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The flow in three-dimensional fibrous porous media is studied in the inertial regime by first simulating

for the motion in unit, periodic cells, and then solving successive closure problems leading – after ap- 

plying an intrinsic averaging procedure – to the components of the apparent permeability tensor. The

parameters varied include the orientation of the driving pressure gradient, its magnitude (which permits

to define a microscopic Reynolds number), and the porosity of the medium. All cases tested refer to sit- 

uations for which the microscopic flow is steady. When the driving force is oriented in a direction which

lies on the plane perpendicular to the fibers’ axis, the results found agree with those available the litera- 

ture. The fact that the medium is composed by bundles of parallel fibers favours a deviation of the mean

flow towards the fibers’ axis when the driving pressure gradient has even a small component along it,

and this is enhanced by a decreasing porosity; this phenomenon is well quantified by the knowledge of

the components of the permeability. Contrary to our initial expectations, for the over one hundred cases

which we have simulated, the apparent permeability tensor remains, to a very good approximation, di- 

agonal, a fact mainly related to the transversely isotropic nature of the medium. To obtain a complete,

albeit approximate, database of the diagonal components of the apparent permeability tensor we have

developed a metamodel, based on kriging interpolation, and carefully calibrated it. The resulting response

surfaces can be invaluable in determining the force caused by the presence of inclusions in macroscopic

simulations of the flow through bundles of fibers whose orientations and dimensions can vary in space

and/or time.
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1. Introduction

The flow through porous media is a problem of importance

for several natural and technological applications. Since the orig-

inal formulation by Darcy (1856) , which relates the flow rate

through a porous bed to the pressure drop across the bed’s sides,

many corrections have been made to account, for example, for vis-

cous effects ( Brinkman, 1949 ) or for the consequences of inertia

( Forchheimer, 1901 ). All of the cited works are of empirical na-

ture, but a volume averaging approach has been able to recover

all of these formulations rigorously starting from the Navier-Stokes

equations ( Whitaker, 2013 ). 

The theory requires the knowledge of a number of terms, most

notably, in the case of an isotropic porous bed, a permeability co-

efficient and a Forchheimer coefficient. Initial effort s in defining

these terms were based on a combination of physical reasoning
∗ Corresponding author.

E-mail address: alessandro.bottaro@unige.it (A. Bottaro).
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nd measurements, leading to expressions known as the Kozeny–

arman ( Kozeny, 1927; Carman, 1937 ) and the Ergun ( Ergun and

rning, 1949 ) correlations. The first coefficient provides the per-

eability for the laminar flow of a single-phase fluid through a

acked bed of sand grains, as function of the porosity and the di-

meter of the grains, while the second extends Darcy’s law to let

he pressure drop depend on two terms, one proportional to the

elocity and the second to its square, thus accounting for iner-

ia. These approaches do not consider microstructural or geometri-

al features of the porous bed, which can render the permeability

 tensorial quantity, and are often restricted to simple unidirec-

ional flows. In the present work we are concerned with a trans-

ersely isotropic material composed by parallel fibers of circular

ross-section, with one axis of symmetry, ( O, x 3 ); in such materials

he permeability is a diagonal tensor with the component in the

irection parallel to the fibers greater than those along the trans-

erse axes. For such an arrangement we will investigate the effects

f both the direction of the forcing pressure gradient and inertia.

hen the latter effect is present, embodied by a Reynolds number

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2018.04.013&domain=pdf
mailto:alessandro.bottaro@unige.it
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Fig. 1. Illustration of the REV concept.
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e d , based on the mean intrinsic velocity through the medium and

he fibers’ diameter, exceeding an order one threshold, the perme-

bility is no more simply defined upon geometrical properties. This

ew permeability, which arises from a well-defined closure prob-

em, is then called apparent permeability . 

The influence of the geometry of the solid inclusions has been

ddressed previously by Yazdchi et al. (2011) for arrays of cylin-

ers in both square and hexagonal (or staggered) patterns, with the

ylinders’ section which can vary in shape. The results, in the two-

imensional and low Reynolds number limits, demonstrate the de-

endence of the permeability component along the flow direction

o both the porosity and the direction of the macroscopic pressure

radient. The direction of the pressure gradient is found to have

 weak effect for beds of medium-high porosity ( ε > 0.7) and a

tronger dependence appears upon the geometry of the solid in-

lusions. 

The influence of the Reynolds number on the permeability

nd on the Forchheimer correction has been presented in a num-

er of papers. One of the contributions most relevant here is

ue to Edwards et al. (1990) . These authors show that, for ar-

ays of fibers, the apparent permeability decreases with the in-

rease of the Reynolds number, and the rate of this decrease de-

ends on the geometry of the array; also, the Reynolds num-

er is found to have a stronger influence on the apparent per-

eability when the medium is highly porous. The results of the

ork by Edwards et al. (1990) agree with those by Zampogna and

ottaro (2016) and with our own work (as shown later), all

or the case of cylindrical fibers, although some issues remain

n the persistence of steady solutions in the simulations by

dwards et al. (1990) in cases for which a limit cycle should have

et in. A fully three-dimensional porous medium, more complex

han those discussed so far, has been considered by Soulaine and

uintard (2014) , confirming the decreasing trend of the apparent

ermeability with the Reynolds number. 

Another contribution which deserves mention is that by

asseux et al. (2011) ; they have computed the permeability ten-

or for various Reynolds numbers, in a two-dimensional geometry

ith cylinders of square cross-section. Forcing the flow along the

ain symmetric directions of the fiber, Lasseux et al. (2011) have

dentified different regimes: 

• a creeping flow regime for 0 < Re d < 10 −3 , without Forch-

heimer terms;
• a weak inertia regime for 10 −3 < Re d < 1 , with the Forchheimer

correction quadratic in Re d ;
• a strong inertia regime for 1 < Re d < 10, where the Forchheimer

correction is linear with the Reynolds number;
• a turbulent regime, for Re d > 10, with the Forchheimer correc-

tion again quadratic with the Reynolds number.

The boundaries between the different regimes are specific to

he geometrical arrangements and to the porosities being consid-

red; a step forward in rendering (some of) these boundaries rigor-

us and independent of the arrangement of the pores, through the

efinition of a Reynolds number which accounts for a ”topologi-

al” coefficient, has been recently made by Pauthenet et al. (2017) .

or the purposes of the present paper, we must retain that

asseux et al. (2011) have parametrized the Forchheimer correc-

ion with the Reynolds number, and have found that the inertial

orrection is orders of magnitude smaller than the Darcy’s term, at

east before the turbulent regime sets in. Moreover, Lasseux and

o-workers have studied how a Forchheimer tensor, F , depends

pon the direction of the macroscopic forcing term with respect

o the orientation of the square cross-section of the fibers, for Re d 
p to 30. It is concluded that a deviation angle, γ , exists between

he direction of the pressure gradient and that of the mean flow,

ecause of the fibers’ geometry. The inertial correction is strongly
nfluenced by the orientation of the driving pressure gradient, and

he tensor F is not symmetric (in fact the off-diagonal components

re found to be inversely proportional to the diagonal terms, and

ymmetric with respect to rotations about the diagonal axis of the

quare, i.e. the direction at 45 ° in the x 1 − x 2 plane, cf. Fig. 1 ). 

The effect of variations in the forcing angle, with restrictions to

ngles in the x 1 − x 2 plane, is also examined by Soulaine and Quin-

ard (2014) with conclusions in qualitative agreement with those of

oth the contribution just cited and our results described further

elow. In all cases, the off-diagonal components of the apparent

ermeability tensor are small and the diagonal components display

ut a small variation upon rotation of the driving pressure gradi-

nt. 

As already anticipated, this work investigates how the direc-

ion of the macroscopic pressure gradient, the porosity and the

eynolds number can modify the Darcy and Forchheimer clo-

ures arising from a volume-averaged model of a fibrous porous

edium. We will consider a three-dimensional unit cell for the

icroscopic model (such a unit cell is sometimes denoted REV, for

epresentative Elementary Volume), with a generic forcing whose

irection is defined by two Euler angles. Given the formidable

pace of parameters, some representative results are first shown

nd discussed. Response surfaces in the space of parameters are

hen identified by the use of a metamodel based on kriging inter-

olation. For the sake of space, only the first diagonal component

f the apparent permeability tensor is discussed in detail in the

aper; however, all components have been computed. They repre-

ent an extremely useful data base which we are now in the pro-

ess of using in macroscopic simulations of flows through bundles

f fibers of varying orientation and density. 

. The volume-averaged Navier–Stokes (VANS) method

.1. A brief description of the method 

The system under investigation consists of an incompressible

ewtonian fluid which flows through a rigid porous medium. In

he following, the subscript β is used to indicate the fluid phase

hile σ is adopted for the solid phase. The governing equations

alid at the microscale for the flow through the pores are: 

∂ v β
∂t 

+ v β · ∇ v β = − 1

ρβ
∇ p β + νβ∇ 

2 v β + f , (1)
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∇ · v β = 0 , (2)

where v β , p β , ρβ and νβ stand, respectively, for the velocity, the

pressure, the density and the kinematic viscosity of the fluid. The

right-hand side term, f , is a force (per unit mass) which drives the

fluid motion and can be interpreted as the macroscopic pressure

gradient acting on the system. 

The concept of REV of the porous medium is classically intro-

duced in the framework of the VANS approach. An example of

REV is depicted on Fig. 1 , together with relevant notations (vol-

ume shape and size, indication of the fact that the normal unit

vector is directed from the fluid to the solid phase, centroid x of

the REV). The REV represents the domain over which the micro-

scopic problem is solved; its size is defined so as to capture all the

microscopic features of the flow. As a rule of thumb, the REV is the

smallest fluid domain over which periodic boundary conditions can

be applied. 

In the computational domain, any flow variable ψ can be de-

composed into an intrinsic average part < ψ > 

β plus a perturba-

tion 

˜ ψ , as: 

ψ = 

〈
ψ 

〉β + 

˜ ψ .

The intrinsic average is defined with an integration carried out

only on the fluid phase ( Whitaker, 2013 ): 〈
ψ β

〉β = 

1

V β

∫ 
V β

ψ β (x ) dV β . (3)

Applying such an operator to Eqs. (1) and (2) , and following

Whitaker (1996) we have: 

∂ 
〈
v β

〉β
∂t 

+ 

〈
v β

〉β · ∇ 

〈
v β

〉β = − 1 

ρβ
∇ 

〈
p β

〉β + νβ∇ 

2 
〈
v β

〉β + f +

+ 1 

V β

∫ 
A βσ

(
− ˜ p β

ρβ
I + νβ∇ ̃  v β

)
· n βσ dA,

(4)

∇ ·
〈
v β

〉β = 0 , (5)

upon neglecting in Eq. (4) the sub-REV-scale dispersion term

(linked to 
〈
˜ v β ˜ v β

〉β
) which is often small in porous media flows

( Breugem, 2005 ). 

The surface integral term in Eq. (4) represents the drag (per

unit mass) due to surface forces at the fluid-solid interface of the

medium. It is called the Darcy-Forchheimer microscale force, F m .

The equations are however often to be solved at the macroscale,

so that a macroscale force model, F M , must be used to replace F m 

in the governing equation. Such a model is often based on a per-

meability tensor, K , and a Forchheimer tensor, F , and reads: 

F M = −νβεK 

−1 ( I + F ) < v β> 

β, (6)

so that the system is closed by imposing 

F m = F M . (7)

The drag force F m computed by direct numerical simulations (DNS)

with account of all individual pores will be later compared to the

model based on the permeability and Forchheimer tensors (whose

equations are given below). This is a useful exercise to demonstrate

consistency of the approach and accuracy of the numerical simu-

lations; it does nothing else since, as briefly described below, to

derive the Forchheimer tensor the microscopic velocity field must

be known anyhow. Nonetheless, knowledge of the behaviour of

these tensors (or, equivalently, of the related apparent permeabil-

ity) might prove both useful and instructive, in particular should
ne wish to extend the range of applicability of the model to cases

or which the microscopic solution is not available. 

The core of the VANS approach consists in the identification of

he permeability and Forchheimer tensors. This problem, referred

o as the closure problem, is discussed at length by Whitaker

1986, 1996) . He derives two partial differential equation systems,

he first valid in the zero Reynolds number limit (system (8) be-

ow), while the second applies when inertial terms are not negli-

ible (system (10) ). 

In the first system of equations a three-component vector d

nd a 3 × 3 tensor D are introduced. This system can be divided

nto three separate independent problems which resemble a forced

tokes problem where each component of d and the correspond-

ng row of D play, respectively, the role of a pressure and a velocity

eld. Together with the periodic boundary conditions, the problem

eads:
 

 

 

 

 

0 = −∇d + ∇ 

2 D + I , 
∇ · D = 0 , 

D = 0 on A βσ , 

d (x + 
 i ) = d (x ) , D (x + 
 i ) = D (x ) i = 1 , 2 , 3 . 

(8)

he permeability tensor is found by applying the intrinsic average

n the D tensor and multiplying by the porosity ε = 

V β

V 
, i.e. K =

 < D > 

β . In the Stokes regime, it is 

 

M = −νβεK 

−1 < v β> 

β . (9)

The second closure problem differs from the first only for the

resence of a linearised convective term in which the microscopic

elocity obtained from the DNS, v β , is used as an input. This

f course implies knowledge of the microscopic velocity field. A

seen-like approximation which relaxes this constraint has been

roposed by Zampogna and Bottaro (2016) . 

The new unknowns are a vector and a tensor called, respec-

ively, m and M , with the same meanings of d and D . The system

eads: 

 

 

 

 

 

 

 

1 

νβ
v β · ∇M = −∇m + ∇ 

2 M + I ,

∇ · M = 0 , 

M = 0 on A βσ , 

m (x + 
 i ) = m (x ) , M (x + 
 i ) = M (x ) i = 1 , 2 , 3 . 

(10)

he average of the tensor M multiplied by the porosity is

he apparent permeability , H = ε 
〈
M 

〉β
. When inertia is important

q. (6) can be written as 

 

M = −νβεH 

−1 < v β> 

β, (11)

s shown by Whitaker (1996) . 

Two remarks are in order at this point. First, the equations in

he closure problem (10) are time-independent because the mi-

roscopic velocity v β is a solution of a stationary DNS. Thus, the

eynolds number should be sufficiently small for unsteady effects

ot to be present. Should the wake behind a solid inclusion display

egular or irregular temporal oscillations, the equations of system

10) may be used, as an approximation, by replacing the instan-

aneous velocity in the REV with its time-averaged distribution.

his case is however not of present concern. Secondly, the closure

roblems reflect the structure of the solution of the two systems

8) and (10) . In particular, the solution of (8) depends only on the

eometry of the porous medium so that the permeability tensor K

s symmetric. This is not the case for H , because of the effect of

the microscopic velocity amplitude and direction. Clearly, the solu-

ion of system (8) tends to that of (10) when Re d = 

〈 v β〉 βd

νβ
→ 0 ,



Fig. 2. REV for the fiber geometry investigated.
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Fig. 3. Permeability versus porosity for a square arrangement of cylinders. The scal- 

ing of the permeability is 
 2 and is explicitely indicated in the vertical axis.

Table 1

Relatives errors in the effective permeability

validation.

Regular REV Staggered REV

ε e r K11
e r K33

e r K11

0.4 2.34% 3.22% 4.13%

0.6 1.58% 0.38% 2.03%

0.8 4.10% 2.03% 2.17%
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ith v β the amplitude of the intrinsic velocity and d the diameter

f the fiber. 

. Validation and setup

In this section the numerical methodology, the parameters, the

etup and the validation for some reference cases are given. 

.1. Computational domain 

The geometry used for the base REV is shown in Fig. 2 : a cylin-

rical inclusion is present at the centre of the REV and four quar-

ers of cylinders are situated at the corners. The lateral length of

he cubic envelop is 
 , which is used as length scale for the mi-

roscopic problem; the diameter d of the cylinders is adapted as a

unction of the desired porosity ε, ratio between the fluid volume

ver the total REV volume ( 
 3 ). The forcing term f of the DNS is

 vector whose direction is defined by two Euler angles, with ro-

ations of the form: θ e 3 + φ e 2 
I (cf. Fig. 2 ). Its amplitude is set a

riori and is connected to the Reynolds number, Re d which results

rom the calculations once the mean velocity is evaluated. 

.2. Numerical setup 

The numerical simulations of the full Navier–Stokes Eqs. (1) –(2)

n the REV have been carried out with the open-source code Open-

OAM ( Weller et al., 1998 ), based on a finite volume discretiza-

ion with a colocated arrangement for the unknowns. The standard

olver icoFoam (incompressible Navier-Stokes) has been modified

n order to include a constant pressure gradient acting as a forc-

ng term f in Eq. (1) . The coupling between the velocity and the

ressure equations is based on the pressure implicit split operator

eferred to as the PISO algorithm. The time derivative term is dis-

retized using the second order backward Euler scheme and all the

patial terms use a second-order central difference stencil based on

auss finite volume approach. The velocity system is solved with a

reconditioned bi-conjugate gradient iterative solver with the tol-

rance on the velocity residuals set to 10 −8 , associated to a diago-

al incomplete lower upper pre-conditioner. The pressure equation

s solved with a geometric-algebraic multigrid algorithm associ-

ted to a Gauss-Seidel smoother and the tolerance on the pressure

esiduals is taken equal to 10 −6 . Periodic boundary conditions are

pplied to all fields (velocity and pressure) on all fluid boundaries

long the three directions, and the no-slip condition is imposed on

he surface of the solid inclusions. The time step 
t is automat-

cally determined to ensure that the maximum Courant number,
o , respects the condition: Co = v β
t/ 
s 
〈
1 / 2 , in which v β is the

odulus of the local velocity on the REV and 
s is the local grid

pacing in the direction of v β . Co is basically the ratio between the

uid speed and the velocity to propagate information through the

esh and the condition Co < 1/2 is found to be sufficient to have a

table solver. 

The convergence of the solutions is assessed on the basis of

 Richardson extrapolation which employs the results obtained

n successively refined grids (with up to 1.5 million cells in the

ner grid used). The mesh convergence analysis is described in

ppendix A . 

.3. Validation on two different configurations 

The results published in the literature by Zampogna and

ottaro (2016) and Yazdchi et al. (2011) are now used to validate

oth the methodology and our choice of the computational pa-

ameters. In the cited papers, three-dimensional computations of

he permeability components in different cells geometries are pre-

ented. 

Fig. 3 displays the comparison for a cell with a square arrange-

ent of the fibers; here the permeability is evaluated along the

wo principal directions, x 1 and x 3 . To quantify the accuracy of

he results we introduce a relative error on the permeability com-

onents, defined as e r K ii
= 

| K ii 
present − K ii 

literature |
K ii 

literature 
and reported in

able 1 . Good agreement is found with the published results: the

elatives errors in all the cases tested is always below 5%. Fig. 4

hows a similar comparison for a staggered arrangement of the

nclusions in the unit cell. In this case the section of the cell is

ectangular. The agreement for the only permeability component

vailable in the literature is again satisfactory. Finally, to check

he correct implementation of the closure model (10) it is im-

ortant to verify the equality (7) between the amplitude F M of

he macroscopic force and its microscopic counterpart obtained

hrough an integration of the DNS fields over the solid bound-

ries of the inclusions in the REV. Fig. 5 shows a plot of the rel-

tive error between these two forces, i.e. 
|| F M − F m || 

|| F m || , as function



Fig. 4. Permeability versus porosity for a staggered arrangement of cylinders. Note

that the permeability component is here scaled with d 2 .

Fig. 5. Relative error between the microscopically computed forces along the x 1
direction and those arising from the Darcy-Forchheimer model; ε = 0 . 8 for the REV 

in the staggered arrangement of Yazdchi et al. (2011) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. REV configurations. Left: 2 × 2 × 1 arrangement; centre: 1 × 1 × 1 arrange- 

ment (reference); right 1 × 1 × 3 arrangement. 
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of the Reynolds number. We consider the successful comparison

displayed in Fig. 5 as the conclusive demonstration of the validity

of the approach described here. We have nonetheless carried out

the same verification displayed in Fig. 5 for most of the simula-

tions described in the following, to our satisfaction. 

3.4. Tests with larger REV’s 

Since the REV is the unit cell within the porous medium over

which average quantities of the VANS are computed, it is impor-

tant to choose its dimensions appropriately in the inertial regime

for, if the REV is too small, it might be easy to miss crucial features

of the wakes. For example, to predict the critical Reynolds number,

Re c , of the first Hopf bifurcation, a REV containing at least three

solid inclusions in the direction of the mean pressure gradient is

necessary in the configuration used by Agnaou et al. (2016) . Among

the results reported, it is found that, for a fixed REV size, the er-

ror committed in the evaluation of the critical Reynolds number

increases with the porosity. This same error is considerably re-

duced when the mean pressure gradient angle is θ = 45 ◦. Thus,

the choice of the number of inclusions in a REV is a task not to be

overlooked, and the final choice must account for the porosity, the

direction of the pressure gradient and the microscopic Reynolds

number. 

Here, the influence of the numbers of inclusions present in a

REV is assessed by focussing only on the velocity components after

averaging over the REV. The unit cubic cell of side 
 is used as ref-

erence: starting from this, two additional REV’s are built, as shown

in Fig. 6 . The first one is doubled in both the x 1 and x 2 directions

and the case tested numerically is characterised by θ = 0 , φ = 0
i.e. the forcing pressure gradient is directed along x 1 ), porosity

 = 0 . 6 and Re d = 50 . The second REV configuration is a compo-

ition of 3 reference REVs on top of one another along x 3 , with the

arameters set to θ = 45 ◦, φ = 45 ◦, ε = 0 . 6 and Re d = 100 .

For both these test cases, no appreciable differences, neither in

he mean velocity nor in the forces on the fibers, have been ob-

erved, with relative errors on the mean velocity with respect to

he reference case which remain below 2%. We take this as suf-

cient evidence to use, in the following, only the reference cubic

EV of side equal to 
 , with the understanding that only cases with

 microscopic Reynolds number up to around 100 can be consid-

red. 

. Microscopic solutions

In this section, some local microscopic fields computed with di-

ect numerical simulations are shown, together with components

f the intermediate tensor M coming from the numerical solution

f the closure equations (10) . 

In Fig. 7 (top row) the local x 1 velocity component is drawn

or the two-dimensional flow when ε = 0 . 6 , for three Reynolds

umbers, to cover the transition from the Stokes to the inertial

egime. In all plots, the velocities are rendered non-dimensional by

he corresponding value of 
H 11 

νβ
|| f || , where H 11 is the first compo-

ent of the tensor H . When inertia is absent, the flow has a central

ymmetry; by increasing the Reynolds number, only the symmetry

ith respect to the x 1 axis is maintained ( x 1 is the direction of the

orcing pressure gradient), with the wake’s length which increases

ith Re d . When Re d is of order 100 the wake spreads to the down-

tream boundary of the REV, re-entering, because of periodicity, at

he upstream side. This Re d represents the upper limit of validity

or the cubic unit cell of side 
 ; larger values of Re d could only be

nvestigated with longer/larger/thicker REV’s. 

The non-dimensional microscopic M 11 fields for the same pa-

ameters are displayed in Fig. 7 (mid row). All values in the fig-

res arise from scaling M with 
 2 . Visually, these local fields are

trongly correlated to the local streamwise velocity component in

he whole Re d range. This is not unexpected since the local veloc-

ty drives the convective term of system (10) . The central symme-

ry of all components of M in the Stokes regime is coupled to the

otational invariance of the apparent permeability tensor in two-

imensional flows. 

The effect of varying the porosity is shown in Fig. 7 (bottom

ow) where ε is taken equal to 0.4. Even at such a low porosity

he stretching of the wake can be noticed, and it increases with

e d . Interestingly, this effect is milder when the forcing is inclined

y an angle φ, since the tighter packing of the inclusions causes



Fig. 7. Top row: plane view of the dimensionless x 1 component of the local velocity field v β for the case θ = 0 , φ = 0 , ε = 0 . 6 and for three Reynolds numbers Re d = 0, 10, 

50, from left to right. Mid row: microscopic M 11 fields corresponding to the images in the top row. Bottom row: M 11 fields for the same Euler angles and Reynolds number

as in the top two rows, and smaller porosity ( ε = 0 . 4 ). 
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 strong deviation of the mean flow along the axis of the fiber. In

his case, M 11 and M 22 behave very similarly to the case φ = 90 ◦. 

Another interesting point emerges by inspection of Fig. 8 where

wo off-diagonal components of M are shown for two porosity

alues; the first image (left frame) represents a plane flow in

he Stokes regime while the second is the plane cut of a three-

imensional solution in the inertial regime. Positive and negative

alues of the microscopic fields can be seen in both images but,

nce averaging is applied over the REV, the resulting permeabil-

ty component is very close to zero (in fact, exactly equal to zero

n the Stokes case). This same features occurs for all off-diagonal

erms in all cases examined, so that, within the current range of

eynolds numbers, the apparent permeability tensor is, to a good

pproximation, diagonal 1 

A three-dimensional case is shown in Fig. 9 , where all the non-

ero terms of the M tensor are plotted for a porous structure with
1 In fact, there are always at least two orders of magnitude differences between

he diagonal and the off-diagonal components. While the latter should not, in prin-

c

p

 = 0 . 6 . The components shown are M 11 , M 22 , M 33 , M 12 and M 21 ,

hile M i 3 and M 3 j are not plotted because they are identically zero

o machine accuracy. Distinct features are visible in each image; in

articular, in the last frame the M 33 microscopic component dis-

lays a low wavelength structure along the cylinder’s axis. Increas-

ng the dimensions of the REV along x 3 does not alter such a struc-

ure, i.e. the 
 3 domain chosen with its periodic boundary condi-

ions does not filter out significant high wave-numbers of the flow.

e further note that the tensor M is not symmetric in this case

ince each off-diagonal component represents the solution of the

losure problem in a specific direction (first index of the field) and

he forcing term acts orthogonally to it (second index of the field).

nce averaged over the REV it is found that both H 12 and H 21 are

ery close to zero. 
iple, be ignored, we will focus attention here only on the dominant terms of the

ermeability tensor.



Fig. 8. Right: Non-dimensional M 21 field for θ = 0 , φ = 0 , Re d = 10 , ε = 0 . 8 , left: 

Non-dimensional M 12 field for θ = 22 . 5 ◦, φ = 45 ◦, Re d = 50 , ε = 0 . 4 . 

Table 2

Directions of the forcing tested and property of

the solutions.

Index θ φ Field properties

1 0 ° 0 ° 2D symmetric

2 22.5 ° 0 ° 2D non-symmetric

3 0 ° 45 ° 3D symmetric

4 22.5 ° 45 ° 3D non-symmetric

5 - 90 ° 3D symmetric

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Non-dimensional M components fields for the case θ = 22 . 5 ◦, φ = 

45 ◦, Re d = 50 , ε = 0 . 6 . 
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5. The apparent permeability tensor

In this section the variations of the diagonal components of the

permeability tensor H are discussed as function of the direction of

the mean forcing, the Reynolds number and the porosity. As stated

previously, the Reynolds number Re d ranges from 0 to approxi-

mately 100 in order to capture phenomena associated with inertia;

the cases considered never lead to unsteady signals. The porosity

parameter ε is set to either 0.4 (low porosity), 0.6 (medium) or 0.8

(high). 

The forcing direction is defined by the Euler angles and all

the configurations considered in this section are summarized in

Table 2 ; the choice has been made to explore a reasonably large

range of parameters, with both two-dimensional and three- dimen-

sional flows characterized by symmetric and asymmetric patterns. 

Let us briefly recall the methodology. First, a DNS is carried

out to compute the microscopic flow. Then the closure problem

is solved for the tensor M . Finally, each component of the appar-

ent permeability H is obtained by averaging ( Eq. (3) ). The results

are collected in Figs. 10, 11 and 12 , showing the variation of the

diagonal components of H . 

In the left column of each figure we focus on the low- Re d 
regime (0 < Re d < 2), while in the right column the effect of in-

ertia can be assessed. As expected, when Re d is small the appar-

ent permeability is quasi-Reynolds-number-independent (and can

be approximated well by the true permeability). As the Reynolds

number increases above a few units, inertial effects grow in impor-

tance yielding typically a monotonic decrease of all components of

H , aside from case indexed 5 (φ = 90 ◦) for which the flow remains

aligned with the cylinder’s axis. In case 5 the microscopic flow so-

lution is invariant with x 3 and does not change with Re d in the

range considered, so that H is a constant tensor. When the poros-

ity is large all components show a similar behaviour irrespective

of the forcing angle (except, clearly, case 5). 

Differences start appearing at ε = 0 . 6 ; the two cases with φ =
0 ◦ (index 1 and 2) behave similarly, and so do the two cases in-

dexed 3 and 4 (with φ = 45 ◦). This seems to suggest a weaker ef-

fect of θ on the permeability components. For even smaller poros-
ty ( ε = 0 . 4 ), the blockage effect caused by the inclusions produces

he unexpected behaviour displayed in Fig. 12 . When the flow is

urely two-dimensional (cases 1 and 2), variations in the Reynolds

umber affect H significantly; when a pressure gradient along x 3 is

resent the strong packing of the fibers constrain the fluid to flow

revalently along the fibers’ axis, and the apparent permeability is

lmost Re d -independent. When assessing variations in H jj for this

ase, attention should also be paid to the fact that the permeability

s now at least one order of magnitude smaller than in the previ-

us cases so that variations of the diagonal components shown in

ig. 12 are tiny in absolute terms. This is related to the fact that the

nverse of the permeability plays the role of a drag coefficient in

he macroscopic expression of the force (cf. equation (6) ). In other



Fig. 10. Diagonal elements of the apparent permeability H as function of the Reynolds number for porosity ε = 0 . 8 . The forcing direction is represented through the couple 

of Euler angles ( θ , φ) (cf. Table 2 for the case index). Left column: low- Re d regime; right column: inertial regime.

Fig. 11. Same as Fig. 10 with porosity ε = 0 . 6 . 



Fig. 12. Same as Fig. 10 with porosity ε = 0 . 4 . 
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words, materials with lower porosity offer lar ger resistance to the

motion of the fluid. 

Applying the intrinsic average operator to the off-diagonal com-

ponents of the tensor M results in terms that are negligible with

respect to their diagonal counterparts, and these results are true

for all the parameters considered. This means that there is a very

weak coupling between the principal directions of the fiber. The

directional decoupling and the diagonal property of the apparent

permeability tensor have also been computationally demonstrated

on a completely different REV geometry by Soulaine and Quin-

tard (2014) . Conversely, Lasseux et al. (2011) have carried out a

two-dimensional study with fibers of square cross-section, finding

that the off-diagonal terms are non-negligible and only about one

order of magnitude smaller than the diagonal components. This

result is a consequence of the non-rotationally-invariant geome-

try considered. The present work and the two articles just cited

suggest that the diagonal property of the tensor H is more closely

associated to the geometry of the porous material than to the flow

regime, at least in the range of Re d considered. 

6. A metamodel for H

Sections 4 and 5 have shown how the apparent permeability

depends on the two Euler angles, the Reynolds number and the

porosity. The space of parameters is formidable and the results

found so far are not sufficient to treat, for example, cases char-

acterized by multiple inclusions’ sizes and orientations in different

regions of the domain, or cases involving a poroelastic medium,

with temporally and spatially varying porosity, flow direction and

local Reynolds number. The complete solution of the closure prob-

lem for a single set of parameters takes approximately 4 CPU

hours on our two-processor Intel(r) IVYBRIDGE 2.8Ghz, each with
0 cores and 64 GB of RAM, so that a complete parametric study

s, to say the least, unpractical. In view of this, the construction of

 metamodel capable to provide a full characterisation of the per-

eability as a function of all parameters is a worthy endeavor. We

ave tested several surrogate models, before eventually settling on

he kriging approach ( Kleijnen, 2017 ) described in Appendix B . 

The metamodel provides a scalar function (for each term of the

 tensor) defined in a four-dimensional space. In each of the fol-

owing figures two parameters are fixed and the response surface

s displayed as function of the remaining two, focussing on the H 11 

omponent. The other diagonal components of the apparent per-

eability tensor behave in a similar fashion and will not be shown

or brevity. All the results of the metamodel are, however, available

n: https://github.com/appanacca/porous _ solvers _ OF.git . 

In Fig. 13 the angle φ is fixed to zero, and the isolines display

 11 as function of the angle θ and of the Reynolds number, Re d ,

or three values of the porosity. The white square symbols indicate

he samples used to build the metamodel. The maximum value of

ach surface is always found for Re d equal to zero and H 11 typi-

ally decreases with Re d , when the porosity is sufficiently large. As

een previously, for a porosity approximately greater or equal to

.6 the variation of the apparent permeability with the angle θ is

eak in this two-dimensional configuration. For the lowest poros-

ty studied (left frame) the permeability has very small values and

he isolines display an irregular behaviour; this is a feature com-

on to all plots relative to the smaller value of ε, signaling that

t is probably necessary, in this specific case, to insert additional

ample points in building the response surfaces. 

In Fig. 14 the parameter θ is set to 0 ° and the response surface

s displayed in the Re d − φ plane. As already indicated, the results

onfirm that an increase of the Reynolds number is generally asso-

iated to a decrease of the first diagonal component of the appar-

https://github.com/appanacca/porous_solvers_OF.git


Fig. 13. Response surfaces of H 11 with φ = 0 ◦ for porosity ε = 0 . 4 , 0 . 6 , 0 . 8 , from left to right. 

Fig. 14. Response surfaces of H 11 with θ = 0 ◦ for porosity ε = 0 . 4 , 0 . 6 , 0 . 8 , from left to right. 

Fig. 15. Response surfaces of H 11 with Re d = 40 for porosity ε = 0 . 4 , 0 . 6 , 0 . 8 , from left to right. 



Fig. 16. Response surface of H 11 ; in the left frame φ = θ = 0 ◦, in the centre frame φ = 90 ◦, θ = 0 ◦ and on the right φ = 45 ◦, θ = 22 . 5 ◦ . 
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ent permeability tensor. However, the H 11 variations with respect

to φ are more pronounced than those found with respect to θ and

are due to a real three-dimensionalization of the flow. This conclu-

sion remains to be verified in the lower porosity case (left frame)

where the variations are very tiny and more irregular. 

In Fig. 15 the Reynolds number is set to the inertial range value

of 40 and the response surface is displayed in the θ − φ plane.

For the two highest porosity values, 0.6 and 0.8, the results con-

firm that H 11 has a much stronger dependence on φ than on θ ,

suggesting that the real test of permeability models must include

three-dimensional effects. As seen earlier, the behaviour of the per-

meability when the porosity is low (left frame in the figure) is not

intuitive, with a significant effect of the angle φ and a minor in-

fluence of θ . Again this occurs from the constraint provided to the

flow by the inclusions, and from the occurrence of a large devi-

ation γ in these cases (see Appendix B for the definition of the

deviation angle γ ). 

The response surface is shown in the Re d − ε plane of Fig. 16 for

three sets of θ − φ angles. Here a significant effect of the poros-

ity with respect to the Reynolds number is observable. In fact

the surface gradient is almost aligned with the porosity direction,

i.e. a quasi-Reynolds independence is demonstrated in this plane,

and the apparent permeability can change by one order of magni-

tude in the range of the analysed porosity. Some relatively small

Reynolds number effects are visible for ε equal to 0.8, when the

wake of the flow has more space to develop in the inertial regime.

In the central figure the flow is aligned with the direction of the

fibers and, as expected, it shows practically no dependence with

respect to the Reynolds number. 

The response surface analysis has confirmed the qualitative

trends which had been reached earlier on the basis of a few se-

lected flow cases, yielding at the same time much more detailed

information on the behavior of the apparent permeability with the

parameters of the problem. The data base which has been built

will be used in future work which will focus, via the VANS ap-

proach, on configurations for which neither the porosity nor the

local Reynolds number are constant in space or time. 

7. Concluding remarks

The components of the permeability tensor are essential ingre-

dients for any solution of flow through anisotropic porous media.

When the flow through the pores resents of significant acceleration

effects, the permeability must be modified (it is then called appar-
nt ) by the presence of a second tensor, the Forchheimer tensor F ,

efined by 

 = KH 

−1 − I . 

he permeability, K , and the apparent permeability, H , can be for-

ally deduced by two closure problems which have been briefly

ecalled in Section 2 . The real obstacle to the solution of the prob-

em for H is the need to know the microscopic velocity fields

hrough the pores. We have solved for such fields in a unit cell

the REV), varying the forcing amplitude and direction, treating

ver one hundred different cases of flows through arrangements of

arallel fibers. From this, we have thus been able to solve the lin-

ar system (10) for all the unknown elements of the intermediate

ensor M , from which, through averaging, we obtain the apparent

ermeability. Such a tensor is indispensable to evaluate accurately

he drag force caused by the presence of the fibers, for a macro-

copic solution of the flow on the basis of Eqs. (4) and (5) when

nertial effects are present. 

It has been found that the apparent permeability tensor is

trongly diagonally dominant for whatever forcing direction and

orosity, provided the microscopic Reynolds number remains be-

ow a value approximately equal to 100; this results – which is a

irect consequence of the transverse isotropy of the material which

as been considered here – can be used to compute H rapidly, ap-

roximating it as a diagonal tensor. 

Finally, a metamodel has been used to produce results so as to

over the whole space of parameters, and this has allowed the con-

truction of a complete data base. The elements of the data base

rovide a robust approximation to the ”true” apparent permeabil-

ty values as discussed in Appendix B (see in particular B.2 and

.3 ). This data base is now being used in simulations of poroelastic

edia based on the VANS approach.
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Table A.3

Convergence analysis. Left: average velocity within the REV

normalized with
K 11 

νβ
|| f || , with K 11 the first component of 

the tensor K . Right: grid convergence metrics. The REV has

ε = 0 . 6 , the motion is along x 1 , i.e. θ = φ = 0 and Re d = 180 . 

Mesh Mesh Average REV Metric Value

index identifier velocity

3 fine 1.11 GCI 23 0.366%

2 medium 1.07 GCI 12 1.11%

1 coarse 1.09 AC 1.006
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ppendix A. Mesh convergence analysis 

The mesh has been computed using the internal OpenFOAM

esher named snappyHexMesh . The final grid is mainly composed

y hexahedral cells with a refined regular grid in the boundary

ayer regions next to the solid surfaces. Three different mesh sizes,

ith 0.65 × 10 6 , 10 6 and 1.5 × 10 6 elements, have been tested in or-

er to demonstrate spatial convergence. This has been assessed us-

ng the Grid Convergence Index ( GCI ) introduced by Roache (1998) .

Images of the coarsest mesh used are shown in Fig. A.17 . On

he right frame a close up of the grid in the neighbourhood of the

ber’s boundary is displayed: twenty points are used in the struc-

ured portion of the mesh along the wall-normal direction. 

The GCI method is based upon a grid refinement error estimator

erived from the theory of generalized Richardson extrapolation. It

easures the ratio between the computed value of a quantity over

he asymptotic numerical value, thus indicating how far the solu-

ion is from the asymptotic (”exact”) value. The procedure is simple

nd provides a method to estimate the order of the spatial conver-

ence, based on two or three different grid sizes. First of all, the

rids must be generated with the same algorithm and they must

ave the same final quality. In each simulation the intrinsic aver-

ge velocity in the porous medium is sampled. The method follows

he following four steps: 

1. Estimate the order of convergence of the procedure, defined as

p = ln 

(
f 3 − f 2 
f 2 − f 1 

)
/ ln r, 

where r is the grid refinement ratio between each grid (it is

computed as the ratio between the number of elements of two

consecutive grids; the approach imposes that r should remain

constant between any couple of consecutive grids and be larger

than 1.1), and f i represents the amplitude of the intrinsic av-

erage velocity in each grid (1 = coarse, 2 = medium and 3 =
fine). 

2. Compute the relative error between grid i and j : | ε| i j =
f j − f i 

f i 
,

for ( i, j ) ∈ {(1, 2), (2, 3)}.

3. Compute GCI i j =
F s | ε| i j

r p − 1 
, with F s a safety factor equal to 1.25 if

the grids are three, and equal to 3 if the grids are only two

( Roache, 1998 ). 

4. Check whether each grid level yields a solution that is in the

asymptotic range of convergence; this means that the quotient

AC = 

GCI 23 

GCI 12 

1 

r p 
should be as close as possible to one.
Fig. A.17. Mesh used for the computation; top view (left) an
The results are summarized in Table A.3 . 

rom the table it can be seen that the intrinsic velocity difference

s very small from one grid to the next and the coarse grid pro-

ides results close to the expected asymptotic value. This is taken

s a sufficiently convincing argument to carry out all the compu-

ations in the paper with a grid density equal to that of grid 1. 

ppendix B. Building the metamodel 

1. DACE sampling 

The first step to build a metamodel is the collection of relevant

amples. The quality of the final metamodel strongly depends on

he samples collected and their number and distribution is of pri-

ary importance. 

The apparent permeability tensor, H , depends on four indepen-

ent variables; the samples have been generated starting from the

et of parameters given in Table B.4 . 

One of the best options to generate the relevant database would

e to use a full factorial design approach in which all the combi-

ations of the four variables from Table B.4 are computed. Because

f the large number of computations required, this approach has

ot been retained. We have resorted to the methodology known

s DACE (Design and Analysis of Computer Experiments), a tech-

ique to fill in the best possible way the space of the parameters

f the problem. The Dakota library ( Adams et al., 2014 ) has been

elected for the purpose and the Monte-Carlo incremental random

ampling algorithm ( Giunta et al., 2003 ) has been chosen, in order

o make efficient use of the cases already computed. This incre-

ental approach selects in a quasi-random way the new samples

o generate, starting from the existing ones. In the end, the set of

amples comprises 118 cases. 

In the scatter plot of Fig. B.18 the three diagonal components

f the permeability tensor are shown as function of one another.

he three porosities are separately considered in each of the above
d zoom in the boundary layer region (right). ε = 0 . 6 . 



Table B.4

Sampling parameters.

parameter values

θ 0 ° 22.5 ° 45 °
φ 0 ° 22.5 ° 45 ° 67.5 ° 90 °
Re d 0 10 50 100

ε 0.4 0.6 0.8

 

 

 

 

 

 

 

 

 

 

 

Fig. B.19. Explanatory sketch for the relation between mean pressure gradient and

mean velocity field.
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plot, and the permeability points are represented with their linear

regression on top. This kind of plot is common in statistical anal-

ysis to determine if correlations in the data are present. The per-

meability components display a positive correlation, with the data

points which lie reasonably close to a straight line. 

This result has a physical implication. Remembering the diago-

nal dominance of the permeability tensor, we have in the low Re d 
limit: (〈

u β

〉β
,
〈
v β

〉β
, 
〈
w β

〉β)
∼

(
H 11 

∂ p 

∂x 1 
, H 22 

∂ p 

∂x 2 
, H 33 

∂ p 

∂x 3 

)
. (B.1)

It is then possible to compute the angle between the forcing term,

∇p , and the average velocity vector, represented in Fig. B.19 for the

two-dimensional case, φ = 0 . This is achieved by taking the ratio

between the first two components of Darcy’s equation, calling γ
the angular flow deviation with respect to the mean forcing. We

thus have: 

tan (θ + γ ) = 

H 22 

H 11 

tan θ . (B.2)
Fig. B.18. Scatter matrix plot for the collected nume
f the ratio between the two permeability components is equal to

ne, the angle γ vanishes. The correlation between H 11 and H 22 

ontrols the deviation of the flow in the ( x 1 , x 2 ) plane, and the

rgument can easily be extended to H 11 / H 33 and H 22 / H 33 for devi-

tion angles in three-dimensions. 

Using a linear correlation such as that shown in Table B.5 and

ig. B.18 , it is observed that in the low porosity case (ε = 0 . 4) the

atio can become very large indicating a strong deviation of the

ow from the forcing direction, because of the strong constraint

rovided by the inclusions. As the porosity increases, the ratio does

ot differ much from unity, which means that the deviation re-

ains limited. It is simple to see that the deviation angle, for ex-
rical data of the apparent permeability tensor.



Table B.5

Permeability components ratio for three

values of the porosity. The permeability

ratios here are given by the angular co- 

efficients of the linear correlations dis- 

played in Fig. B.18 .

ε H 11 / H 22 H 11 / H 33 H 22 / H 33

0.4 1.57 11.06 96.03

0.6 1.50 1.62 0.99

0.8 1.20 0.82 0.66
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Fig. B.20. Relative mean error computed using the k -fold approach presented

against the number of folds k used to divide the dataset.
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mple in the ( x 1 , x 2 ) plane, satisfies the approximate relation 

an γ = 

(
1 − H 11

H 22 

)
tan θ

H 11 

H 22

+ tan 

2 θ

,

o that for 
H 11 

H 22 
equal to, say, 1.5, the largest deviation remains al-

ays below 12 ° for any θ . It should however be kept in mind that

rends based on these ratios are valid only as long as Darcy’s law

nd linear correlations are acceptable. Cases exists for which such

rends are violated; for example, a flow with θ = 45 ◦ and φ = 0 ◦

as deviation angle γ equal to zero, for whatever porosity. In this

ase H 11 / H 22 is equal to one and such a point is an outlier in the

egression plots of Fig. B.18 . 

2. Kriging interpolation method 

The kriging approach is a linear interpolation/extrapolation

ethod that aims to build a predictor field based on a set of ob-

ervations ( x i , y ( x i )), for i = 1 , . . . , n . 

The predictor ˆ f (x ) is a sum of a trend function t ( x ) and a Gaus-

ian process error model e ( x ): 

ˆ f (x ) = t(x ) + e (x ) . (B.3)

he aim of the error model is to make adjustments on the trend

unction so that, for any point of the sampling the predictor is ex-

ctly equal to the sample, i.e. ˆ f ( x i ) = y ( x i ) . This property repre-

ents one of the main qualities of this approach. In addition, when

he model parameters are conveniently set, the trend function and

he covariance model can take into account both smooth and steep

ariations in the data set. 

The trend function defined here is based on a second order

east-square regression, with the coefficients found from the so-

ution of the associated linear system. The Gaussian process er-

or model has zero-mean and its covariance between two generic

ata-points, x i and x j , is written as 

ov (y ( x i ) , y ( x j )) = σ 2 r( x i , x j ) . 

he coefficient σ is an amplitude parameter and r ( x i , x j ) is a corre-

ation function, based on the Matérn covariance model, that reads:

( x i , x j ) = 

2 

1 −ν

�(ν)

(√ 

2 ν| x i − x j |
| λ|

)ν

K ν

(√ 

2 ν| x i − x j |
| λ|

)
, (B.4)

here K ν (.) is a modified Bessel function and �(.) is the gamma

unction. The parameters that can be used to tune the meta-

odel are the amplitude parameter σ , the exponent ν and the

cale vector λ. The kriging metamodel outputs can show differ-

nt behaviours for different selections of the above three param-

ters and their setting is thus crucial. The amplitude parameter

is chosen to be equal to 1; larger value lead to steeper gradi-

nts and undesirable local extrema around the data points. The

ector λ = (λθ , λφ, λRe d 
, λε ) is a scaling parameter for the dis-

ance | x i − x j | . In this study, through systematic variations of the
arameters it is found that the choice λ = (1 . 2 , 1 , 1 , 1) yields ac-

eptable results; in particular, the weight along θ is mildly larger

han in the other directions in order to obtain smoother meta-

odel surfaces in this direction. The exponent ν controls the co-

ariance function and more particularly its gradients. When ν =
 / 2 the covariance can be approximated by a negative exponential,

xp (−αx ) and when ν goes to infinity it behaves as exp (−αx 2 ) . In

he present study, the best (i.e. smoother) results are obtained for

equal to 1.9. The above parameters have been chosen in order

o avoid unphysical or unrealistic behavior of the apparent perme-

bility such as, for instance, negative values or steep, spurious local

axima/minima. The method above is implemented in OpenTURNS

 Baudin et al., 2016 ). 

3. Robustness of the metamodel 

A procedure called k -fold, belonging to the class of cross-

alidation methods, has been used in order to prove the robustness

f the metamodel. The k -fold method starts with the full database

 n = ( x i , y ( x i )) , for i = 1 , . . . , n, split into two complementary sets

f size n 1 and n 2 , such that S n = S n 1 ∪ S n 2 . Then, a new metamodel

s built using only the points present in the set S n 1 . For the sake of

larity, the metamodel built with only the subset S n 1 will be called

rom now on 

ˆ f n 1 , and the metamodel built with all the database

ill be indicated as ˆ f n . The idea now is to use the points in the set

 n 2 as test, since they are essentially ”new” for the metamodel ˆ f n 1 .

he division of the subset is performed picking points in a ran-

om way, and is repeated k times in order to rule out any possible

lucky” combination. 

Thus, the metric used for the error computation is the follow-

ng: 

cv = 

1 

k n 2 

k ∑ 

i =1

n 2 ∑ 

j=1

(
ˆ f n i (x j ) − ˆ f n 2 

i 
(x j ) 

)2

,

uantifying the quadratic error between the original metamodel

nd the one built each time with a different set that belongs to

ifferent folds. 

The metric is also averaged over all the test points n 2 present

n all the k folds. The relative mean error can be computed as: 

 cv % = 100 

√ 

ξcv 

mean (| ̂  f n 
i 
| ) .

n our case the number of points used to test the model n 2 is equal

o 
√ 

N ≈ 12 as recommended for kriging metamodels by Wang and

han (2007) . The number of folds has been varied from 5 to 25
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and in all the cases tested the E cv % has been found to decrease be-

low 6% when we use at least 16 folds (which means leaving out 7

to 8 points from the metamodel construction), which is more than

acceptable to prove that our kriging method is a robust approxi-

mation ( Fig. B.20 ). 
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