
HAL Id: hal-01811008
https://hal.science/hal-01811008

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning with a generative adversarial network from a
positive unlabeled dataset for image classification

F Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, Frédéric Dufaux

To cite this version:
F Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, Frédéric Dufaux. Learning with a generative
adversarial network from a positive unlabeled dataset for image classification. IEEE International
Conference on Image Processing (ICIP’2018), Oct 2018, Athens, Greece. �10.1109/icip.2018.8451831�.
�hal-01811008�

https://hal.science/hal-01811008
https://hal.archives-ouvertes.fr


LEARNING WITH A GENERATIVE ADVERSARIAL NETWORK FROM A POSITIVE
UNLABELED DATASET FOR IMAGE CLASSIFICATION

F. Chiaroni?‡ M-C. Rahal? N. Hueber† F. Dufaux‡

? VEDECOM Institute, Department of delegated driving (VEH08), Perception team,
{florent.chiaroni, mohamed.rahal}@vedecom.fr

† French-German Research Institute of Saint-Louis (ISL), ELSI team, nicolas.hueber@isl.eu
‡ L2S-CNRS-CentraleSupelec-Univ Paris-Sud,

{florent.chiaroni, frederic.dufaux}@l2s.centralesupelec.fr

ABSTRACT

In this paper, we propose a new approach which addresses the
Positive Unlabeled learning challenge for image classification.
Its functioning is based on GAN abilities in order to generate
fake images samples whose distribution gets closer to negative
samples distribution included in the unlabeled dataset avail-
able, while being different to the distribution of the unlabeled
positive samples. Then we train a CNN classifier with the
positive samples and the fake generated samples, as it would
be done with a classic Positive Negative dataset. The tests per-
formed on three different image classification datasets show
that the system is stable up to an acceptable fraction of positive
samples present in the unlabeled dataset. Although very differ-
ent, this method outperforms the state of the art PU learning
on the RGB dataset CIFAR-10.

Index Terms— Deep Learning, Image classification, Posi-
tive Unlabeled Learning, Representation Learning, Generative
Models

1. INTRODUCTION

Deep learning methods using convolutional kernel filters have
demonstrated good prediction performances in the field of
computer vision and especially for the task of image classifica-
tion. To achieve such performance, large fully labeled datasets
are required. Nowadays, multiple datasets can be merged
to increase the generalization capacity of learning model as
described in YOLO9000 [1].

Nevertheless, to mitigate this need of large labeled datasets,
an idea is to focus mainly on data of interest. This is the case
in One-Class Classification methods (OCC) [2], novelty detec-
tion [3] where they only use during the training the samples of
the class of interest; the positive class. To our knowledge, OCC
methods have a limited performance when applied to large
data tensors such as images. Besides, it is often easy to ac-
quire unlabeled samples that may contain relevant information
especially about the counter-examples of the class of interest.

In this way, we address a Positive Unlabeled learning prob-
lem. It turns out that PU learning methods have been applied
recently to image data type such as the Rank Pruning method
(RP) [4]. RP method consists in consecutively carrying out
several trainings of the classifier on a noisy labeled dataset, by
removing the least relevant samples after each training stages.
Furthermore, according to [5], PU learning methods become
competitive when the number of unlabeled samples in the
dataset considerably increases. This is an advantage when we
can easily get unlabeled data.

In addition, the generative adversarial networks (GANs)
have drawn our attention because of their ability to generate
fake samples xF that have a distribution pG(xF ) that tends
towards the distribution pdata(xR) of the real samples xR used
during its training. The original GAN [6] contains a generative
model G and a discriminative model D. Both models have
a multilayer perceptron structure. A noise vector z with a
distribution pz(z), composed of continuous random variables,
is placed at the input of G. D is trained to distinguish real
samples from fake samples generated by G, while the latter is
trained to produce fake samples that seem as real as possible.
This adversarial training consists in using a minimax function
value V (G,D):

min
G

max
D

V (D,G) = ExR∼pdata(xR)[logD(xR)]

+Ez∼pz(z)[log(1−D(G(z)))].
(1)

When D can no longer distinguish real samples from fake
samples, we have the following property for its scalar predicted
output yD:

pG(xF ) −−−−−→
yD→0.5

pdata(xR). (2)

Other variants of GAN have emerged such as the DCGAN
[7], which adapts its structure to image processing by incorpo-
rating convolutional layers. The Wasserstein GAN (WGAN)
[8] integrates the distance Earth−Mover (EM ) into its cost
function in order to rectify the instability problem of these
early versions of GANs.



Because of their ability to learn relevant semantic repre-
sentations, we decided to exploit their advantages for a PU
learning application. The approach [9] also appeared to answer
the same problematic by the use of a GAN learning model. But
their study stops at the functional description of their model.
Moreover, the latter requires to train simultaneously five neural
networks against only two in our method. Here, our proposed
approach that we called Positive-GAN (hereafter ”PGAN”)
has been tested on three different datasets and whose results
are very promising in terms of prediction performance and
robustness. It outperforms the state of the art on the most
challenging image dataset that we tested.

The paper is organized as follows. In the next section
we present the method. The experimentations and results are
presented in the third section. In the end, a conclusion is drawn
on our approach and future research directions are suggested.

2. POSITIVE-GAN LEARNING METHOD

In this section, we describe our PU learning framework as
generically as possible and focus the description on the train-
ing method. The Positive-GAN learning method (PGAN)
consists in substituting the absence of labeled negative sam-
ples xN with fake samples xF generated by our GAN, and so
that whose distribution is as close as possible to that of xN ,
while being different from that of positive samples xP . Fig.1
illustrates the structure of the system.

Fig. 1. Proposed Positive Unlabeled system: Positive-GAN
Learning model.

During the Step 1, the GAN is trained with the unlabeled
samples xU from the PU training dataset that contains a frac-
tion π of positive samples and a fraction 1 − π of negative
samples xN . The Positive Unlabeled framework includes three
convolutional neural network models with different roles:

• The discriminative model DU is trained to distinguish
real unlabeled samples xU from fake generated unla-
beled samples xF , with yDU ∈ (0, 1) its scalar output
prediction.

• The generative model G takes in input a noise vector z
of continuous random variables with a uniform distri-
bution in this case and outputs, in the same format as
xU , the fake image samples xF (⇔ G(z)) which can be
either positive xFP or negative xFN . G is trained in
an adversarial way with DU in order to generate fake
samples such that their distribution p(xF ) tends towards
p(xU ). At the same time it gets away from positive
labeled samples distribution p(xP ) as explained below.

• In Step 2, once the GAN training is completed, the
convolutional classifier DB , designed for binary image
classification task, is trained to distinguish the real posi-
tive samples xP from fake samples xF .

We remember that the untagged dataset is composed of a
fraction π of positive samples xP and a fraction 1 − π of
negative samples xN . So if the GAN is correctly trained on
the unlabeled samples xU , we can deduce that:

p(xF ) −−−−−−→
yDU→0.5

p(xU ) (3)

⇔ p(xFP ), p(xFN ) −−−−−−→
yDU→0.5

p(xP ), p(xN ). (4)

It is also known that a GAN is not perfect in its operation when
it is applied to high dimensional data, therefore:

p(xFP ) 6= p(xP ), and p(xFN ) 6= p(xN ). (5)

Thus it is possible to estimate the non-zero distance d com-
puted into the cost function of DB such that:

d(p(xP ), p(xF )) ⇔
{
d(p(xP ), p(xFP ))
d(p(xP ), p(xFN )).

(6)

But, the distance d(p(xP ), p(xFP )) will not be exploited for
the final application where we treat only real samples with the
classifier. This means that when p(xFN ) −−−−−−→

yDU→0.5
p(xN ),

we get the equivalence:

d(p(xP ), p(xFN ))⇔ d(p(xP ), p(xN )). (7)

We are thus able to calculate the distance that interests us. By
transposing this reasoning in the PU framework, this amounts
to asserting the following equivalences at the output loss func-
tion LDB of the classifier DB when yDU → 0.5:

LDB = ExP∼p(xP )[logDB(xP )]

+Ez∼pz(z)[log(1−DB(G(z)))]
(8)

⇔ LDB = ExP∼p(xP )[logDB(xP )]

+ExN∼p(xN )[log(1−DB(xN ))].
(9)

Thus, from the assumptions made above we can assume that
the PGAN method is getting closer to a Positive Negative
training while moving away from a Positive Unlabeled training
despite the fact that the training dataset we have contains only
positive labeled samples and unlabeled samples. However, two
risks can occur with this method:



• If the untagged samples xU contain mostly positive sam-
ples xP , then it is possible that G no longer generates
enough fake samples similar to the samples xN .

• If G generates false samples with a distribution equal
to that of the real samples, unlike in the inequality 5,
then PGAN would become equivalent in terms of per-
formance to a classical Positive Unlabeled training. But
when the dimensionality of images to be processed is
large, this risk disappears.

3. EXPERIMENTS

3.1. Settings

Experiments have been realized on the three datasets MNIST
[10], Fashion-MNIST [11] and CIFAR-10 [12]. We have com-
pared our approach to RP [4], which is the best PU learning
method to the best of our knowledge. Author’s implementation
is available 1. We also report the performance of the classifier
trained on the entire Positive Negative initial training dataset,
and we call naturally this method PN. We also compare our
method to a training named PU which is equivalent to PN but
with the PU dataset.

For these experiments, PN, PU, PGAN (ours) and RP
methods are tested with exactly the same CNN classifier in
order to stay impartial. The classifier has the same structure
as in 2 to remain generic. It contains two convolutional layers,
two corresponding maxpooling steps, and then two consecutive
fully connected layers. Activation function after each layer
is ReLU except the last one where softmax is applied. We
only changed its last layer from 10 to 2 neurons to adapt it for
binary classification. The classifier is trained on 20 epochs
iterations. For the CIFAR-10 dataset images 32*32*3, the
input and output tensors of the two convolutional layers are
adapted and the depth of the first convolutional kernel filters
is 3 to correspond to the 3 channels of the RGB images. But
the number of kernel filters and their remaining height*width
remain unchanged.

Because of the WGAN [8] abilities, we use its training
method for these experiments. The training duration for
the generative model depends on the dataset complexity:
10 epochs for MNIST, 20 for Fashion-MNIST, and 100 for
CIFAR-10. For the latter, we do the same modifications in the
structures of DU and G as explained before for the classifier.

Regarding the PU training dataset, ρ corresponds to the
fraction of positive samples P from the total of positive sam-
ples in the initial training dataset which contains nP samples.
These collected samples are then introduced into the Utrain un-
labeled dataset, which initially contains only negative samples
N whose total number is nN . π is the fraction of positive sam-
ples P present in the unlabeled training dataset Utrain. Utrain

1https : //github.com/cgnorthcutt/rankpruning
2https : //github.com/tensorflow/tensorflow/blob/master/

tensorflow/examples/tutorials/mnist/mnist softmax.py

then contains both negative and positive samples according to
the ρ and π parameters. We establish that if π ∈ [ 1

nN
ρ×nP

+1
, 1),

and ρ ∈ (0, 1), then we can obtain consecutively the two
following training sets:

Ptrain = {(1− ρ)nP P ; 0 N},
with Ptrain the set of positive training samples, and

(10)

Utrain = {ρ× nP P ;
1− π
π

ρ× nP N}. (11)

The results presented below are all performed with ρ = 0.5
and for several values of π.

3.2. Results

In Fig. 2, we present some of the fake images generated,
respectively from MNIST, Fashion-MNIST and CIFAR-10.
We can notice that the images generated by G seem visually

(a) (b) (c)

Fig. 2. Images generated by G trained with ρ = 0.5 and π =
0.5 after 10 epoch itterations on MNIST(a), 20 on Fashion-
MNIST(b), and 100 on CIFAR-10(c). Respective positive
classes are ”5”, ”trouser” and ”automobile”.

real, which indicates from a qualitative point of view the proper
functioning of the generative model. In order to get such a
rendering, the more complex and large the images are, the
more the generative model requires a large number of training
epochs.

To compute the F1-Scores, the ArgMax function is applied
to the two output neurons of the classifier. Thus, if the index of
the first neuron is returned by ArgMax, then the treated sample
is considered as negative. Otherwise, the sample is considered
as positive. Table 1 shows some of the average F1-Score 3

comparative results.
In Fig. 3, it can be observed that the PN method is a

good reference for the MNIST and Fashion-MNIST datasets.
We find that the efficiency of the PGAN learning method
is equivalent to that of the RP method up to π = 0.5 on
MNIST and π = 0.3 on Fashion-MNIST. Its efficiency then
declines a little bit faster than for RP, while keeping a correct
F1-Score. On CIFAR-10 from end to end, the F1-Score is
better for PGAN than for RP. Note that the PGAN method

3Average F1-Score represents the mean of F1-Score mesured for each
class in a given dataset.



Table 1. F1-Score averages results comparisons on MNIST, Fashion-MNIST and CIFAR-10 after 20 epochs of the classifier.

PU PGAN RP PU PGAN RP PU PGAN RP PU PGAN RP

Dataset ρ = 0.5, π = 0.1 ρ = 0.5, π = 0.3 ρ = 0.5, π = 0.5 ρ = 0.5, π = 0.7

AV GMNIST 0.66 0.97 0.97 0.60 0.96 0.97 0.65 0.95 0.95 0.70 0.87 0.93
AV GFashion-MNIST 0.68 0.94 0.92 0.33 0.93 0.95 0.82 0.90 0.95 0.65 0.86 0.94
AV GCIFAR-10 0.31 0.75 0.62 0.42 0.76 0.73 0.28 0.75 0.72 0.54 0.70 0.68
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Fig. 3. Average F1-Scores after 20 training epoch iterations of
the classifier in fonction of the rate π that is varied between 0
and 1 with a step of 0.1, for PN (green), PU (red), RP (blue)
and PGAN (orange) on MNIST (a), Fashion-MNIST (b) and
CIFAR-10 (c).

also presents better results than the reference PN up to π =
0.8, which is quite surprising. This is probably because the
generated samples represent a larger field of negative sample
distributions than the real negative samples present in the initial
Positive Negative dataset. Moreover, the PGAN F1-Score is
consistently higher than the PU method on the three datasets.

Figure 4 presents the study of the robustness of PGAN
approach. Figures 4.a and 4.b show that PGAN method has a
comparatively more robust behavior such that we can predict
more easily the F1-Score evolution as a function of π for each
dataset class. Figure 4.c shows us that the classifier stabilizes
and converges after about 10 training epochs. To make the
histogram in Fig. 4.d, we have retrieved the scalar of the
second output neuron of the classifier which corresponds to
the predicted probability for a input image of belonging to
the positive class. It can be seen that the distribution of the
negative and positive test samples processed by the PGAN is
of the Gaussian type, which is an interesting characteristic for
real applications.
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Fig. 4. Robustness analysis on MNIST. F1-Score evolution
for each class as a function of π for PGAN (a), and for RP
[4] (b). (c) shows the Accuracy evolution during the PGAN
training with the positive class ”5” and π = 0.5. (d) is the
histogram of the output distributions of the classifier at its 20th
epoch iteration of (c) for positive (green) and negative (blue)
test samples.

4. CONCLUSION

Thereby, we demonstrated that the proposed PU learning ap-
proach provides state of the art prediction performances and
has a steady behavior on small image datasets up to an accept-
able fraction π of positive samples in the unlabeled training
dataset. In addition, our method outperforms the state of the
art on challenging RGB images of CIFAR-10. System opti-
mization can be carried on testing other generative models
instead of the WGAN [8], like BEGAN [13], WGAN-GP [14].
Another orientation can be to exploit the z latent space of
GANs to perform linear arithmetic operations, as in [15], in
order to generate more relevant fake samples.

Considering the promising performances obtained on the
CIFAR-10 dataset, a future direction is to extend this method
to the analysis of larger images and thus to allow the realization
of more complex tasks such as object detection [16], [17], [18]
or semantic segmentation [19].
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