences between the computed
and analytical solution at t = 0.012, measured in L1(Ω) norm, are reported in the
following table:

space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0108 0.0058 0.0025 0.0012 0.0007

convergence rate, ρ – 0.91 1.22 1.06 0.78

‖p− p̄‖L1(Ω) 1.2827 0.6734 0.3316 0.1800 0.1044

convergence rate, p – 0.93 1.02 0.88 0.79
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Fig. 4.5. A 1D Riemann problem: Test 5 of [39, Chapter 4] – h = 0.001 and δt = h/90 –
Results at t = 0.035. The upwind and MUSCL (with artificial viscosity) solutions are drawn in red
and blue respectively, the analytical solution corresponds to the black line.

We recall the results obtained with the upwind scheme:

space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0651 0.0455 0.0310 0.0217 0.0153

convergence rate, ρ – 0.52 0.55 0.51 0.5

‖p− p̄‖L1(Ω) 1.87 1.05 0.530 0.284 0.164

convergence rate, p – 0.83 0.99 0.9 0.79

As one can see, the convergence rate is improved by the MUSCL interpolation.
Indeed, for variables which are not constant through contact discontinuities, the con-
vergence rate is now close to 1. For the other variables, it is slightly improved.

The symmetrical double-shock - To conclude the part devoted to one-dimen-
sional tests, we address a pathological case, where the initial data consists in opposite
initial velocities, the density and pressure being constant all over Ω. Precisely speak-
ing, we take:

left state:





ρL = 5.99924
uL = 19.5975
pL = 460.894



 ; right state:





ρR = 5.99924
uR = −19.5975
pR = 460.894



 .

The analytical solution consists in two shocks, travelling with the same veloc-
ity to the left and the right respectively, which separate the left and right initial
states from a constant state where the fluid is at rest; the contact discontinuity is
stationary, located at x = 0.5 and of zero amplitude. Results obtained at t = 0.035
with h = 0.001 and δt = h/60 are reported on Figure 4.6. This test case is particu-
lary interesting because the dual convection fluxes vanish in the intermediate state.
Consequently, the upwind scheme (solution in red on the figure) does not bring any
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numerical viscosity in the central zone (since this viscosity is proportional to |Fσ,ǫ|/2),
and spurious oscillations appear. The WLR viscosity, with cm = 3, allows to drasti-
cally reduce this phenomenon. However, it also generates artificial variations at the
contact discontinuity for the (possibly) discontinuous variables; the other ones are not
affected.
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Fig. 4.6. A 1D Riemann problem: the ”symetrical double shock” – h = 0.001 and δt = h/60 –
Density at t = 0.035. Upwind solution without (red) and with (blue) WLR viscosity.

4.3. Two-dimensional Riemann problems. The computational domain is
Ω = (−0.5, 0.5)2 and is split in four quadrants Ω1 = (0, 0.5)2, Ω2 = (−0.5, 0)×(0, 0.5),
Ω3 = (−0.5, 0)2, Ω4 = (0, 0.5)× (−0.5, 0). A the initial time, the solution is constant
over each quadrant, and the constant states are chosen so that the solution to the
four Riemann problems associated with each interface of the quadrants consists in a
single wave. Nineteen possible configurations, yielding genuinely different solutions,
heve been reported in the literature (see e.g. [37, 30, 29]); we compute here only three
of them. All the computations of this section are performed with the MAC space
discretization.

Configurations 5 and 6 – MUSCL interpolation is primarily used to improve
precision at contact discontinuity lines. To illustrate this effect, we address Configu-
rations referred to as 5 and 6 in [30], where the chosen discontinuities are such that
they generate two-dimensional contact discontinuity waves (i.e. the pressure and the
normal velocity are constant across the discontinuity, and the internal energy, the
density and the tangential velocity jump). For Configuration 5, the initial condition
is:

Ω2:









ρ2 = 2
p2 = 1

u2 = −0.75
v2 = 0.5









Ω1:









ρ1 = 1
p1 = 1

u1 = −0.75
v1 = −0.5









Ω3:









ρ3 = 1
p3 = 1

u3 = 0.75
v3 = 0.5









Ω4:









ρ4 = 3
p4 = 1

u4 = 0.75
v4 = −0.5









For Configuration 6, we have:
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Fig. 4.7. A two-dimensional Riemann problem: Configuration 5 in [30] – Comparison of the
upwind (left) and MUSCL (right) schemes – h = 1/400 and δt = h/10 – Density at t = 0.23.

Fig. 4.8. A two-dimensional Riemann problem: Configuration 6 in [30] – Comparison of the
upwind (left) and MUSCL (right) schemes – h = 1/400 and δt = h/10 – Density at t = 0.3.

Ω2:









ρ2 = 2
p2 = 1

u2 = 0.75
v2 = 0.5









Ω1:









ρ1 = 1
p1 = 1

u1 = 0.75
v1 = −0.5









Ω3:









ρ3 = 1
p3 = 1

u3 = −0.75
v3 = 0.5









Ω4:









ρ4 = 3
p4 = 1

u4 = −0.75
v4 = −0.5









The final time is t = 0.23 for Configuration 5 and t = 0.3 for Configuration 6.
Results obtained with the upwind and MUSCL schemes at the end of the computation,
with a 400× 400 grid and with δt = 1/(10× 400), are reported on Figures 4.7 and 4.8
respectively. Solutions are consistent with the results reported in the litterature and,
as we expect, the slip lines are sharper with the MUSCL interpolation.

Configuration 4 – We now turn to a test case where the elementary waves are
shockwaves, to evidence the properties of entropic and WLR viscosities. The initial
states are now given by:
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Ω2:









ρ2 = 0.5065
p2 = 0.35

u2 = 0.8939
v2 = 0









Ω1:









ρ1 = 1.1
p1 = 1.1
u1 = 0
v1 = 0









Ω3:









ρ3 = 1.1
p3 = 1.1

u3 = 0.8939
v3 = 0.8939









Ω4:









ρ4 = 0.5065
p4 = 0.35
u4 = 0

v4 = 0.8939









Results obtained at t = 0.3 on a 400×400 grid with δt = 1/(10×400) are reported
on Figure 4.9. The first-order upwind scheme yields a solution (Figure 4.9, top-right)
with spurious oscillations in the downstream section of the top and right shock, in the
area where the fluid is at rest. This is caused by the lack of numerical dissipation of
our scheme, because the dissipation produced by the upwind interpolation vanishes
with the velocity. To cure this problem, we first add a constant artificial viscosity
(Figure 4.9, top-right). We also plot the results obtained using the WLR and entropic
viscosities (Figure 4.9, middle and bottom line, respectively). As one can see, they
correctly pick up shocks and reduce oscillations inside the subsonic area surrounded
by the sonic shocks.
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Density–Upwind scheme Density–Upwind scheme with constant viscosity

Density–Upwind scheme with WLR viscosity WLR viscosity

Density–Upwind scheme with entropic viscosity Entropic viscosity

Fig. 4.9. A two-dimensional Riemann problem: Configuration 4 in [30] – h = 1/400 and
δt = h/10 – Results at t = 0.3.
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4.4. The Mach=3 wind tunnel with a step. This benchmark has been pop-
ularized in [43]. The computational domain is Ω = Ω\S, with Ω = (0, 3)× (0, 1), and
S = (0.6, 3)× (0, 0.2). The time interval is (0, 4). A Mach 3 flow is coming from the
left boundary {0} × (0, 1) with the following properties:





ρ
u

p





(

(0, x2)
t, t

)

=





1.4
(3, 0)t

1



 , ∀x2 ∈ (0, 1), ∀t ∈ (0, 4).

The initial data is the same as the inflow conditions:




ρ
u

p



 (x, 0) =





1.4
(3, 0)t

1



 , ∀x ∈ Ω.

The right boundary {3}× (0, 1) is free, since the flow leaves the domain at a velocity
greater than the sound speed. Finally we prescribe a wall condition (u ·n = 0, where
n is the unit outward normal on ∂Ω) on the rest of the boundary.

We display on figure 4.10 the results obtained at t = 4 with the MAC space
discretization, using the MUSCL interpolation. The mesh is a 4800× 1600 uniform
grid from which we remove the cells included in S. The time step is set to δt =
h/10 = 6.25 10−5, which corresponds to a CFL number approximatively equal to 0.5
with respect to the celerity of the fastest wave (equal to 4 at the inlet boundary).
The artificial diffusion coefficient is ν = 0.001 (which is very weak, since the range of
the diffusion induced by a first order upwinding is ρ ||u||h/2 = νuph with νup ∼ 2).
Results are comparable to those presented in the recent literature (see e.g. [13, 22,
44, 12, 16, 15, 2]). The scheme seems to accurately capture discontinuities; however,
the Kevin-Helmoltz instability which is often observed at the contact discontinuity
issued from the Mach triple point is not present here, and adding some numerical
diffusion (so artificial shear stresses) does not destabilize this slip line. A spurious
Mach reflection at the bottom boundary is observed on coarser versions of the mesh,
but is much attenuated here.
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Fig. 4.10. Mach 3 step – From top to bottom: density, pressure, internal energy, first and
second component of the velocity at t = 4, obtained with h = 2.5× 10−3, δt = 10−3 and ν = 10−3.
The variation intervals of the unknowns are ρ ∈ [0.235, 6.4], p ∈ [0.216, 12.04], H ∈ [2.46, 8.11],
u1 ∈ [0., 3.046], and u2 ∈ [−0.92, 1.82].
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Fig. 4.11. Double Mach reflection – Geometry and initial conditions.

4.5. The double Mach reflection. This section is devoted to another classical
test case, once again introduced in [43], which consists in a Mach=10 shock impacting
a wall, the angle between the shock line and the wall being equal to 60◦ (see Figure
4.11). The right state (pre-shock) initial conditions correspond to a fluid at rest, at
the pressure pR = 1 and with ρR = 1.4 (so the speed of sound is equal to 1). The
left state is computed thanks to the Rankine-Hugoniot conditions, supposing that the
shock velocity is equal to ω = 10:





ρR
uR

pR



 =





1.4
(0, 0)t

1



 ,





ρL
uL

pL



 =





8

8.25 (
√
3/2, 1/2)t

116.5



 .

The computational domain is Ω = (0, 4) × (0, 1), and we suppose that the wall lies
in the bottom of the domain, more precisely ∂Ωw = (1/6, 4) × {0}. At t = 0, the
shock impinges the reflecting wall (at x1 = 1/6), so the fluid is in the left state for
x1 ≤ 1/6+x2/

√
3 and in the right state in the rest of the domain. Then, in the zones

of Ω which are not perturbed by the reflections, the shock moves with a velocity
equal to ω (

√
3/2,−1/2)t. The external pressure at the outflow boundary ∂Ωo is thus

prescribed to pL = 116.5 at all time. On the top of the domain (0, 4) × {1}, the
boundary condition is consistent to the undisturbed shock wave, thus the unknowns
ρ, u and p are prescribed to the left state values for x1 ≤ 1/6+1/

√
3+(2∗ω/

√
3) t and

to the right state values on the other part of the boundary. Finally, on {4} × (0, 1),
the velocity is prescribed to uR = (0, 0)t.

We use a 1600 × 400 structured mesh, with the MAC space discretization. The
time step is δt = h/100 (which roughly corresponds to a CFL of 1/7 with respect
to the maximum wave celerity in the left state). The artificial stabilizing diffusion
coefficient is set to ν = 0.01 (while the artificial diffusion which results from the
upwinding scales as ρ ||u||h/2 = νuph with νup ∼ 30). The obtained fields at t = 0.2
are shown on Figures 4.11. They comfort the previous observations: the approximate
solution seems correct (see [13, 22, 12, 46, 16, 15, 7] for other recents results), with
rather sharp interfaces, while the slip lines are not subject to instabilities. This is
confirmed by computations performed with refined meshes, dividing the cells by 2 in
each direction (to obtain a 3200× 800 structured mesh) and by 4 (6400× 1600 mesh);
we give on Figure 4.13 the obtained internal energy field in the reflection structure.
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Fig. 4.12. Double Mach reflection – From top to bottom: density, internal energy and pressure
at t = 0.2, obtained with h = 2.5 10−3, δt = 2.5 10−5 and ν = 0.01. The variation ranges of the
unknowns are ρ ∈ [1.4, 22.35], e ∈ [1.786, 63.53] and p ∈ [1, 536]. A right part of the domain,
where the solution is constant, is not drawn.
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Fig. 4.13. Double Mach reflection, zoom of the internal energy isolines obtained with a 3200×
800 mesh (top) and with a 6400 × 1600 mesh (bottom).
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Fig. 4.14. Low Mach flow past a cylinder – Geometry.

4.6. A Mach=10 flow past a cylinder. The last test case is a compressible
version of a benchmark originally developed for incompressible Navier-Stokes solvers
[36]. The geometry of the problem is described in Figure 4.14. The fluid enters the
domain on the left boundary with a constant velocity:

u =
(

1, 0
)t
.

The Mach number of the flow entering the domain is chosen to be equal to 10, so
c = (γp/ρ)1/2 = 0.1, which is realized with:

[

ρ
p

]

=

[

1.0
1/140

]

,

Initial conditions are the same as inlet values. The right boundary condition is free,
and we impose a wall condition on the cylinder, the top and the bottom boundaries.
The computationnal time interval is set to (0, 5).
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Fig. 4.15. A “coarse version“ of the mesh.

Fig. 4.16. Mach=10 flow past a cylinder – From top to bottom: density, pressure, internal
energy, x-component of velocity and y-component of velocity at t = 5. The variation ranges of the
unknowns are ρ ∈ [0.804, 12.23], p ∈ [0.002, 1.219], e ∈ [0.178, 0.536], u1 ∈ [−0.11, 1], and the
value u1 = 0 corresponds to the fourth iso-line, u2 ∈ [−0.326, 0.327].

The space approximation is performed with the RT discretization. A coarse ver-
sion of the meshes used for this computation is presented in Figure 4.15; refined ver-
sions of this mesh are obtained by reducing the space step along the characteristic lines
(the boundaries and the circles around the cylinder). We choose a stabilization coeffi-
cient ν ≃ 0.05 which roughly corresponds to 1/10 of the upwind dissipation (therefore
much greater than the stabilization coefficient used with structured discretizations),
and seems to be the lowest possible value (for ν ≃ 0.01, strong distortions of the shock
upstream the obstacle appear). The time step is set to δt = 10−4 and the computa-
tions are performed on a mesh with 5.31 105 cells which corresponds approximately
to a space step of h = 0.001. The speed of the fastest wave being 1.1, the acoustic
CFL is close to 0.1.

We present in Figure 4.16 the results obtained at t = 5. We observe a strong shock
in front of the cylinder. Subsequent weak shock reflections yield an X-structure for
the pressure and density fields, which is progressively damped by the scheme diffusion.
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5. Conclusion. In this paper we presented a decoupled scheme based on stag-
gered meshes for the Euler equations, using a MUSCL-like interpolation, which is a
higher order version of the decoupled upwind scheme presented in [27]. This algorithm
uses a quasi second-order monotone strategy which consists, equation by equation, in
implementing a MUSCL type discretization with respect to the material velocity of
the convection term. The pressure gradient is defined as the transpose of the natural
velocity divergence, and is thus centered. As in [27], the scheme solves the internal
energy balance instead of the total energy balance, to ensure the positivity of the
internal energy thanks to the above-mentioned monotone technique; because of the
staggered nature of the scheme, the total energy balance is only recovered at the limit
of vanishing time and space steps, thanks to the addition of corrective source terms
in the discrete internal energy balance.

Under CFL-like conditions which are based on the material velocity only, this
scheme preserves the positivity of the density, the pressure and of the internal energy
(in other words, the scheme preserves the convex set of admissible states). However,
numerical studies show that the largest time step before blow-up is smaller than
suggested by this condition. This behaviour was to be expected, since this condition
only involves the velocity (and not the celerity of the acoustic waves): indeed, if it were
the only limitation, we would obtain an explicit scheme stable up to the incompressible
limit. However, the mechanisms leading to the blow-up of the scheme (or, conversely,
the way to fix the time step to ensure stability) remain to be clarified, even if one may
anticipate from qualitative arguments (the scheme should allow a “transport of the
information” at the same speed as the continuous problem) that the time step should
be small enough to avoid that the waves cross more than one cell per time step.

On going work is devoted to show that the scheme is consistent, in the sense
that, if a sequence of numerical solutions obtained with increasingly refined meshes
(and, accordingly, decreasing time steps) converges, then the limit is a weak solution
to the continuous problem. Moreover, the scheme has been shown to satisfy some
entropy inequalities [17], so that the limits of convergent sequences may be shown to
be entropy solutions.

Another point of further investigation concerns the design of a discretization
scheme that would be able to cope with non- conforming locally refined meshes. This
work is now being undertaken.

Since the proposed scheme uses very simple numerical fluxes, it is well suited to
large multi-dimensional parallel computing applications, and such studies are indeed
performed at IRSN. Still for the same reasons (and, in particular, because the con-
struction of the discretization does not require the solution of the Riemann problem),
it seems that the presented approach offers natural extensions to more complex prob-
lems, such as reacting flows; this is under development at IRSN, for applications to
explosion hazards.

Appendix A. Heun-like schemes and a toy ODE system.

Let us consider the following system of Ordinary Differential Equations:

u′ + u = 0, (A.1a)

v′ + u = 0. (A.1b)

The standard first order explicit scheme for this system reads:

un+1 = un − δt un,

vn+1 = vn − δt un.

Let us build a Heun-like scheme by the following procedure: first perform a first order
explicit step to obtain a tentative solution (un+ 1

3 , vn+
1
3 ), then perform a first order

explicit step with initial solution (un+ 1
3 , vn+

1
3 ) to obtain a second tentative solution
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(un+ 2
3 , vn+

2
3 ) and finally compute (un+1, vn+1) as the mean value of (un, vn) and

(un+ 2
3 , vn+

2
3 ). We thus obtain (for the unknown v) the following computation:

un+ 1
3 = un − δt un, (A.2a)

vn+
1
3 = vn − δt un, (A.2b)

vn+
2
3 = vn+

1
3 − δt un+ 1

3 , (A.2c)

vn+1 =
1

2
(vn + vn+

2
3 ). (A.2d)

Using in (A.2d) the relation (A.2c), we get:

vn+1 =
1

2
(vn + vn+

1
3 − δt un+ 1

3 ).

Then, using Equations (A.2a) and (A.2b) to express un+ 1
3 and vn+

1
3 respectively in

this relation, we obtain:

vn+1 =
1

2

(

vn + vn − δt un − δt (un − δt un)
)

= vn − δt un +
δt2

2
un.

Since, deriving Equation (A.1a), we obtain u′′ = −u′ and thus, invoking once again
(A.1a), u′′ = u, this last relation may be identified to an expression of vn+1 thanks to
a second order Taylor development from the solution at level n. We have thus built
a second order scheme.

Let us now consider the following first order scheme, which differs from the scheme
considered before by the fact that u is taken at level n+1 in the second relation (which
still yields a scheme with explicit steps, in the sense that the right-hand side is known
at each step):

un+1 = un − δt un,

vn+1 = vn − δt un+1.

The same procedure to derive a Heun-like scheme yields:

un+ 1
3 = un − δt un,

vn+
1
3 = vn − δt un+ 1

3 ,

un+ 2
3 = un+ 1

3 − δt un+ 1
3 ,

vn+
2
3 = vn+

1
3 − δt un+ 2

3 ,

vn+1 =
1

2
(vn + vn+

2
3 ).

By the same computation as before, we obtain:

vn+1 = vn − δt un +
3 δt2

2
un − δt3

2
un.

The scheme is now only a first order one, which suggests that the Heun scheme must
be built from the standard first order explicit discretization.
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[36] M. Schäfer and S. Turek. Benchmark Computations of Laminar Flow Around a Cylinder,
volume 52 of Notes on Numerical Fluid Mechanics. 1996.

[37] C. Schulz-Rinne, J. Collins, and H. Glaz. Numerical solution of the Riemann problem for
two-dimensional gas dynamics. SIAM Journal on Scientific Computing, 14:1394–1414,
1993.

[38] J. Steger and R. Warming. Flux vector splitting of the inviscid gaz dynamics equations with
applications to finite difference methods. Journal of Computational Physics, 40:263–293,
1981.

[39] E. Toro. Riemann solvers and numerical methods for fluid dynamics – A practical introduction
(third edition). Springer, 2009.

[40] E. Toro and M. Vázquez-Cendón. Flux splitting schemes for the Euler equations. Computers
& Fluids, 70:1–12, 2012.

[41] B. Van Leer. Towards the ultimate conservative difference scheme, v,. J. Comput. Phys.,
32:101–136, 1979.

[42] B. Van Leer. Upwind and high-resolution methods for compressible flow: From donor cell to
residual-distribution schemes. Comm. Comput. Physics, 1(2):192–206, 2006.

[43] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with
strong shocks. Journal of Computational Physics, 54:115–173, 1984.

[44] Z. Xu, Y. Liu, H. Du, G. Lin, and C.-W. Shu. Point-wise hierarchical reconstruction for
discontinuous Galerkin and finite volume methods for solving conservation laws. Journal
of Computational Physics, 230:6843–6865, 2011.

[45] G.-C. Zha and E. Bilgen. Numerical solution of Euler equations by a new flux vector splitting
scheme. International Journal for Numerical Methods in Fluids, 17:115–144, 1993.

[46] X. Zhong and C.-W. Shu. A simple weighted essentially nonoscillatory limiter for Runge-Kutta
discontinuous Galerkin methods. Journal of Computational Physics, 232:397–415, 2013.

40


