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STABILIZATION AND BEST ACTUATOR LOCATION FOR THE
NAVIER–STOKES EQUATIONS∗

CHRISTOPHE AIRIAU† , JEAN-MARIE BUCHOT‡ , RITESH KUMAR DUBEY§ , MICHEL
FOURNIÉ‡ , JEAN-PIERRE RAYMOND‡ , AND JESSIE WELLER-CALVO†

Abstract. We study the numerical approximation of the boundary stabilization of the Navier–
Stokes equations with mixed Dirichlet/Neumann boundary conditions, around an unstable stationary
solution in a two dimensional domain. We first derive a semidiscrete controlled system, coming from
a finite element approximation of the Navier–Stokes equations, which is new in the literature. We
propose a new strategy for finding a boundary feedback control law able to stabilize the nonlinear
semidiscrete controlled system in the presence of boundary disturbances. We determine the best con-
trol location. Next, we study the degree of stabilizability of the different real generalized eigenspaces
of the controlled system. Based on that analysis, we determine an invariant subspace Zu and the
projection of the controlled system onto Zu. The projected system is used to determine feedback
control laws. Our numerical results show that this control strategy is quite efficient when applied to
the Navier–Stokes system for a Reynolds number Re = 150 with boundary perturbations.

Key words. Navier–Stokes equations, feedback boundary control, boundary perturbation, best
actuator location

1. Introduction.

1.1. Setting of the problem. We study the numerical approximation of the
boundary stabilization of the Navier–Stokes equations with mixed Dirichlet/Neumann
boundary conditions, around an unstable stationary solution in a two dimensional
domain. The system is subject to disturbances in an inflow boundary condition,
and the control acts through a Dirichlet boundary condition. In the model that we
consider, Ω is a bounded domain in R2 with boundary Γ = Γd ∪ Γn, Γd (resp., Γn) is
the part of Γ where Dirichlet (resp., Neumann) boundary conditions are prescribed.
We assume that (ws, qs) is a real valued solution to the stationary Navier–Stokes
equations

(1.1)
(ws · ∇)ws − divσ(ws, qs) = 0, divws = 0 in Ω,
ws = us on Γd, σ(ws, qs)n = 0 on Γn,
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where σ(ws, qs) = ν(∇ws+(∇ws)T )−qsI is the Cauchy stress tensor and ν > 0 is the
kinematic viscosity of the fluid. We consider the case where (ws, qs) is an unstable
solution of the following system:

(1.2)

∂w

∂t
+ (w · ∇)w − divσ(w, q) = 0, divw = 0 in Q∞ = Ω× (0,∞),

w = us + vc + vd on Σ∞d , σ(w, q)n = 0 on Σ∞n ,
w(0) = ws + z0 on Ω,

with Σ∞d = Γd × (0,∞) and Σ∞n = Γn × (0,∞). In this setting w denotes the fluid
velocity, q is the fluid pressure, z0 is a perturbation of the stationary velocity ws, vc
is the control function with support in Γc× (0,∞) ⊂ Σ∞d , us is supported in Γi ⊂ Γd,
and vd is a time dependent disturbance, with support in Γi× (0,∞). It plays the role
of an unknown model error in the inflow boundary condition, and we assume that it
is of the form vd(x, t) = µ(t)h(x). We choose vc of the form

(1.3) vc(x, t) =
Nc∑
i=1

vi(t) gi(x).

The functions gi are the supports of the actuators; their location can be chosen in
the control zone Γc to improve the efficiency of the control. We shall explain later on
how we can determine the best control location. The function v = (vi)1≤i≤Nc is the
control variable.

As noticed in [26], if (vc(·, 0), vd(·, 0)) 6= (0, 0), the initial condition w(0) = ws+z0
has to be replaced by Πw(0) = Π(ws + z0), where Π is the Leray projector defined
in section 2.2. Setting z = w − ws and p = q − qs, the nonlinear system satisfied by
(z, p) is

(1.4)
∂z

∂t
+ (ws · ∇)z + (z · ∇)ws + (z · ∇)z − divσ(z, p) = 0, div z = 0 in Q∞,

z = vc + vd on Σ∞d , σ(z, p)n = 0 on Σ∞n , Πz(0) = Πz0 in Ω,

while the linearized system is

(1.5)
∂z

∂t
+ (ws · ∇)z + (z · ∇)ws − divσ(z, p) = 0, div z = 0 in Q∞,

z = vc + vd on Σ∞d , σ(z, p)n = 0 on Σ∞n , Πz(0) = Πz0 in Ω.

Let us emphasize that all the data and the solutions to the above equations are real
valued. As is well known, contrary to the stationary Navier–Stokes equation with
nonhomogeneous Dirichlet boundary conditions, in the case of mixed or Neumann
boundary conditions, the existence of a weak solution to (1.1) is guaranteed only
under smallness conditions on the datum us (see, e.g., [23] or [16]). The existence of
solution (ws, qs) when us is a parabolic profile and when the channel in Figure 2.1 is
long enough is analyzed in [26, appendix].

1.2. Semidiscrete approximations and control strategy. The stabilization
of system (1.4) by a control of finite dimension in feedback form has been recently
studied in [26]. When we approximate systems (1.4) and (1.5) by a finite element
method, the nonhomogeneous Dirichlet boundary conditions can be taken into account
either in strong form by imposing the value of the fluid flow at the boundary, or in weak
form by adding a Lagrange multiplier. Despite its importance for the control of fluid



flows, the representation of semidiscrete approximations as controlled systems with a
control acting on the boundary has not been extensively studied in the literature.

In the case of mixed boundary conditions, the representation of the incompressible
Navier–Stokes equations as a controlled system is quite recent; see [26]. Obtaining
similar results for the corresponding semidiscrete models is a crucial step to next
develop a numerical control strategy. Indeed, a very good numerical algorithm for
model reduction or for solving large scale Riccati equations will not be efficient if the
representation of the underlying discrete model, in the form of a controlled system, is
not accurate enough.

For the infinite dimensional model corresponding to the Navier–Stokes equa-
tions or the linearized Navier–Stokes equations, the weak and strong formulations
for Dirichlet boundary conditions lead to the same controlled systems. This is no
longer true for semidiscrete models.

For stationary Navier–Stokes equations the numerical treatment of nonhomoge-
neous Dirichlet boundary conditions either in strong form or in weak form is well
studied in the literature; see [17].

The representation as controlled systems of semidiscrete approximations of the
Navier–Stokes equations is usually done by using the so-called Leray or Helmholtz
projector. In the case of nonhomogeneous Dirichlet boundary conditions, with a
nonzero normal component, the Leray projection of the velocity is different from the
velocity. Because of that, the state variable of the controlled system is not the velocity
but its projection. An additional equation has to be added for the remaining part of
the velocity. This decomposition is an essential step to stabilize the Navier–Stokes
system by a feedback boundary control (see [26, 29, 30, 31]).

In this paper, we take into account the nonhomogeneous Dirichlet boundary con-
ditions in a weak form, by introducing an additional Lagrange multiplier τ (t). It is
convenient to concatenate the two Lagrange multipliers p(t) (the discrete approxi-
mation of the pressure) and τ (t), and to introduce the vector η = (η1, · · · , ηNη )T =
(p1, · · · , pNp , τ1, · · · , τNτ )T . The semidiscrete model is of the form
(1.6)
Mzzz′(t) = Azzz(t) +Azηη(t), IΠT z(0) = IΠT z0, ATzηz(t)−Mηη G v(t) = 0,

where IΠ is the discrete Leray projector of the system and G is the matrix whose
columns are the coordinate vectors of the actuators gi. The mass matrices are Mzz ∈
RNz×Nz and Mηη ∈ RNη×Nη , and the stiffness matrices are Azz ∈ RNz×Nz and
Azη ∈ RNz×Nη . We assume that Nη < Nz and that Azη is of rank Nη. We prove that
(z,η) is the solution of (1.6) if and only if it is the solution to

(1.7)
IΠT z′(t) = A IΠT z(t) + Bv(t), IΠT z(0) = IΠT z0,

(I − IΠT )z(t) = M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(t),

η(t) = (ATzηM
−1
zz Azη)−1ATzηz

′(t)− (ATzηM
−1
zz Azη)−1ATzηM

−1
zz Azzz(t),

where the matrix A and the control operator B are defined by

A = IΠTM−1
zz Azz and B = AM−1

zz Azη(ATzηM
−1
zz Azη)−1Mηη G.

Thus, we have determined the pair (A,B) needed for any control strategy of the
linearized system (1.6) or, equivalently, (1.7). We prove that the family (gi)1≤i≤Nc
can be chosen so that the pair (A,B) is stabilizable in Ker(ATzη) (see Proposition
2.1 for the stabilizability of the infinite dimensional model and Remark 3.10 for the
stabilizability of the semidiscrete model).



Due to the definition of IΠT , we have RNz = Ker(ATzη) ⊕ Ker(AIΠT ), and
Ker(ATzη) = ⊕λj 6=0,Imλj≥0GR(λj), where GR(λj) is the real generalized eigenspace
associated with λj ∈ spect(AIΠT ). We choose a family (λj)j∈Ju containing all
the unstable eigenvalues (with nonnegative imaginary part) of AIΠT and eventu-
ally the most stabilizable eigenmodes (with nonnegative imaginary part), and we set
Zu = ⊕j∈JuGR(λj). Thus, we have a decomposition of KerATzη of the form

(1.8) Ker(ATzη) = Zu ⊕ Zs with AZu ⊂ Zu and AZs ⊂ Zs,

and A|Zs is exponentially stable. To stabilize system (1.6), it is enough to stabilize
the system obtained by projecting system (1.6) onto Zu parallel to Zs.

Our control strategy is based on a hierarchical procedure consisting in the follow-
ing steps:

1. After deriving the semidiscrete controlled system, we first determine the best
control location. Next, we study the degree of stabilizability of the different real
generalized eigenspaces of the semidiscrete controlled system. Based on that analysis,
we determine an invariant subspace Zu used to define a reduced order model.

2. We next choose some parameters, in the Riccati equation used to calculate
feedback control laws, to stabilize efficiently the transient regime of the closed-loop
linearized system. That is essential when the feedback law is used to stabilize the
nonlinear system. There is a compromise to be found between the efficiency of the
control law and the amplitude of the control.

3. We compare the efficiency of different feedback laws for the nonlinear system
with boundary perturbations, by varying the choice of Zu and of the Riccati equations
used to determine the feedback gains.

Even if it is not detailed for reasons of length, our approach allows us to show
that the feedback control laws for the semidiscrete controlled system are finite element
approximations of feedback control laws of the infinite dimensional controlled system.

Let us finally make some comparisons with related papers in the literature.
In [19] the authors deal with model reductions for stable linearized Navier–Stokes

equations. The semidiscretization of the PDE system is performed with a P2–P1 finite
element method and a strong formulation for the nonhomogeneous Dirichlet boundary
control. As noticed in section 8, in this approach the time derivative of the control
appears in the semidiscrete algebraic differential system. For stable systems as in [19],
the time derivative of the control may be removed when a mass lumping method is
used (see section 8 and [12]). With this choice, the algebraic differential system in [19,
eqs. (1.1a), (1.1b)] is of the same type as system (1.6). But obviously the unknowns
are different. Thus, even if the controlled system [19, eqs. (6.6a), (6.6b)] looks very
similar to our controlled system (1.7), the variables of the two systems do not have
the same meaning and do not play the same role.

In [6], a lifting procedure is also used to treat the boundary controls. But unlike
the approach in [19], the time derivative of the control, appearing via this lifting, is
not removed, and it is taken into account in an extended system. See also [8] for
numerical tests comparing different ways of dealing with nonhomogeneous boundary
conditions for convection diffusion equations.

In the two papers [9] and [5], a lifting procedure is also used to deal with Dirichlet
controls in a strong form. As in [19], the time derivative of the control is dropped out,
which simplifies the derivation of the controlled system (see section 8), but which,
according to our experience in [12], may affect the numerical accuracy for unstable
systems. The lifting procedure in [5, section 2.4] is different from the one in [19].



It uses a Leray projector. However, the Leray projector introduced [5, page A837],
together with the decomposition of L2 vector fields, is not consistent with the mixed
boundary conditions considered in those papers (compare with (2.1)).

In [10], the authors study the reduction of the shedding of vortices behind a
circular cylinder by rotation. We can notice that even if the shedding of vortices is
reduced, the stabilization is far from being achieved. In the case of a distributed
control, the approach based on the projection onto an unstable subspace has been
used in [1]. See also the review paper [14] about control strategies of wakes behind a
bluff body.

The plan of the current paper is as follows. Throughout section 2 we recall results
from [26] that are used in the paper. In section 3, we describe the finite element
approximation of system (1.5). The projected dynamical system of small dimension,
needed to determine feedback control laws, is derived in section 3.5. We explain
in section 3.6 how we can determine feedback control laws stabilizing the nonlinear
semidiscrete system. Section 4 is dedicated to the numerical approximation of the
linearized Navier–Stokes system and to the determination of the associated spectrum.
In section 5, we introduce criteria used for finding the best control location and the
degree of stabilizability. The stabilization results for the Navier–Stokes equations
are reported in section 6. Finally, in an appendix (section 8), we treat the case of
Dirichlet boundary conditions without Lagrange multiplier, and we clearly see that
the approach with Lagrange multiplier leads to a much simpler system.

2. The infinite dimensional model.

2.1. The geometrical configuration. Let us now describe more precisely the
problem we deal in the numerical tests. The geometrical domain corresponds to a flow
around a circular cylinder in a rectangular channel; see Figure 2.1. The dimensions
of the domain are Ω = (−1.5, 2.2) × (0, 0.4) \ Disc, where “Disc” is the disc centered
at (0.25, 0.2) with radius rc = 0.05. The boundary of the disc is denoted by Γc.
The inflow boundary is Γi = {−1.5} × [0, 0.4], the outflow boundary is Γn = {2.2} ×
[0, 0.4], and homogeneous boundary conditions are prescribed on Γ0 = (−1.5, 2.2)×
{0}∪(−1.5, 2.2)×{0.4}. For more general configurations to which the present results
of the paper may be applied, we refer the reader to [26].

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

Fig. 2.1. Geometrical configuration and triangular mesh used for simulations.

2.2. The Oseen operator. In the case of mixed Dirichlet/Neumann boundary
conditions, we introduce the space

V 0
n,Γd(Ω) =

{
z ∈ L2(Ω; R2) | div z = 0 in Ω, z · n = 0 on Γd

}
.

We have the following orthogonal decomposition:

L2(Ω; R2) = V 0
n,Γd(Ω)⊕ gradH1

Γn(Ω), H1
Γn(Ω) = {p ∈ H1(Ω) | p = 0 on Γn}.



The Leray projector Π is the orthogonal projector in L2(Ω; R2) onto V 0
n,Γd(Ω). It can

be easily shown that Πz = z −∇pz −∇qz for every z ∈ L2(Ω; R2), where pz and qz
satisfy

(2.1)
pz ∈ H1

0 (Ω), ∆pz = div z ∈ H−1(Ω),

qz ∈ H1
Γn(Ω), ∆qz = 0,

∂qz
∂n

= (z −∇pz) · n on Γd, qz = 0 on Γn.

To define the Oseen operator, we introduce the spaces

H1
Γd(Ω; R2) = {z ∈ H1(Ω; R2) | z = 0 on Γd} and V 1

Γd(Ω) = H1
Γd(Ω; R2)∩V 0

n,Γd(Ω).

The Stokes operator A0 is defined by A0z = Π divσ(z, p) for functions z ∈ V 1
Γd(Ω) ∩

H3/2+ε0(Ω; R2) with ε0 > 0, for which there is a pressure p ∈ H1/2+ε0(Ω) such that
divσ(z, p) ∈ L2(Ω; R2) and σ(z, p)n = 0 on Γn; see [26, Theorem 2.10]. The Oseen
operator (A,D(A)) is defined by D(A) = D(A0) and Az = A0z + Π

(
(ws · ∇)z +

(z · ∇)ws
)
. The adjoint operator of (A,D(A)) is defined in [26, Theorem 2.11].

2.3. The controlled system. We define the lifting operator L ∈ L(L2(Γc; R2),
L2(Ω; R2)) by setting Lg = ξ for all g ∈ L2(Γc; R2), where (ξ, ψ) is the solution to the
stationary equation

λ0ξ − divσ(ξ, ψ) + (ws · ∇)ξ + (ξ · ∇)ws = 0, div ξ = 0 in Ω,

ξ = g on Γd, σ(ξ, ψ)n = 0 on Γn,

for some λ0 > 0 belonging to the resolvent set of A. In [26], we have shown that
if v ∈ H1

0 (0,∞; RNc) and z0 ∈ V 1
Γd(Ω), a function z ∈ L2

loc([0,∞);H1(Ω; R2)) is a
solution to (1.5) in the sense of transposition if and only if (Πz, (I − Π)z) is the
solution to the system

(2.2)
Πz′ = AΠz +

∑Nc
i=1 viDAgi = AΠz +Bv, Πz(0) = z0,

(I −Π)z = (I −Π)
(∑Nc

i=1 vi(τ)Lgi
)
,

with DA = (λ0I −A)ΠL ∈ L(L2(Γd; R2), (D(A∗))′).

2.4. Projected systems. The spectrum ofA, denoted by spect
(
A
)
, is contained

in a sector of the form {λ ∈ C | λ − ω0 = re±iϑ, r > 0, ϑ > ϑ0} with ϑ0 >
π
2 . The

eigenvalues of A, denoted by (λj)j∈N∗ , are isolated and of finite multiplicity (see [26]).
Since ws is real valued, they are either real or pairwise conjugate when they are not
real. We denote by GR(λj) the real generalized eigenspace for A associated with λj ,
that is, the space generated by ReGC(λj)∪ ImGC(λj) (where GC(λj) is the complex
generalized eigenspace for A), and by G∗R(λj) the real generalized eigenspace for A∗.
We set

Zu = ⊕j∈JuGR(λj) = vect{e1, · · · , edu}, Z∗u = ⊕j∈JuG∗R(λj) = vect{ξ1, · · · , ξdu},

where Ju is a finite subset of N such that the family (λj)j∈Ju contains all the unstable
eigenmodes of A, du is the dimension of Zu, and we assume that the two bases
{e1, · · · , edu} and {ξ1, · · · , ξdu} satisfy the following biorthogonality condition:

(ei, ξk)L2(Ω;R2) = δik for all 1 ≤ i ≤ du and all 1 ≤ k ≤ du.



We denote by Zs the invariant subspace of A and by Z∗s the invariant subspace of A∗

such that
V 0
n,Γd(Ω) = Zu ⊕ Zs and V 0

n,Γd(Ω) = Z∗u ⊕ Z∗s .
We have that Re spect(A|Zs) < −αs ≤ 0, because the unstable subspace of A is
included in Zu. We set Au = A|Zu , As = A|Zs , A∗u = A∗|Z∗

u
, A∗s = A∗|Z∗

s
. Thus we

have

‖etAs‖L(V 0
n,Γd

(Ω)) ≤ C e−αst and ‖etA
∗
s‖L(V 0

n,Γd
(Ω)) ≤ C e−αst for all t > 0.

2.5. Stabilizability issues for the pair (A,B). For each j ∈ Ju, we denote by
(φkj )1≤k≤`j a basis of the complex vector space Ker(A∗−λjI) (thus `j = dim(Ker(A∗−
λjI))), and by (ψkj )1≤k≤`j the family of associated pressures. Since A is not self-
adjoint, the eigenvalues λj may be complex (there are pairs of complex conjugate
eigenvalues), and the eigenfunctions φkj may have complex values. Now we choose
ω > 0 such that Re spect(A|Zu) > −ω, and we set Aω,u = πu(A+ωI) and Bu = πuB,
where πu is the projection on Zu parallel to Zs. From [4, Theorem 3], it follows that
(Aω,u, Bu) is stabilizable if and only if

(2.3)

for all j ∈ Ju, the family(∫
Γc
σ(φkj , ψ

k
j )n · g1, · · · ,

∫
Γc
σ(φkj , ψ

k
j )n · gNc

)
1≤k≤`j

is of rank `j .

Proposition 2.1 (see [26, Theorem 3.2]). Let m be a function of class C2 defined
on Γc with values in [0, 1], and equal to 1 on a nonempty relatively open subset of Γc.
Let us choose the family (gi)1≤i≤Nc such that it is a basis of the vector space

vect{mσ(ξi, pξi)n | 1 ≤ i ≤ du},

where (ξi)1≤i≤du is the basis of ⊕j∈JuG∗R(λj) introduced above and (pξi)1≤i≤du is the
family of associated pressures. Then the family (gi)1≤i≤Nc obeys condition (2.3).

According to that proposition it is always possible to find a family of functions
(gi)1≤i≤Nc , with compact supports in Γc, satisfying (2.3). We now assume that
(gi)1≤i≤Nc obeys condition (2.3).

Remark 2.2. For the numerical simulations, we choose Nc = 2, and the functions
(gi)1≤i≤2 are defined in (4.2). The stabilizability of the semidiscrete system associated
with the pair (Aω,u, Bu) is tested numerically in section 5.2.

3. Semidiscrete systems.

3.1. Finite element approximation of system (1.5). To approximate sys-
tem (1.5) by a finite element method, we introduce finite dimensional subspaces
Xh ⊂ H1(Ω; R2) for the velocity, Mh ⊂ L2(Ω) for the pressure, and Sh ⊂ L2(Γd; R2)
for the multipliers. We denote by (φi)1≤i≤Nz a basis of Xh, by (ψi)1≤i≤Np a basis of
Mh, and by (ζi)1≤i≤Nτ a basis of Sh. Setting

z =
Nz∑
i=1

ziφi, p =
Np∑
i=1

piψi, τ =
Nτ∑
i=1

τiζi, z0 =
Nz∑
i=1

z0,iφi, gi =
Nτ∑
k=1

gikζk,

if we denote by boldface letters the coordinate vectors, we have

z = (z1, · · · , zNz )T , p = (p1, · · · , pNp)T , τ = (τ1, · · · , τNτ )T ,

η = (p1, · · · , pNp , τ1, · · · , τNτ )T , v = (v1, · · · , vNc)T , z0 = (z0,1, · · · , z0,Nz )
T .



When vd = 0, the finite dimensional approximation of system (1.5) is the following:
(3.1)
Find z ∈ H1

loc([0,∞);Xh), p ∈ L2
loc([0,∞);Mh), τ ∈ L2

loc([0,∞);Sh) such that

d

dt

∫
Ω
z(t)φdx = a(z(t), φ) + b(φ, p(t)) + 〈τ(t), φ〉Γc for all φ ∈ Xh,

b(z(t), ψ) = 0 for all ψ ∈Mh, 〈ζ, z(t)〉Γd =
∑Nc
i=1 vi(t)〈ζ, gi〉Γc for all ζ ∈ Sh,

where
(3.2)

a(z, φ) = −
∫

Ω

(ν
2

(∇z + (∇z)T ) : (∇φ+ (∇φ)T ) + ((ws · ∇)z + (z · ∇)ws)φ
)
dx,

b(φ, p) =
∫

Ω
divφ p dx and 〈ζ, gi〉Γc =

∫
Γc
ζ gi dx.

In (3.1), we have assumed that vd = 0. If vd(x, t) = µ(t)h(x), the last equation in
(3.1) reads as

(3.3) 〈ζ, z(t)〉Γd =
Nc∑
i=1

vi(t)〈ζ, gi〉Γc + µ(t)〈ζ, h〉Γi for all ζ ∈ Sh,

because the functions gi are with support in Γc and h is with support in Γi. We do
not specify the initial condition of system (3.1) because we are going to see that the
natural initial condition z(0) = z0 is not consistent with (3.1).

We introduce the stiffness matrices Azz, Azp, Azτ , Azη; the mass matrices Mzz,
Mττ , Mηη; and the matrix G, the coefficients of which are defined by

Aijzz = a(φj , φi), Aikzp = b(φi, ψk) for 1 ≤ i, j ≤ Nz, 1 ≤ k ≤ Np,

Aijzτ = 〈ζj , φi〉Γc for 1 ≤ i ≤ Nz, 1 ≤ j ≤ Nτ , Azη =
[
Azp Azτ

]
,

M ij
zz = (φi, φj), 1 ≤ i, j ≤ Nz, Mk`

ττ = 〈ζk, ζ`〉Γc , 1 ≤ k, ` ≤ Nτ ,

Mηη =
[

0
Mττ

]
∈ RNη×Nτ , and G = [g1, · · · ,gNc ] =

 g
1
1 · · · gNc1
...

...
...

g1
Nτ

· · · gNcNτ

 .
We recall that Nη = Np +Nτ < Nz and that Azη is of rank Nη. We also set

(3.4) A =

[
Azz Azη

ATzη 0

]
and M =

[
Mzz 0

0 0

]
∈ R(Nz+Nη)×(Nz+Nη).

System (3.1) may be written in the form

(3.5) Mzzz′(t) = Azzz(t) +Azηη(t), 0 = ATzηz(t)−Mηη G v(t).

3.2. Finite dimensional controlled system. In order to correctly define the
initial condition for system (3.5) and to write it as a controlled system, we have to
introduce the oblique projector in RNz onto Ker(ATzη) parallel to Im(M−1

zz Azη).

Proposition 3.1. The projector IΠ in RNz onto Ker(ATzηM
−1
zz ) parallel to Im(Azη)

and the projector IΠT in RNz onto Ker(ATzη) parallel to Im(M−1
zz Azη) are defined by

IΠ = I −Azη(ATzηM
−1
zz Azη)−1ATzηM

−1
zz , IΠT = I −M−1

zz Azη(ATzηM
−1
zz Azη)−1ATzη.

Moreover, we have IΠAzη = 0, IΠMzz = MzzIΠT , M−1
zz IΠ = IΠT M−1

zz .



Proof. The proof is standard and is left to the reader.

As mentioned in the introduction, we have Nη < Nz and we assume that Azη is
of rank Nη. In that case the matrix ATzηM

−1
zz Azη is invertible, and the formulas in

Proposition 3.1 are well defined. The fact that Azη is of rank Nη follows from the
inf-sup condition stated in (4.3).

Proposition 3.2. Let v belong to H1(0,∞; RNc). A pair (z,η) is a solution of
(3.5) if and only if (z,η) is a solution to the system

IΠT z′(t) = IΠT M−1
zz AzzIΠ

T z(t) + B v(t),

(I − IΠT )z(t) = M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(t),

η(t) = (ATzηM
−1
zz Azη)−1ATzηz

′(t)− (ATzηM
−1
zz Azη)−1ATzηM

−1
zz Azzz(t),

(3.6)

where A = IΠTM−1
zz Azz ∈ RNz×Nz and B = AM−1

zz Azη(ATzηM
−1
zz Azη)−1Mηη G.

Proof. By applying the discrete Leray projector IΠ to (3.5)1, we obtain

IΠT z′ = AIΠT z + A(I − IΠT )z.

From the expression of (I − IΠT ) and from (3.5)2, it follows that

(I − IΠT )z = M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v.

The equation for η is obtained by multiplying (3.5)1 by ATzηM
−1
zz , and next by

(ATzηM
−1
zz Azη)−1. Thus, we have proved that a solution (z,η) of (3.5) is a solution to

system (3.6). The converse statement can be established with similar calculations.

From Proposition 3.2, it follows that only the initial condition IΠT z(0) may be
chosen to solve system (3.5) or (3.6). The only consistent initial condition for (I −
IΠT )z is

(I − IΠT )z(0) = M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(0).

Thus, the finite dimensional approximation of system (1.5) is

(3.7)
Mzzz′(t) = Azzz(t) +Azηη(t), ATzηz(t)−Mηη G v(t) = 0,

z(0) = IΠT z0 +M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(0),

and we have proved the following theorem.

Theorem 3.3. Assume that v belong to H1(0,∞; RNc). A pair (z,η) is a solu-
tion of (3.7) if and only if (z,η) is the solution to the system

(3.8)

IΠT z′(t) = A IΠT z(t) + Bv(t), IΠT z(0) = IΠT z0,

(I − IΠT )z(t) = M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(t),

η(t) = (ATzηM
−1
zz Azη)−1ATzηz

′(t)− (ATzηM
−1
zz Azη)−1ATzηM

−1
zz Azzz(t).

Remark 3.4. We can verify that the semidiscrete approximation of (1.4) is

Mzzz′(t) = Azzz(t) +Azηη(t) + F(z(t)), ATzηz(t)−MηηG v(t) = 0,

z(0) = IΠT z0 +M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(0),

(3.9)

with F(z(t)) = −

 Nz∑
k=1

Nz∑
j=1

zj zk

∫
Ω

(φj · ∇)φk φi dx


1≤i≤Nz

.



3.3. Approximation of the complex eigenvalue problems. It is convenient
to assume that 0 6∈ spect(A). If it is not the case, we can replace A by A− λ0I with
λ0 6∈ spect(A) and introduce the corresponding obvious modifications in what follows.
We know that

RNz = Ker(ATzη)⊕ Im(M−1
zz Azη),

with Ker(ATzη) = Im(IΠT ) and Im(M−1
zz Azη) = Ker(IΠT ). Since 0 6∈ spect(A), we

notice that Im(M−1
zz Azη) = Ker (IΠT ) = Ker (A IΠT ). We look for a decomposition

of RNz into the sum of generalized eigenspaces of the operator A IΠT . We denote by
(λj)1≤j≤Ne the complex eigenvalues of the operator A IΠT . We already know that 0
is an eigenvalue of A IΠT and that Im(M−1

zz Azη) = Ker (A IΠT ) is the corresponding
eigenspace. In order to decompose Ker(ATzη) into the other generalized eigenspaces of
the operator A IΠT , we consider the eigenvalue problem

(3.10) λ ∈ C∗, f ∈ Ker(ATzη), f 6= 0CNz , Af = λf

and the adjoint eigenvalue problem for A] = IΠTM−1
zz A

T
zz,

(3.11) λ ∈ C∗, φ ∈ Ker(ATzη), φ 6= 0CNz , A]φ = λφ.

Theorem 3.5. A pair (λ, f) ∈ C∗ × CNz is a solution to the eigenvalue problem
(3.10) if and only if (λ, f ,ηf ), with ηf = (pf , τf )T = −(ATzηMzzAzη)−1ATzηM

−1
zz Azz f ,

is a solution to the eigenvalue problem

(3.12) λ ∈ C∗, f ∈ CNz , f 6= 0CNz , ηf ∈ CNη , A

[
f
ηf

]
= λM

[
f
ηf

]
,

where A and M are the matrices defined in (3.4). Similarly, (λ,φ) ∈ C∗ × CNz
is a solution to the eigenvalue problem (3.11) if and only if (λ,φ,ηφ), with ηφ =
(pφ, τφ)T = −(ATzηMzzAzη)−1ATzηM

−1
zz Azz φ, is a solution to the adjoint eigenvalue

problem

(3.13) λ ∈ C∗, φ ∈ CNz , φ 6= 0CNz , ηφ ∈ CNη , AT

[
φ

ηφ

]
= λM

[
φ

ηφ

]
.

Proof. The proof follows from the definition of A and the expression of IΠT .

A similar statement can be proved for the generalized eigenvectors of problems
(3.10) and (3.12) and of problems (3.11) and (3.13). Let us recall that a vector
fk ∈ (CNz \ {0CNz }) is a generalized eigenvector for problem (3.10) associated with a
solution (λ, f) of (3.10) when

fk ∈ Ker(ATzη), fk 6= 0CNz , (A− λ)kfk = f for some k ∈ N∗.

Theorem 3.6. There exist a basis (f1, · · · , fNz ) of CNz constituted of eigenvec-
tors and generalized eigenvectors of problem (3.10) and a basis (φ1, · · · ,φNz ) of CNz
constituted of eigenvectors and generalized eigenvectors of problem (3.11) satisfying
the biorthogonality condition

(f i)T Mzz φ
j = δij for 1 ≤ i, j ≤ Nz.



If F ∈ CNz×Nz is the matrix whose columns are (f1, · · · , fNz ) and Φ is the matrix
whose columns are (φ1, · · · ,φNz ), we have

ΛC = F−1 A IΠT F and ΛT
C = Φ−1 A] IΠT Φ,

where ΛC is a decomposition of A IΠT into complex Jordan blocks.

Proof. The proof is standard in linear algebra.

3.4. Real biorthogonal families. Now, we are going to define two real biorthog-
onal families as explained hereafter. If λj is real and if fk is an associated eigenvector
or generalized eigenvector, we can assume that fk and φk are real vectors, and we set

(ek,pek , τek) = (fk,pfk , τfk), (ξk,pξk , τξk) = (φk,pφk , τφk).

If λj is a complex eigenvalue with Imλj 6= 0, then necessarily λj is also an eigenvalue,
and if fk and φk are associated eigenvectors or generalized eigenvectors, then we may
assume that fk = fm and φk = φm (for some m) are eigenvectors or generalized
eigenvectors associated with λj = λm. In that case we set

(ek,pek , τek) =
√

2 Re (fk,pfk , τfk), (ξk,pξk , τξk) =
√

2 Re (φk,pφk , τφk) and

(em,pem , τem) =
√

2 Im (fk,pfk , τfk), (ξm,pξm , τξm) =
√

2 Im (φk,pφk , τφk).

In this way, we have constructed two bases (e1, · · · , eNz ) and (ξ1, · · · , ξNz ) of RNz
satisfying the biorthogonality condition

(ei)T Mzz ξ
j = δij for 1 ≤ i, j ≤ Nz.

Moreover, if E ∈ RNz×Nz is the matrix whose columns are (e1, · · · , eNz ) and Ξ ∈
RNz×Nz is the matrix whose columns are the adjoint eigenvectors (ξ1, · · · , ξNz ), we
have

Λ = E−1 A IΠT E and ΛT = Ξ−1 A] IΠT Ξ,

where Λ is a decomposition of A into real Jordan blocks. As in the previous section,
we can also prove that

Λ = ΞT Azz IΠT E and ΛT = ET IΠATzz Ξ.

We note that A] is not the transposed matrix of A, while Ξ−1 A] IΠT Ξ is actually
the transposed matrix of Λ.

3.5. The projected dynamical system. In section 2.4, we have chosen Zu
and Z∗u of the form

Zu = ⊕j∈JuGR(λj) = vect{e1, · · · , edu}, Z∗u = ⊕j∈JuG∗R(λj) = vect{ξ1, · · · , ξdu}.

With the finite element approximation, the eigenvalues (λj)j∈Ju are approximated by
(λj)j∈Ju , the functions (ei)1≤i≤du are approximated by (ei)1≤i≤du , and the functions
(ξi)1≤i≤du are approximated by (ξi)1≤i≤du , where

ei =
∑Nz
k=1 e

i
k φk and ξi =

∑Nz
k=1 ξ

i
k φk,

with (eik)1≤k≤Nz = ei and (ξik)1≤k≤Nz = ξi.



Thus, our method consists in approximating Zu and Z∗u, respectively, by

Zu = ⊕j∈JuGR(λj) = vect{e1, · · · , edu} and
Z∗u = ⊕j∈JuG∗R(λj) = vect{ξ1, · · · , ξdu}.

In order to define the projected dynamical system that will be used in our sta-
bilization strategy, it is convenient to introduce some notation. We denote by d` the
dimension of Ker (A IΠT ), and we set ds = Nz−d`−du. We assume that (e1, · · · , eNz )
are numbered in such a way that

Ker (A IΠT ) = Ker (IΠT ) = vect{edu+ds+1, · · · , eNz}.

We denote by Eu ∈ RNz×du the matrix whose columns are (e1, · · · , edu), by Es ∈
RNz×ds the matrix whose columns are (edu+1, · · · , edu+ds), by Ξu ∈ RNz×du the
matrix whose columns are (ξ1, · · · , ξdu), and by Ξs ∈ RNz×ds the matrix whose
columns are (ξdu+1, · · · , ξdu+ds).

Then we set Zs = vect{edu+1, · · · , eNz−d`} and K = vect{edu+ds+1, · · · , eNz} =
Ker(IΠT ), and we have RNz = Zu ⊕ Zs ⊕ K. We introduce the operators Πu ∈
L(RNz ,Zu) and Πs ∈ L(RNz ,Zs) defined by

Πu = Eu ΞT
u Mzz and Πs = Es ΞT

s Mzz.

Proposition 3.7. The operator Πu is the projection onto Zu parallel to Zs⊕K,
and the operator Πs is the projection onto Zs parallel to Zu ⊕K. Moreover, we have
the following identities:

ΠuIΠT = Πu, ΠsIΠT = Πs, and Πu + Πs = IΠT .

Proof. The above statements, except the last one, follow from the biorthogonality
property satisfied by E and Ξ. The identity Πu + Πs = IΠT follows from the fact
that both the operators IΠT and Πu + Πs are the projection onto Zu ⊕ Zs parallel
to K.

Let us note that the identity Πu + Πs = IΠT provides a very useful expression
of IΠT that will be used in what follows. We also need the matrices of the Lagrange
multipliers associated to the different families of eigenvectors introduced above. For
that, we set Eη,u ∈ RNη×du as the matrix whose columns are (ηe1 , · · · ,ηedu ), Eη,s ∈
RNη×ds as the matrix whose columns are (ηedu+1 , · · · ,ηedu+ds ), Ξη,u ∈ RNη×du as the
matrix whose columns are (ηξ1 , · · · ,ηξdu ), and Ξη,s ∈ RNη×ds as the matrix whose
columns are (ηξdu+1 , · · · ,ηξdu+ds ). Let us recall that Eη,u =

(Ep,u
Eτ,u

)
. We have similar

decompositions for Eη,s, Ξη,u, and Ξη,s. We set

(3.14) Λu = ΞT
u Azz Eu, Λs = ΞT

s AzzEs.

Let us note that by definition

(3.15) A

(
Eu

Eη,u

)
= M

(
Eu

Eη,u

)
Λu and AT

(
Ξu

Ξη,u

)
= M

(
Ξu

Ξη,u

)
ΛTu .

Similar identities can be established for Λs.
Now, we have to explain how we can project the system (3.5) onto Zu. For that,

we set

(3.16) Bu = −ΞT
τ,uMττ G and Bs = −ΞT

τ,sMττ G.



Proposition 3.8. Let v belong to H1(0,∞; RNz ). If the pair (z,η) is a solution
of system (3.7), then the pair (ζu, ζs), defined by

ζu(t) = ΞT
uMzzz(t), ζs = ΞT

sMzzz(t),

obeys the system

(3.17)
ζ′u(t) = Λu ζu(t) + Bu v(t), ζu(0) = ΞT

uMzzz0,

ζ′s(t) = Λs ζs(t) + Bs v(t), ζs(0) = ΞT
sMzzz0.

Conversely, if (ζu, ζs) is a solution to system (3.17), then (z,η), defined by
(3.18)

z(t) = Eu ζu(t) + Esζs(t) + (I − IΠT )M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v(t),

η(t) = (ATzηM
−1
zz Azη)−1ATzηz

′(t)− (ATzηM
−1
zz Azη)−1ATzηM

−1
zz Azzz(t),

is a solution to system (3.7).

Proof. If we multiply (3.5)1 by ΞT
u and ΞT

s and if we use the identities ΞT
uAzη = 0

and ΞT
s Azη = 0, we have

ΞT
u Mzzz′(t) = ΞT

u Azzz(t) and ΞT
s Mzzz′(t) = ΞT

s Azzz(t).

Using the identity ΞT
u Azz + ΞT

η,uA
T
zη = Λu ΞT

u Mzz, we obtain

ΞT
u Mzz z′(t) = Λu ΞT

u Mzzz(t)−ΞT
η,uA

T
zηz(t).

From the definition of ζu and the equality ATzηz(t) = MηηG v(t), it follows that

ζ′u(t) = Λu ζu(t)−ΞT
η,uMηηG v(t).

Replacing −ΞT
η,uMηηG by Bu, we recover the first equation in (3.17)1. The equation

for ζs can be obtained in a similar way. With Proposition 3.7, the initial condition in
(3.17) can be easily derived from the initial condition in (3.7). The first part of the
proof is complete.

Let us now prove the converse statement. From the definition of z in (3.18) and
from Proposition 3.7, it follows that IΠT z = Eu ζu + Esζs and

(I − IΠT )z = (I − IΠT )M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G v.

Still with the definition of z, we can easily verify that

ζu = ΞT
u Mzzz, ζs = ΞT

s Mzzz, and ATzη z = Mηη G v.

Now, knowing that ζu and ζs are the solutions to (3.17) and that IΠT z = Eu ζu+Esζs,
we have

(3.19)

IΠT z′ = Eu (Λu ζu −ΞT
η,uA

T
zη z) + Es(Λs ζs −ΞT

η,sA
T
zη z)

= bEu ΞT
u MzzM

−1
zz Azz z + EsΞT

s MzzM
−1
zz Azz z

= IΠT M−1
zz Azz z = A IΠT z + B v.

The initial condition in (3.7) can be recovered from the initial condition in (3.17).



3.6. Stabilizability and feedback operator. We assume that the discrete
approximation of the infinite dimensional eigenvalue problems is accurate enough so
that the following holds:
(H1)

For all j ∈ Ju, λj is an accurate approximation of λj ,

for 1 ≤ i ≤ du, ei (resp., ξi) is an accurate approximation of ei (resp., ξi),

−αs > Re spect(Λs), Zu and Z∗u are of dimension du.

Remark 3.9. Verifying (H1) is beyond the scope of the present paper. However,
we have chosen a mesh fine enough so that any regular refinement of the mesh leads
to the same results. The two unstable eigenvalues are obtained with a precision of
order 10−4, and the other first eight eigenvalues and their associated eigenvectors up
to a precision of order 10−2. According to the results reported in [11], computing the
first 10 eigenvalues up to a precision of order 10−2 seems to be a good compromise
between accuracy and computation time. We notice that this accuracy is sufficient to
construct a feedback law able to stabilize the Navier–Stokes system (see section 6).

Due to Proposition 3.8, to stabilize system (3.5) it is necessary and sufficient to
stabilize system (3.17). Due to assumption (H1), Λs ∈ Rds×ds is stable. Thus, as will
be shown in the proof of Theorem 3.11, to stabilize system (3.17), it is sufficient to
stabilize the equation satisfied by ζu. This is why we make the following additional
assumption:

(H2) For all ω > −Re spect(Λu), the pair (Λu + ω IRdu ,Bu) is stabilizable.

This is the discrete analogue of the condition for (Aω,u, Bu) stated in (2.3).

Remark 3.10. If the family (gi)1≤i≤Nc is chosen so that the condition (2.3) is sat-
isfied, and if (H1) is satisfied, then the degree of stabilizability numerically determined
in section 5.2 provides a numerical verification of (H2) and (2.3).

Assuming that (H2) is satisfied, for all Q ∈ L(Rdu) satisfying Q = QT ≥ 0 and
for all −ω < Re spect(Λu), the algebraic Riccati equation

(3.20)
Pω,u ∈ L(Rdu), Pω,u = PTω,u ≥ 0, Λu + ωIRdu − BuBTuPω,u is stable,
Pω,u(Λu + ωIRdu ) + (ΛTu + ωIRdu )Pω,u − Pω,u BuBTuPω,u +Q = 0

admits a unique solution. In the next section we are going to prove that the closed-
loop system

(3.21)

Mzzz′(t) = Azzz(t) +Azηη(t),

z(0) = IΠT z0 −M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G BTuPω,u ΞT

uMzzz0,

ATzηz(t) = −MηηG BTuPω,u ΞT
uMzzz(t)

is stable. According to Theorem 3.11, system (3.21) is equivalent to

(3.22)

IΠT z′(t) = A IΠT z(t)−B BTuPω,u ΞT
uMzzz(t), IΠT z(0) = IΠT z0,

(I − IΠT )z(t) = −M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G BTuPω,u ΞT

uMzzz(t),

η(t) = (ATzηM
−1
zz Azη)−1ATzηz

′(t)− (ATzηM
−1
zz Azη)−1ATzηM

−1
zz Azzz(t).

Notice that in the right-hand side of (3.21)2 only IΠT z0 intervenes. Indeed, the term
ΞT
uMzzz0 is nothing but the coordinate vector of Πuz0 = ΠuIΠT z0 in the basis Eu.



This means that in (3.21)2, the initial condition z(0) is entirely determined in terms
of IΠT z0.

If the linear feedback law is used in the nonlinear system (3.9), we obtain the
following nonlinear closed-loop system:

(3.23)

Mzzz′(t) = Azzz(t) +Azηη(t) + F(z(t)),

z(0) = IΠT z0 −M−1
zz Azη(ATzηM

−1
zz Azη)−1Mηη G BTuPω,u ΞT

uMzzz0,

ATzηz(t) = −MηηG BTuPω,u ΞT
uMzzz(t).

3.7. Stabilization results.

Theorem 3.11. The solution to the finite dimensional closed-loop system (3.21)
obeys

(3.24)
‖Πuz(t)‖Rdu ≤ C e−ωt‖z0‖RNz ,

‖(I − IΠT )z(t)‖Rd` + ‖Πsz(t)‖Rds ≤ C e−αst‖z0‖RNz ,

where αs is the decay rate appearing in (H1).

Proof. First recall that Πuz = Eu ζu, Πsz = Es ζs, with (ζu, ζs) = (ΞT
uMzzz,

ΞT
sMzzz), and that

(I − IΠT )z = (I − IΠT )M−1
zz Azη(ATzηM

−1
zz Azη)−1MηηG BTuPω,u ζu.

From Proposition 3.8, it follows that the pair (ζu, ζs) obeys the system

(3.25)

(
ζu

ζs

)′
=

(
Λu − Bu BTuPω,u 0
−Bs BTuPω,u Λs

)(
ζu

ζs

)
,

(
ζu

ζs

)
(0) =

(
ΞT
uMzzz0

ΞT
sMzzz0

)
.

Since

‖et(Λu−Bu BTu Pω,u)‖L(Rdu ) ≤ C e−ωt and ‖etΛs‖L(Rds ) ≤ C e−αst for all t ≥ 0,

the proof can be easily derived from these estimates.

Theorem 3.12. Let αs be the decay rate appearing in (H1). Assume that (H2)
is satisfied and that, in addition, ω ≥ αs. There exist constants C0 > 0 and C1 ≥ 1
such that for all C ∈ (0, C0) and all z0 ∈ RNz obeying ‖IΠT z0‖RNz ≤ C/C1, the finite
dimensional closed-loop nonlinear system (3.23) admits a unique solution in the space{

z ∈ H1(0,∞; RNz ) | ‖e−αstz(t)‖RNz ≤ C
}
.

In particular the solution to system (3.23) obeys ‖z(t)‖RNz ≤ C e−αst.
Proof. The proof can be completed by a fixed point method as in [26, Proof of

Theorem 4.2].

Let us now recall some results useful in defining the best control location and the
degree of stabilizability for the controlled system projected onto an invariant subspace.

Proposition 3.13. Let ω ≥ 0 be such that −ω < Re spect(Λu). The following
statements are equivalent:

(i) The pair (Λu + ωIRdu ,Bu) is stabilizable.



(ii) The stabilizability Gramian Gω,u, of the pair (−Λu − ωIRdu ,Bu), satisfies

(3.26) Gω,u =
∫ ∞

0
e−t(Λu+ωIRdu ) Bu BTu e−t(Λ

T
u+ωIRdu ) dt ≥ αIRdu , with α > 0 .

(iii) For Q = 0, the Riccati equation (3.20) admits a solution Pω,u which satisfies

(3.27) Pω,u = (Gω,u)−1 and 0 < Pω,u ≤ βIRdu , with β > 0 .

Proof. The equivalence of (i)–(iii) follows from [21, Theorems 1 and 2].

The greatest eigenvalue of Pω,u (β in (3.27)) is a good indicator of the stabiliz-
ability of the pair (Λu+ωIRdu ,Bu). However, the greatest eigenvalue of Pω,u depends
on the biorthogonal bases of Zu and Z∗u. In order to have a criterion depending only
on Zu and Z∗u, but independent of their bases, we have to come back to a criterion
defined for the infinite dimensional system and for its numerical approximation.

We define the degree of stabilizability of the pair (Λu+ωIRdu ,Bu) as the numerical
approximation of the smallest eigenvalue of the Gramian

Gω,u =
∫ ∞

0
e−t(Au+ωI)BuB

∗
u e
−t(A∗

u+ωI) dt,

where Bu = πuB. Since Z∗u = vect{ξ1, · · · , ξdu} (see section 3.5), we have to deter-
mine

(3.28)
min spect(Gω,u)

= inf
{∫∞

0 |B
∗
u e
−t(A∗

u+ωI) ∑du
`=1 ζ`ξ`|2RNc dt | ‖

∑du
`=1 ζ`ξ`‖L2(Ω) = 1

}
.

The numerical approximations of B∗u e
−t(A∗

u+ωI) ∑du
`=1 ζ`ξ` and ‖

∑du
`=1 ζ`ξ`‖2L2(Ω) are,

respectively,
BTu e−t(Λ

T
u+ωI) ζu and ζTu ΞT

uMzzΞu ζu,

where ζu = (ζ1, · · · , ζdu)T . Thus, due to (3.16), we have to consider the operator∫ ∞
0

e−t(Λu+ωI) ΞT
τ,uMττ G GT Mττ Ξτ,u e

−t(ΛTu+ωI) dt = (Pω,u)−1.

The minimization problem in (3.28) is approximated by

(3.29) inf
{
ζTu P−1

ω,uζu | ζTu ΞT
uMzzΞu ζu = 1

}
.

We approximate the smallest eigenvalue of the Gramian Gω,u by (max spect(Sω,u))−1,
where

(3.30) Sω,u = Wu Pω,u Wu and Wu =
(
ΞT
uMzzΞu

)1/2
.

Similarly, we can define the degree of stabilizability for any finite dimensional
invariant subspace. For any nonzero eigenvalue λj of AIΠT , there exists a family of
indices Jλj such that

Zj = GR(λj) = vect{ek | k ∈ Jλj} and Z∗j = G∗R(λj) = vect{ξk | k ∈ Jλj},

where mj = dim(GR(λj)). We denote by Ej ∈ RNz×mj the matrix whose columns
are (ek)k∈Jλj

, by Ξj the matrix whose columns are (ξk)k∈Jλj
, by Eη,j ∈ RNη×mj



the matrix whose columns are (ηek)k∈Jλj
, and by Ξη,j ∈ RNη×mj the matrix whose

columns are (ηξk)k∈Jλj
. We set Bj = −ΞT

η,jMηηG and Λj = ΞT
j AzzEj .

For any ω > Re(λj), if the pair (Λj + ωIRmj ,Bj) is stabilizable, then there exists
a unique Pω,j solving the following Riccati equation:

(3.31)
Pω,j ∈ L(Rmj ), Pω,j = PTω,j > 0,

Pω,j(Λj + ωIRmj ) + (ΛTj + ωIRmj )Pω,j − Pω,j BjBTj Pω,j = 0.

We set Wj =
(
ΞT
j MzzΞj

)1/2, and we define the degree of stabilizability of GR(λj) by

(3.32) dj = (max spect(Wj Pω,jWj))
−1
.

Remark 3.14. When mj = 1, then Ξj is reduced to a unique vector ξkj and
Pω,j is a positive real number. If ξkj is normalized, i.e., if (ξkj )TMzzξ

kj = 1, then
dj = (Pω,j)−1.

When mj = 2, which corresponds to the case of two complex conjugate eigenval-
ues, then Ξj = [ξkj1 ξ

kj
2 ], and

Wj =

(
1 ξ

kj
1 Mzz ξ

kj
2

ξ
kj
1 Mzz ξ

kj
2 1

)1/2

if the two vectors ξkj1 and ξkj2 are normalized.

4. Numerical approximation of the eigenvalue problem.

4.1. Data of numerical experiments. Let us introduce the data used in the
numerical experiments. The parabolic velocity profile in the inflow boundary Γi =
{−1.5} × [0, 0.4] is defined by

(4.1) us(−1.5, x2) = (u1
s, u

2
s)
T =

(
6
( x2

0.4

(
1− x2

0.4

))
, 0
)T

.

The mean value of u1
s is Um = 1, and its maximal amplitude is 1.5. The Reynolds

number Re = 2rc Um
ν = 1

10ν depends only on ν (see section 2.1).
Actuators. We parametrize the positions on the circle Γc by the angular position

counterclockwise, with θ = 0◦ at (0.3, 0.2). For the numerical tests, we choose Nc = 2.
For a given θ ∈ (5◦, 175◦), the functions gθ1 and gθ2 in (1.3) are localized, respectively,
in Iθ1 = [θ − 5◦, θ + 5◦] and Iθ2 = [−θ − 5◦,−θ + 5◦]. They are represented below and
defined by

(4.2)
gθk(ϑ) = g

(
ϑ+(−1)kθ

10 + 1
2

)
(cos(ϑ), sin(ϑ))T ,

g(s) = G (10s)−G (10(s− 1) + 1) ,
3 - 5 0 3+5

0

1

where k = 1 or k = 2, the control is acting only in the normal direction, and G(s) = 0
if s ≤ 0, G(s) = s3(6s2 − 15s+ 10) if 0 < s < 1, and G(s) = 1 if s ≥ 1.



Mesh and finite element approximation. The velocity, the pressure, and the La-
grange multiplier of Dirichlet boundary conditions are approximated with a P3−P2−P3
finite element method. We assume that the triangulations defining Xh, Mh, and Sh
satisfy the following inf-sup condition:

(4.3) inf
(ψ,ζ)∈Mh×Sh, (ψ,ζ) 6=0

sup
z∈Xh, z 6=0

b(z, ψ)− 〈ζ, z〉Γc
‖z‖Xh ‖(ψ, ζ)‖Mh×Sh

≥ β

for some β > 0 independent of h. With the same type of proof as in [17, Proposition 5],
condition (4.3) will be satisfied if (Xh,Mh) satisfies another inf-sup condition of the
form

(4.4) inf
ψ∈Mh, ψ 6=0

sup
z∈Xh, z 6=0

b(z, ψ)
‖z‖Xh ‖ψ‖Mh

≥ β0 > 0,

and provided that hs ≥ Khx with K > 1, where hs is the mesh size of Sh and hx
is the mesh size of Xh. In [28], several situations, in which the constant K can be
chosen close to 1, are analyzed.

Condition (4.4) for P3−P2 elements follows from the general result [33, Theorem
2.1] and from [33, Lemma 3.1].

The mesh used in the numerical tests consists of 8779 nodes. It is symmetric with
respect to the horizontal axis of the cylinder, and it is plotted in Figure 2.1. The total
number of degrees of freedom is 192386. The mesh on Γd used for Sh is that induced
by the mesh on Ω. We have also realized numerical tests with finer meshes. Some
comparisons are reported at the end of section 6.3.

Time solver. The time discretization is treated by a classical backward difference
formula of order 2 (BDF2) with a time step ∆t = 10−3. A Newton algorithm is
employed to treat the nonlinearity. At each time step iteration, we have to invert a
matrix of the form

M − 2∆t
3

(A−BK) with B =
(

0
MηηG

)
and K =

(
−BTuPω,u ΞT

uMzz 0
)
.

This matrix is inverted with the “MUMPS” solver. The numerical tests were realized
with two different codes, one based on the free GetFEM++ library [32] and the other
one on the COMSOL software [15]. The comparison between the two simulations
gives us a higher reliability in the numerical results. The two codes give the same
results.

4.2. Eigenvalue approximation. To capture the leading eigenvalues of prob-
lems (3.12) and (3.13), we use an Arnoldi method combined with a “shift and inverse”
transformation implemented in the ARPACK library [22]. We fix the shift parameter
at 10 and the size of the small Hessenberg matrix at 400.

For Reynolds numbers Re in the range [50, 255], the spectrum is characterized by
two complex conjugate unstable eigenvalues (i.e., eigenvalues of strictly positive real
parts) [7]. For Re = 150, we have plotted in Figure 4.1 the nearest eigenvalues to the
imaginary axis (the two unstable eigenvalues λ1 and λ2 = λ1 are circled), and we
report the ten eigenvalues close to the imaginary axis in Table 4.1.



Fig. 4.1. Eigenvalues of the linearized Navier–Stokes operator for Re = 150.

Table 4.1
First eigenvalues of the spectrum of A IΠT for Re = 150.

i 1–2 3 4 5 6 7–8 9 10
λi 3.44 ± 17.59i −0.71 −1.07 −1.38 −1.54 −1.62 ± 20.22i −2.41 −3.32

5. Best actuator location and degree of stabilizability.

5.1. Best actuator location. The control operator Bu in system (3.17)1 de-
pends on θ. Let us denote it by Bθu. We determine the best control location θopt
by looking for the location which maximizes the degree of stabilizability of the pair
(Λu + ωIRdu ,Bu). Thus, we have to solve the following min-max problem:

(5.1) θopt = arg min
θ

max spect
(

Wu Pθω,u Wu

)
,

where Pθω,u is the solution of (3.20) for Q = 0 and Wu is defined in (3.30).
We know that the control vθ = −(Bθu)T Pθω,u ζu corresponding to closed-loop sys-

tem (3.25) obeys
‖eω tvθ‖L2(0,∞;RNc ) = ζu(0)T Pθω,u ζu(0).

Therefore, the best control location θopt is also the location which provides a control
vθ of minimal L2(0,∞; eω ·)-norm, among the controls v ∈ L2(0,∞; eω ·) stabilizing
the system

ζ′(t) = (Λu + ωIRdu )ζ(t) + Bθuv(t),

in the case of the worst initial condition ζ(0) = ζu(0) satisfying the normalization
condition |W−1

u ζu(0)|Rdu = 1. (See also [25, page 451] for other criteria.)
We have calculated the best optimal control zone by choosing Zu = GR(λ1). The

matrix Λu is reduced to

(5.2) Λu =
[

Re(λ1) Im(λ1)
−Im(λ1) Re(λ1)

]
.

In Figure 5.1, we plot θopt(Re) in terms of the Reynolds number Re ∈ [80, 255]. We
observe that the optimal location of the actuator moves away from the detachment
zone of the flow on the cylinder’s boundary (see [27], where θ is chosen equal to 70◦

for Re = 80).
For Re = 150 the optimal location of the actuators is θopt(150) = 95◦.
In the min-max problem (5.1), used to determine the best control location, we

have chosen Zu = GR(λ1) and ω = 0. Other choices are possible. We have performed
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Fig. 5.1. Influence of Reynolds number on the optimal location of actuators.

other numerical simulations for finding the best location with Zu = GR(λ1)⊕GR(λ7)
and ω = 6. Still in that case, we find nearly the same optimal value for θopt, up to a
variation of one degree. The best location depends mainly on Re and much less on ω
and Zu. We think that this behavior is particular to our problem and is not a general
fact.

For a review of the strategies used in the literature to determine the best actuator
locations, we refer the reader to [24, 34, 25]. The H2 optimal actuator location studied
in [13] is covered by the general approach introduced in [25]. See also [20], where other
strategies for the optimal actuator placement are proposed.

5.2. Degree of stabilizability. In Table 5.1, we report the numerical results
obtained for the degree of stabilizability dj of the subspaces GR(λj), as defined in
(3.32), for 1 ≤ j ≤ 10 and ω = 6. We can notice that, except for GR(λ1) and GR(λ7),
the other eigenspaces are weakly stabilizable. Therefore it is not necessarily a good
strategy to include the corresponding eigenvectors in Zu.

Table 5.1
Degree of stabilizability of different eigenspaces for Re = 150, ω = 6, and dj defined by (3.32).

λj λ1, λ2 λ3 λ4 λ5 λ6 λ7, λ8 λ9 λ10

104dj 15.14 4.15 10−2 3.6 10−7 8.1 10−3 3.1 10−3 8.45 1.69 10−2 6.8 10−4

6. Closed-loop Navier–Stokes system. For a Reynolds number relatively
close to the critical Reynolds numberRec ≈ 50, that is, forRe ∈ (70, 90), it is relatively
easy to stabilize the Navier–Stokes equations. We refer the reader to [27], where
simulations were done for Re = 60. The situation is different for higher Reynolds
number. In [18], simulations are performed for Reynolds number equal to 200 and to
1000, with three control zones and an optimal open-loop control reducing the drag
but not obtaining a full stabilization. To the best of our knowledge, very few feedback
stabilization results exist for Reynolds number higher than 100. In the present work,
we choose Re = 150. In that situation, the contribution of the nonlinear term becomes
more significant, and the flow is more sensitive to perturbations.

Now, we present numerical simulations of the closed-loop system (3.21) in which
Pω,u is replaced by the solution P∆u,Q ∈ L(Rdu) to the equation

(6.1)
P∆u,Q = PT∆u,Q

≥ 0, Λu + ∆u − BuBTuP∆u,Q is stable,

P∆u,Q(Λu + ∆u) + (ΛTu + ∆u)P∆u,Q − P∆u,Q BuB∗uP∆u,Q +Q = 0,



where ∆u ∈ L(Rdu) is a diagonal matrix of the form ∆u = diag((ωj IRmj )j∈Ju),
Q = diag((Qj)j∈Ju), Qj ∈ L(Rmj ), Qj = QTj ≥ 0, mj = dim(GR(λj)), and either
ωj > −Re(λj) or Qj > 0. We notice that if ∆u = ωIRdu , then P∆u,Q is nothing but
the solution Pω,u of (3.20). Thus (6.1) is a generalization of (3.20) which is helpful in
some numerical tests in section 6.4.

To test the efficiency of different feedback laws for the Navier–Stokes system,
rather than taking a perturbation of the stationary solution ws in the initial condition,
we choose w(0) = ws in system (1.2) or, similarly, z0 = 0 in system (1.5), and
we introduce a boundary perturbation vd(x, t) = µ(t)h(x) in the inflow boundary
Γi × (0,∞), localized in time, defined by

(6.2) µ(t) = β e−30(t−1)2
, h = (h1, h2), and h1(x) = gd(x)σ(ξ1(x),pξ1(x))n.n,

where β > 0 is a parameter used to vary the amplitude of the perturbation. The term
σ(ξ1,pξ1)n.n corresponds to τξ1 .n, and gd is a truncation function defined on Γi by
gd(x) = G(20s)−G(20(s−0.4)+1) for x ∈ [0, 0.4] and G(s) = s3(6s2−15s+10). We
assume that ξ1 is normalized. Since ξ1 =

√
2 Re(φ1), ξ2 =

√
2 Im(φ1), and φ1 is an

eigenvector corresponding to the most unstable eigenvalues, σ(ξ1,pξ1)n.n corresponds
to one of the most destabilizing normal boundary perturbations; see Figure 6.1.
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Fig. 6.1. Inflow perturbation.

In the following, we test different amplitudes β of the perturbation and different
feedback laws by varying Zu, ∆u, and Q. The norm of the uncontrolled solution for
β = 30 is reported in Figure 6.2.
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Fig. 6.2. Evolution of the L2-norm of the uncontrolled solution with β = 30.

Since the perturbation h is symmetric with respect to the axis x2 = 0.2, the
feedback controls v1 and v2 (corresponding to the actuators g1 and g2, respectively)
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Fig. 6.3. Evolution of the L2-norm of the controlled solutions according to the amplitude β of
the inflow perturbation (Zu = GR(λ1), ∆u = 0R2 , Q = 0R2 ).
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Fig. 6.4. Influence of the shift parameter ω in the stabilization results with β = 45.

are of opposite sign. For that reason, in all the figures we have plotted only v1.

6.1. Efficiency of control laws for Zu = GR(λ1), ∆u = 0R2 , and Q = 0R2 .
The corresponding feedback law is able to stabilize the Navier–Stokes equations at
Re = 150 for β varying from 22.5 up to 30, but not for β = 45. The stabilization
results are reported in Figure 6.3.

6.2. Efficiency of control laws for Zu = GR(λ1), ∆u = ωIR2 , ω ≥ 0, and
Q = 0R2 . In this section, the location of the control zone is fixed to θopt = 95◦, and
the amplitude of the perturbation is β = 45. Let us note that for β = 45, the maximum
value of vd · n = µh1 in (6.2) is 0.7716, which is approximately equal to 1/2 of the
maximal value 1.5 of the inflow boundary profile. The feedback is obtained by solving
(6.1) with Zu = GR(λ1), ∆u = ωIR2 , ω ∈ {0, 6, 10}, and Q = 0R2 . The evolution of
the L2-norm of the solution to the closed-loop nonlinear system is reported in Figure
6.4(a) and the corresponding controls for ω = 6 and ω = 10 in Figure 6.4(b).

The stabilization is achieved by choosing ω ∈ {6, 10} but not for ω ∈ {0, 2, 4}.
We observe that the decay rate is improved with higher values of the shift parameter
ω. As expected, the norm of the control increases with the shift parameter ω. The
value ω = 6 seems to be a good compromise between the efficiency of a control law
and a small amplitude of the control.

6.3. Comparison of different actuator locations. We compare the different
actuator locations corresponding to θopt = 95◦, θ = 105◦, θ = 85◦, and θ = 75◦. The
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Fig. 6.5. Influence of the actuator locations on the controlled solutions (ω = 0, β = 22.5).
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Fig. 6.6. Influence of the actuator locations on the controlled solutions (ω = 0, β = 30).
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Fig. 6.7. Influence of the actuator locations on the controlled solutions (ω = 6, β = 45).

Reynolds number is still Re = 150. We choose Zu = GR(λ1), and we have tested
different perturbation amplitudes β = 22.5, β = 30, and β = 45.

In Figures 6.5 and 6.6, we have reported the results for ∆u = Q = 0R2 , with
β = 22.5 and β = 30, respectively, and in Figure 6.7, the results for ∆u = 6 IR2 ,
Q = 0R2 , and β = 45.

If we denote by v105, v95, v85, and v75 the stabilizing controls corresponding to the
different actuator locations θ = 105◦, θopt = 95◦, θ = 85◦, and θ = 75◦, respectively,
we can observe in Figures 6.5, 6.6, and 6.7 that the maximal amplitude of v95 is lower
than those of v85 and v75. For better readability, in Figures 6.5, 6.6, and 6.7 we have



Table 6.1
L2-norm of the controls in terms of the control location for different perturbation amplitudes.

Control location 105◦ 95◦ 85◦ 75◦

ω = 0, β = 25 0.0120 0.0076 0.0085 0.0119
ω = 0, β = 30 0.0187 0.0160 0.0180 0.0248
ω = 6, β = 45 0.0416 0.0358 0.0401 0.0558
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Fig. 6.8. L2-norm of the controlled solutions for two meshes, with ω = 6 and β = 45.

not reported the control v105 which is between v85 and v75. In Table 6.1, numerical
calculations show that ‖v95‖L2(0,∞) is smaller than ‖v105‖L2(0,∞), ‖v85‖L2(0,∞), and
‖v75‖L2(0,∞) in the cases corresponding to Figures 6.5, 6.6, and 6.7. This type of
result is expected for the stabilization of the linearized model, but this hierarchy is
still preserved for the stabilization of the Navier–Stokes system.

We note that in Figure 6.7, for θ = 75◦, the maximal amplitude of the control is
of order 16% of the maximal amplitude of the perturbation.

Also notice that the decay in the L2-norm of the state z(t) is slightly slower for
controls of smaller amplitude.

The results are stable with respect to mesh refinement. In Figure 6.8, we compare
the stabilization results corresponding to the case when β = 45 and ω = 6 for the
current mesh (192386 degrees of freedom) and a finer one (347936 degrees of freedom).

6.4. Efficiency of control laws for Zu = GR(λ1) ⊕ GR(λ7). The location
of the control zone is fixed at θopt = 95◦, and the amplitude of the perturbation at
β = 45.

We compare the efficiency of feedback laws for Zu = GR(λ1) and Zu = GR(λ1)⊕
GR(λ7). We retain the eigenvalue λ7 because its degree of stabilizability is the great-
est among the stable eigenvalues close to the imaginary axis. If we include in Zu
eigenvectors which are weakly controllable, the corresponding control law will provide
a control of too large amplitude to be acceptable for practical applications.

We choose ∆u = 6IR2 when Zu = GR(λ1), and

(6.3) ∆u =
(

6 IR2 0
0 0

)
and Q = r

(
0 0
0 IR2

)
, r > 0,

when Zu = GR(λ1)⊕GR(λ7). In order to obtain a good compromise between a fast
exponential decay of z(t) and a control v(t) of small size, we fix r = 3000. The results
are reported in Figure 6.9.

By choosing Zu of dimension 4 and ∆u and Q as in (6.3), the obtained exponential
decay is better than in all the cases of Figure 6.7, and the maximal amplitude of the
control is of order 13% of the maximal amplitude of the perturbation.
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Fig. 6.9. Comparison of stabilization results with different feedback operators built with
dim(Zu) = 2 and dim(Zu) = 4.

7. Conclusion. We have determined an optimal control location by solving a
min-max problem of very small dimension. This location, which corresponds to a
stabilizing control of minimal norm for the linearized model, still provides a control
of minimal norm for the Navier–Stokes system. The overall performance, obtained
by stabilizing the projected system onto the unstable subspace, can be improved by
considering the projected system onto a larger subspace (determined by analyzing the
degrees of stabilizability), and by choosing a feedback control obtained via a Riccati
equation involving a weighted observation operator Q1/2, with Q of the form (6.3).

For a Reynolds number Re = 150 and a perturbation of magnitude of order half
of the inflow boundary condition, localized in time around t = 1, we first notice
the development of a vortex shedding which is totally cancelled at t = 8 or t = 9
depending on the control law. The maximal amplitude of the control is of order 13%
of the maximal amplitude of the perturbation when the vortex shedding is cancelled
at t = 8 and of order 6% when the vortex shedding is cancelled at t = 9. Being able
to control the rate between the maximal amplitude of the control and the maximal
amplitude of the perturbation might be important for practical applications.

8. Appendix.

Nonhomogeneous Dirichlet condition in strong form. Let us explain what
the semidiscrete controlled system is if the boundary condition z = vc on Σ∞d is
imposed in a strong sense. For that, we set

z =
Ny∑
i=1

ziφi +
Nb∑
k=1

Nc∑
j=1

vj(t)g
j
kφk.

The indices 1 ≤ i ≤ Ny correspond to the degrees of freedom of the interior nodes,
while the indices 1 ≤ k ≤ Nb correspond to the degrees of freedom of the boundary
nodes where nonhomogeneous Dirichlet boundary conditions are imposed. We set
z = (z1, · · · , zNy )T ∈ RNy . We introduce the mass matrices Myy, Myb = MT

by, and
Mbb, the coefficients of which are defined by

M ij
yy = (φi, φj), M ik

yb = (φi, φk), Mk`
bb = (φk, φ`)



for 1 ≤ i, j ≤ Ny, 1 ≤ k, ` ≤ Nb. The other matrices Ayy, Ayb, Ayp, Byp, and G,
involved in the semidiscrete system, are defined by

Aijyy = a(φj , φi), Aikyb = a(φk, φi) for 1 ≤ i, j ≤ Ny, 1 ≤ k ≤ Nb,

Aijyp = b(φi, ψj) for 1 ≤ i ≤ Ny, 1 ≤ j ≤ Np,
Bikyp = b(φk, ψi) for 1 ≤ i ≤ Np, 1 ≤ k ≤ Nb,
Gkj = gjk for 1 ≤ k ≤ Nb, 1 ≤ j ≤ Ny.

We assume that Ayp is of rank Np < Ny. The projector IΠT
y onto Ker(ATyp) parallel

to Im(M−1
yy Ayp) is

(8.1) IΠT
y = IRNy −M−1

yy Ayp(A
T
ypM

−1
yy Ayp)

−1ATyp.

The semidiscrete system is now

(8.2)
Myyz′(t) +MybGv′(t) = Ayyz(t) +AybGv(t) +Aypp(t),
ATypz(t) +BybGv(t) = 0.

If v ∈ H1(0,∞; RNc), as in section 3.2, we can prove that the pair (z,p) is a solution
to (8.2) if and only if it is a solution to

(8.3)

IΠT
y (z +M−1

yy MybGv)′(t) = AIΠT
y (z +M−1

yy MybGv)(t) + Bv(t),

(I − IΠT
y )(z +M−1

yy MybGv)(t)
= −M−1

yy Ayp(A
T
ypM

−1
yy Ayp)

−1ATyp(Byb −M−1
yy Myb)G v(t),

with

p(t) = (ATypM
−1
yy Ayp)

−1ATypM
−1
yy

(
Myyz′(t) +MybGv′(t)−Ayyz(t)−AybGv(t)

)
,

A = IΠT
yM

−1
yy Ayy, and

B = −IΠT
yM

−1
yy

(
AyyM

−1
yy Ayp(A

T
ypM

−1
yy Ayp)

−1Byb +AyyIΠT
yM

−1
yy Myb −Ayb

)
G.

The consistent initial condition for system (8.3) is

(8.4) IΠT
y (z +M−1

yy MybGv)(0) = IΠT
y (z0 +M−1

yy MybGv(0)),

and the consistent initial condition for system (8.2) is

(8.5)
(z +M−1

yy MybGv)(0) = IΠT
y (z0 +M−1

yy MybGv(0))

−M−1
yy Ayp(A

T
ypM

−1
yy Ayp)

−1ATyp

(
Byb +M−1

yy Myb

)
Gv(0).

Thus, we have the following result.

Theorem 8.1. Assume that v belong to H1(0,∞; RNc). A pair (z,p) is a so-
lution of (8.2) with the initial condition (8.5) if and only if (z,p) is the solution to
system (8.3) with the initial condition (8.4).



Comparison with the controlled system obtained in [19]. In [19], the
matrix Myb is taken equal to 0Ny×Nb . In that case, (8.3) and (8.2) correspond to
equation (6.6a) in [19]. This is justified if a mass lumping method is used; see, e.g.,
[12]. This type of simplification can be used for stable systems (as in [19]) or for
moderately unstable systems. But it is not accurate enough for the stabilization of
unstable systems.
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