
HAL Id: hal-01810775
https://hal.science/hal-01810775v1

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Stochastic Quasi-Newton MCMC for
Non-Convex Optimization

Umut Şimşekli, Cagatay Yildiz, Thanh Huy Nguyen, Gael Richard, A Taylan
Cemgil

To cite this version:
Umut Şimşekli, Cagatay Yildiz, Thanh Huy Nguyen, Gael Richard, A Taylan Cemgil. Asynchronous
Stochastic Quasi-Newton MCMC for Non-Convex Optimization. ICML 2018, Jul 2018, Stockholm,
Sweden. �hal-01810775�

https://hal.science/hal-01810775v1
https://hal.archives-ouvertes.fr

Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization

Umut Şimşekli 1 Çağatay Yıldız 2 Thanh Huy Nguyen 1 Gaël Richard 1 A. Taylan Cemgil 3

Abstract

Recent studies have illustrated that stochastic
gradient Markov Chain Monte Carlo techniques
have a strong potential in non-convex optimiza-
tion, where local and global convergence guaran-
tees can be shown under certain conditions. By
building up on this recent theory, in this study,
we develop an asynchronous-parallel stochastic
L-BFGS algorithm for non-convex optimization.
The proposed algorithm is suitable for both dis-
tributed and shared-memory settings. We pro-
vide formal theoretical analysis and show that
the proposed method achieves an ergodic con-
vergence rate of O(1/

√
N) (N being the total

number of iterations) and it can achieve a linear
speedup under certain conditions. We perform
several experiments on both synthetic and real
datasets. The results support our theory and show
that the proposed algorithm provides a significant
speedup over the recently proposed synchronous
distributed L-BFGS algorithm.

1. Introduction
Quasi-Newton (QN) methods are powerful optimization
techniques that are able to attain fast convergence rates
by incorporating local geometric information through an
approximation of the inverse of the Hessian matrix. The
L-BFGS algorithm (Nocedal & Wright, 2006) is a well-
known limited-memory QN method that aims at solving the
following optimization problem:

θ? = arg min
θ∈Rd

{
U(θ) ,

NY∑
i=1

Ui(θ)
}
, (1)

1LTCI, Télécom ParisTech, Université Paris-Saclay, 75013,
Paris, France 2Department of Computer Science, Aalto Univer-
sity, Espoo, 02150, Finland 3Department of Computer Engi-
neering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
Correspondence to: Umut Şimşekli <umut.simsekli@telecom-
paristech.fr>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

whereU is a twice continuously differentiable function that
can be convex or non-convex, and is often referred to as
the empirical risk. In a typical machine learning context, a
dataset Y with NY independent and identically distributed
(i.i.d.) data points is considered, which renders the function
U as a sum of NY different functions {Ui}NYi=1.

In large scale applications, the number of data points NY
often becomes prohibitively large and therefore using a
‘batch’ L-BFGS algorithm becomes computationally in-
feasible. As a remedy, stochastic L-BGFS methods have
been proposed (Byrd et al., 2016; Schraudolph et al., 2007;
Moritz et al., 2016; Zhou et al., 2017; Yousefian et al.,
2017; Zhao et al., 2017), which aim to reduce the com-
putational requirements of L-BFGS by replacing ∇U (i.e.
the full gradients that are required by L-BFGS) with some
stochastic gradients that are computed on small subsets of
the dataset. However, using stochastic gradients within L-
BFGS turns out to be a challenging task since it brings ad-
ditional technical difficulties, which we will detail in Sec-
tion 2.

In a very recent study, Berahas et al. (2016) proposed a
parallel stochastic L-BFGS algorithm, called multi-batch
L-BFGS (mb-L-BFGS), which is suitable for synchronous
distributed architectures. This work illustrated that carry-
ing out L-BFGS in a distributed setting introduces further
theoretical and practical challenges; however, if these chal-
lenges are addressed, stochastic L-BFGS can be powerful
in a distributed setting as well, and outperform conven-
tional algorithms such as distributed stochastic gradient de-
scent (SGD), as shown by their experimental results.

Despite the fact that synchronous parallel algorithms have
clear advantages over serial optimization algorithms, the
computational efficiency of synchronous algorithms is of-
ten limited by the overhead induced by the synchronization
and coordination among the worker processes. Inspired by
asynchronous parallel stochastic optimization techniques
(Agarwal & Duchi, 2011; Lian et al., 2015; Zhang et al.,
2015; Zhao & Li, 2015; Zheng et al., 2017), in this study,
we propose an asynchronous parallel stochastic L-BFGS
algorithm for large-scale non-convex optimization prob-
lems. The proposed approach aims at speeding up the
synchronous algorithm presented in (Berahas et al., 2016)
by allowing all the workers work independently from each

Asynchronous Stochastic Quasi-Newton MCMC

other and circumvent the inefficiencies caused by synchro-
nization and coordination.

Extending stochastic L-BFGS to asynchronous settings is
a highly non-trivial task and brings several challenges. In
our strategy, we first reformulate the optimization problem
(1) as a sampling problem where the goal becomes draw-
ing random samples from a distribution whose density is
concentrated around θ?. We then build our algorithm upon
the recent stochastic gradient Markov Chain Monte Carlo
(SG-MCMC) techniques (Chen et al., 2015; 2016b) that
have close connections with stochastic optimization tech-
niques (Dalalyan, 2017; Raginsky et al., 2017; Zhang et al.,
2017), and have proven successful in large-scale Bayesian
machine learning. We provide formal theoretical analysis
and prove non-asymptotic guarantees for the proposed al-
gorithm. Our theoretical results show that the proposed al-
gorithm achieves an ergodic global convergence with rate
O(1/

√
N), whereN denotes the total number of iterations.

Our results further imply that the algorithm can achieve a
linear speedup under ideal conditions.

For evaluating the proposed method, we conduct several
experiments on synthetic and real datasets. The experi-
mental results support our theory: our experiments on a
large-scale matrix factorization problem show that the pro-
posed algorithm provides a significant speedup over the
synchronous parallel L-BFGS algorithm.

2. Technical Background
Preliminaries: As opposed to the classical optimization
perspective, we look at the optimization problem (1) from
a maximum a-posteriori (MAP) estimation point of view,
where we consider θ as a random variable in Rd and θ? as
the optimum of a Bayesian posterior whose density is given
as p(θ|Y) ∝ exp(−U(θ)), where Y ≡ {Y1, . . . , YNY } is
a set of i.i.d. observed data points. Within this context,
U(θ) is often called the potential energy and defined as
U(θ) = −[log p(θ) +

∑NY
i=1 log p(Yi|θ)], where p(Yi|θ) is

the likelihood function and p(θ) is the prior density. In a
classical optimization context, − log p(Yi|θ) would corre-
spond to the data-loss and− log p(θ) would correspond to a
regularization term. Throughout this study, we will assume
that the problem (1) has a unique solution in Rd.

We define a stochastic gradient ∇Ũ(θ), that is an unbiased
estimator of ∇U , as follows: ∇Ũ(θ) = −[∇ log p(θ) +
NY
NΩ

∑
i∈Ω∇ log p(Yi|θ)], where Ω ⊂ {1, . . . , NY } de-

notes a random data subsample that is drawn with replace-
ment, NΩ = |Ω| is the cardinality of Ω. In the sequel, we
will occasionally use the notation∇Ũn and∇ŨΩ to denote
the stochastic gradient computed at iteration n of a given
algorithm, or on a specific data subsample Ω, respectively.

The L-BFGS algorithm: The L-BFGS algorithm itera-

tively applies the following equation in order to find the
MAP estimate given in (1):

θn = θn−1 − hHn∇U(θn−1) (2)

where n denotes the iterations. Here, Hn is an approxi-
mation to the inverse Hessian at θn−1 and is computed by
using the M past values of the ‘iterate differences’ sn ,
θn − θn−1, and ‘gradient differences’ yn , ∇U(θn) −
∇U(θn−1). The collection of the iterate and gradient dif-
ferences is called the L-BFGS memory. The matrix-vector
product Hn∇U(θn−1) is often implemented by using the
two-loop recursion (Nocedal & Wright, 2006), which has
linear time and space complexities O(Md).

In order to achieve computational scalability, stochastic L-
BFGS algorithms replace ∇U with ∇Ũ . This turns out to
be problematic, since the gradient differences yn would be
inconsistent, meaning that the stochastic gradients in dif-
ferent iterations will be computed on different data sub-
samples, i.e. Ωn−1 and Ωn. On the other hand, in the pres-
ence of the stochastic gradients, L-BFGS is no longer guar-
anteed to produce positive definite approximations even in
convex problems, therefore more considerations should be
taken in order to make sure that Hn is positive definite.

Stochastic Gradient Markov Chain Monte Carlo:
Along with the recent advances in MCMC techniques,
diffusion-based algorithms have become increasingly pop-
ular due to their applicability in large-scale machine learn-
ing applications. These techniques, so called the Stochas-
tic Gradient MCMC (SG-MCMC) algorithms, aim at gen-
erating samples from the posterior distribution p(θ|Y)
as opposed to finding the MAP estimate, and have
strong connections with stochastic optimization techniques
(Dalalyan, 2017). In this line of work, Stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011) is one
of the pioneering algorithms and generates an approximate
sample θn from p(θ|Y) by iteratively applying the follow-
ing update equation:

θn = θn−1 − h∇Ũn(θn−1) +
√

2h/βZn (3)

where h is the step-size and {Zn}Nn=1 is a collection of
standard Gaussian random variables in Rd. Here, β is
called the inverse temperature: it is fixed to β = 1 in vanilla
SGLD and when β 6= 1 the algorithm is called ‘tempered’.
In an algorithmic sense, SGLD is identical to SGD, except
that it injects a Gaussian noise at each iteration and it coin-
cides with SGD when β goes to infinity.

SGLD has been extended in several directions (Ma et al.,
2015; Chen et al., 2015; Şimşekli et al., 2016b; Şimşekli,
2017). In (Şimşekli et al., 2016a), we proposed an L-
BFGS-based SGLD algorithm with O(M2d) computa-
tional complexity, which aimed to improve the convergence

Asynchronous Stochastic Quasi-Newton MCMC

speed of the vanilla SGLD. We showed that a straightfor-
ward way of combining L-BFGS in SGLD would incur an
undesired bias; however, the remedy to prevent this bias
resulted in numerical instability, which would limit the ap-
plicability of the algorithm. In other recent studies, SGLD
has also been extended to synchronous (Ahn et al., 2014)
and asynchronous (Chen et al., 2016b; Springenberg et al.,
2016) distributed MCMC settings.

SGLD can be seen as a discrete-time simulation of a
continuous-time Markov process that is the solution of the
following stochastic differential equation (SDE):

dθt = −∇U(θt)dt+
√

2/βdWt, (4)

where Wt denotes the standard Brownian motion in Rd.
Under mild regularity conditions on U , the solution pro-
cess (θt)t≥0 attains a unique stationary distribution with
a density that is proportional to exp(−βU(θ)) (Roberts
& Stramer, 2002). An important property of this distri-
bution is that, as β goes to infinity, this density concen-
trates around the global minimum of U(θ) (Hwang, 1980;
Gelfand & Mitter, 1991). Therefore, for large enough β,
a random sample that is drawn for the stationary distribu-
tion of (θt)t≥0 would be close to θ?. Due to this property,
SG-MCMC methods have recently started drawing atten-
tion from the non-convex optimization community. Chen
et al. (2016a) developed an annealed SG-MCMC algorithm
for non-convex optimization and it was recently extended
by Ye et al. (2017). Raginsky et al. (2017) and Xu et al.
(2017) provided finite-time guarantees for SGLD to find an
‘approximate’ global minimizer that is close to θ?, which
imply that the additive Gaussian noise in SGLD can help
the algorithm escape from poor local minima. In a com-
plementary study, Zhang et al. (2017) showed that SGLD
enters a neighborhood of a local minimum of U(θ) in poly-
nomial time, which shows that even if SGLD fails to find
the global optimum, it will still find a point that is close to
one of the local optima. Even though these results showed
that SG-MCMC is promising for optimization, it is still
not clear how an asynchronous stochastic L-BFGS method
could be developed within an SG-MCMC framework.

3. Asynchronous Stochastic L-BFGS
In this section, we propose a novel asynchronous L-BFGS-
based (tempered) SG-MCMC algorithm that aims to pro-
vide an approximate optimum that is close to θ? by gen-
erating samples from a distribution that has a density that
is proportional to exp(−βU(θ)). We call the proposed al-
gorithm asynchronous parallel stochastic L-BFGS (as-L-
BFGS). Our method is suitable for both distributed and
shared-memory settings. We will describe the algorithm
only for the distributed setting; the shared-memory version
is almost identical to the distributed version as long as the

updates are ensured to be atomic.

We consider a classical asynchronous optimization archi-
tecture, which is composed of a master node, several
worker nodes, and a data server. The main task of the mas-
ter node is to maintain the newest iterate of the algorithm.
At each iteration, the master node receives an additive up-
date vector from a worker node, it adds this vector to the
current iterate in order to obtain the next iterate, and then
it sends the new iterate to the worker node which has sent
the update vector. On the other hand, the worker nodes
work in a completely asynchronous manner. A worker
node receives the iterate from the master node, computes
an update vector, and sends the update vector to the master
node. However, since the iterate would be possibly modi-
fied by another worker node which runs asynchronously in
the mean time, the update vector that is sent to the server
will thus be computed on an old iterate, which causes both
practical and theoretical challenges. Such updates are aptly
called ‘delayed’ or ‘stale’. The full data is kept in the data
server and we assume that all the workers have access to
the data server.

The proposed algorithm iteratively applies the following
update equations in the master node:

un+1 = un + ∆un+1, θn+1 = θn + ∆θn+1, (5)

where n is the iteration index, un is called the momentum
variable, and ∆un+1 and ∆θn+1 are the update vectors that
are computed by the worker nodes. A worker node runs the
following equations in order to compute the update vectors:

∆un+1 ,− h′Hn+1(θn−ln)∇Ũn+1(θn−ln)− γ′un−ln
+
√

2h′γ′/βZn+1, (6)

∆θn+1 ,Hn+1(θn−ln)un−ln , (7)

where h′ is the step-size, γ′ > 0 is the friction parameter
that determines the weight of the momentum, β is the in-
verse temperature, {Zn}n denotes standard Gaussian ran-
dom variables, and Hn denotes the L-BFGS matrix at it-
eration n. Here, ln ≥ 0 denotes the ‘staleness’ of a par-
ticular update and measures the delay between the cur-
rent update and the up-to-date iterate that is stored in the
master node. We assume that the delays are bounded, i.e.
maxn ln ≤ lmax < ∞. Note that the matrix-vector prod-
ucts have O(Md) time-space complexity.

Due to the asynchrony, the stochastic gradients and the
L-BFGS matrices will be computed on the delayed vari-
ables θn−ln and un−ln . As opposed to the asynchronous
stochastic gradient algorithms, where the main difficulty
stems from the delayed gradients, our algorithm faces fur-
ther challenges since it is not straightforward to obtain the
gradient and iterate differences that are required for the L-
BFGS computations in an asynchronously parallel setting.

Asynchronous Stochastic Quasi-Newton MCMC

Algorithm 1: as-L-BFGS: Master node

1 input: θ0, u0

// Global iteration index

2 n← 0
3 Send (θ0, u0) to all the workers w = 1, . . . ,W
4 while n < N do
5 Receive (∆θn+1,∆un+1) from worker w

// Generate the new iterates

6 un+1 = un + ∆un+1, θn+1 = θn + ∆θn+1

7 Send the iterates (θn+1, un+1) to worker w
8 Set n← n+ 1

We propose the following approach for the computation of
the L-BFGS matrices. As opposed to the mb-L-BFGS algo-
rithm, which uses a central L-BFGS memory (i.e. the col-
lection of the gradient and iterate differences) that is stored
in the master node, we let each worker have their own local
L-BFGS memories since the master node would not be able
to keep track of the gradient and iterate differences, which
are received in an asynchronous manner. In our strategy,
each worker updates its own L-BFGS memory right after
sending the update vector to the master node. The overall
algorithm is illustrated in Algorithms 1 and 2 (W denotes
the number of workers).

In order to be able to have consistent gradient differences,
each worker applies a multi-batch subsampling strategy
that is similar to mb-L-BFGS. We divide the data subsam-
ple into two subsets, i.e. Ωn = {Sn, On} with NS , |Sn|,
NO , |On|, and NΩ = NS +NO. Here the main idea is to
chooseNS � NO and useOn as an overlapping subset for
the gradient differences. In this manner, in addition to the
gradients that are computed on Sn andOn, we also perform
an extra gradient computation on the previous overlapping
subset, at the end of each iteration. As NO will be small,
this extra cost will not be significant. Finally, in order to
ensure the L-BFGS matrices are positive definite, we use a
‘cautious’ update mechanism that is useful for non-convex
settings (Li & Fukushima, 2001; Zhang & Sutton, 2011;
Berahas et al., 2016) as shown in Algorithm 2.

Note that, in addition to asynchrony, the proposed algo-
rithm also extends the current stochastic L-BFGS meth-
ods by introducing momentum. This brings two critical
practical features: (i) without the existence of the momen-
tum variables, the injected Gaussian noise must depend on
the L-BFGS matrices, as shown in (Şimşekli et al., 2016a),
which results in an algorithm withO(M2d) time complex-
ity whereas our algorithm hasO(Md) time complexity, (ii)
the use of the momentum significantly repairs the numeri-
cal instabilities caused by the asynchronous updates, since
un inherently encapsulates a direction for θn, which pro-
vides additional information to the algorithm besides the
gradients and L-BFGS computations. Furthermore, in a

Algorithm 2: as-L-BFGS: Worker node (w)

1 input: M , γ, NS , NO (NΩ = NS +NO)
// Local iteration index

2 i← 0
3 while the master node is running do
4 Receive (θn−ln , un−ln) from the master
5 Draw a subsample Ωn+1 = {Sn+1, On+1}

// Gradient computation

6 ∇Ũn+1(θn−ln) =
NO
NΩ
∇ŨOn+1

(θn−ln) + NS
NΩ
∇ŨSn+1

(θn−ln)

7 Compute (∆θn+1,∆un+1) by (6) and (7)
8 Send (∆θn+1,∆un+1) to the master

// Local variables for L-BFGS

9 θ̃i = θn−ln , Õi = On+1, g̃i = ∇ŨOn+1(θn−ln)
10 if i ≥ 1 then

// Compute the overlapping gradient

11 g′ = ∇ŨÕi−1
(θ̃i)

// Compute the L-BFGS variables

12 si = θ̃i − θ̃i−1, yi = g′ − g̃i−1

// Cautious memory update

13 Add (si, yi) to the L-BFGS memory only if
y>i si ≥ ε‖si‖2 for some ε > 0

14 Set i← i+ 1

very recent study (Loizou & Richtárik, 2017) the use of
momentum variables has been shown to be useful in other
second-order optimization methods. On the other hand, de-
spite their advantages, the momentum variable also drifts
apart the proposed algorithm from the original L-BFGS
formulation. However, even such approximate approaches
have proven useful in various scenarios (Zhang & Sutton,
2011; Fu et al., 2016). Also note that, when β → ∞,
lmax = 0, and Hn(θ) = I for all n, the algorithm coincides
with SGD with momentum. A more detailed illustration is
given in the supplementary document.

4. Theoretical Analysis
In this section, we will provide non-asymptotic guarantees
for the proposed algorithm. Our analysis strategy is differ-
ent from the conventional analysis approaches for stochas-
tic optimization and makes use of tools from analysis of
SDEs. In particular, we will first develop a continuous-
time Markov process whose marginal stationary measure
admits a density that is proportional to exp(−βU(θ)).
Then we will show that (5)-(7) form an approximate Euler-
Maruyama integrator that approximately simulates this
continuous process in discrete-time. Finally, we will an-
alyze this approximate numerical scheme and provide a
non-asymptotic error bound. All the proofs are given in
the supplementary document.

Asynchronous Stochastic Quasi-Newton MCMC

We start by considering the following stochastic dynamical
system:

dpt=
[1

β
Γt(θt)−Ht(θt)∇θU(θt)− γpt

]
dt+

√
2γ

β
dWt

dθt =Ht(θt)ptdt (8)

where pt ∈ Rd is also called the momentum variable,Ht(·)
denotes the L-BFGS matrix at time t and Γt(·) is a vector
that is defined as follows:[

Γt(θ)
]
i
,

d∑
j=1

∂[Ht(θ)]ij
∂[θ]j

, (9)

where [v]i denotes the ith component of a vector v and sim-
ilarly [M]ij denotes a single element of a matrix M .

In order to analyze the invariant measure of the SDE de-
fined in (8), we need certain conditions to hold. First, we
have two regularity assumptions on U and Ht:

H1. The gradient of the potential is Lipschitz continuous,
i.e. ‖∇θU(θ)−∇θU(θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ ∈ Rd.

H 2. The L-BFGS matrices have bounded second-order
derivatives and they are Lipschitz continuous, i.e. ‖Ht(θ)−
Ht(θ

′)‖ ≤ LH‖θ − θ′‖, ∀θ, θ′ ∈ Rd, t ≥ 0.

The assumptions H1 and H2 are standard conditions in
analysis of SDEs (Duan, 2015) and similar assumptions
have also been considered in stochastic gradient (Moulines
& Bach, 2011) and stochastic L-BFGS algorithms (Zhou
et al., 2017). Besides, H2 provides a direct control on the
partial derivatives of Ht, which will be useful for analyz-
ing the overall numerical scheme. We now present our first
result that establishes the invariant measure of the SDE (8).

Proposition 1. Assume that the conditions H1 and 2 hold.
Let Xt = [θ>t , p

>
t]> ∈ R2d and (Xt)t≥0 be a Markov

process that is a solution of the SDE given in (8). Then
(Xt)t≥0 has a unique invariant measure π that admits a
density ρ(X) ∝ exp(−E(X)) with respect to the Lebesgue
measure, where E is an energy function on the extended
state space and is defined as: E(X) , βU(θ) + β

2 p
>p.

This result shows that, if the SDE (8) could be exactly sim-
ulated, the marginal distribution of the samples θt would
converge to a measure πθ which has a density that is pro-
portional to exp(−βU(θ)). Therefore, for large enough β
and t, θt would be close to the global optimum θ?.

We note that when β = 1, the SDE (8) shares similari-
ties with the SDEs presented in (Fu et al., 2016; Ma et al.,
2015). While the main difference being the usage of the
tempering scheme, (Fu et al., 2016) further differs from
our approach as it directly discard the term Γt since is in a
Metropolis-Hastings framework, which is not adequate for
large-scale applications. On the other hand, the stochastic

gradient Riemannian Hamiltonian Monte Carlo algorithm
given in (Ma et al., 2015), chooses Ht as the Fisher infor-
mation matrix; a quantity that requires O(d2) space-time
complexity and is not analytically available in general.

We will now show that the proposed algorithm (5)-(7) form
an approximate method for simulating (8) in discrete-time.
For illustration, we first consider the Euler-Maruyama inte-
grator for (8), given as follows:

pn+1 = pn − hHn(θn)∇θU(θn)− hγpn +
h

β
Γn(θn)

+
√

2hγ/βZn+1, (10)
θn+1 = θn + hHn(θn)pn. (11)

Here, the term (1/β)Γn introduces an additional computa-
tional burden and its importance is very insignificant (i.e.
its magnitude is of order O(1/β) due to H2). Therefore,
we discard Γn, define un , hpn, γ′ , hγ, h′ , h2, and
use these quantities in (S3) and (S1). We then obtain the
following re-parametrized Euler integrator:

un+1=un−h′Hn(θn)∇θU(θn)−γ′un+
√

2h′γ′/βZn+1

θn+1=θn+Hn(θn)un

The detailed derivation is given in the supplementary docu-
ment. Finally, we replace∇U with the stochastic gradients,
replace the variables θn and un with stale variables θn−ln
and pn−ln in the update vectors, and obtain the ultimate
update equations, given in (5). Note that, due to the negli-
gence of Γn, the proposed approach would require a large
β and would not be suitable for classical posterior sampling
settings, where β = 1.

In this section, we will analyze the ergodic error E[ÛN −
U?], where we define ÛN , (1/N)

∑N
n=1 U(θn) and

U? , U(θ?). This error resembles the bias of a statisti-
cal estimator; however, as opposed to the bias, it directly
measures the expected discrepancy to the global optimum.
Similar ergodic error notions have been considered in the
analysis of non-convex optimization methods (Lian et al.,
2015; Chen et al., 2016a; Berahas et al., 2016).

In our proof strategy, we decompose the error into two
terms: E[ÛN −U?] = A1 +A2, whereA1 , E[ÛN − Ūβ]

A2 , [Ūβ−U?] ≥ 0, and Ūβ ,
∫
Rd
U(θ)πθ(dθ). We then

upper-bound these terms separately.

The term A1 turns out to be the bias of a statistical estima-
tor, which we can analyze by using ideas from recent SG-
MCMC studies. However, existing tools cannot be directly
used because of the additional difficulties introduced by the
L-BFGS matrices. In order to bound A1, we first require
the following smoothness and boundedness condition.

H3. Let ψ be a functional that is the unique solution of a

Asynchronous Stochastic Quasi-Newton MCMC

Poisson equation that is defined as follows:

Lnψ(Xn) = U(θn)− Ūβ , (12)

where Xn = [θ>n , p
>
n]>, Ln is the generator of (8) at

t = nh and is formally defined in the supplementary docu-
ment. The functional ψ and its up to third-order deriva-
tives Dkψ are bounded by a function V (X), such that
‖Dkψ‖ ≤ CkV

rk for k = 0, 1, 2, 3 and Ck, rk > 0. Fur-
thermore, supnEV

r(Xn) <∞ and V is smooth such that
sups∈(0,1) V

r(sX + (1 − s)X ′) ≤ C(V r(X) + V r(X ′))

for all X,X ′ ∈ R2d, r ≤ max 2rk, and C > 0.

Assumption H3 is also standard in SDE analysis and SG-
MCMC (Mattingly et al., 2010; Teh et al., 2016; Chen et al.,
2015; Durmus et al., 2016) and gives us control over the
weak error of the numerical integrator. We further require
the following regularity conditions in order to have control
over the error induced by the delayed stochastic gradients.
H4. The variance of the stochastic gradients is bounded,
i.e. E‖∇θU(θ)−∇θŨ(θ)‖2 ≤ σ for some 0 < σ <∞.
H5. For a smooth and bounded function f , the remainder
rLn,f (·) in the following Taylor expansion is bounded:

ehLnf(X) = f(X) + hLnf(X) + h2rLn,f (X). (13)

The following lemma presents an upper-bound for A1.
Lemma 1. Assume the conditions H1-5 hold. We have the
following bound for the bias:∣∣E[ÛN − Ūβ]

∣∣ = O
(1

Nh
+ max(lmax, 1)h+

1

β

)
. (14)

Here, the term 1/β in (14) appears due to the negligence
of Γn. In order to bound the second term A2, we follow a
similar strategy to (Raginsky et al., 2017), where we use H
1 and the following moment condition on πθ.
H6. The second-order moments of πθ are bounded and sat-
isfies the following inequality:

∫
Rd
‖θ‖2πθ(dθ) ≤ Cβ

β , for
some Cβ > max(βd/(2πe), de/L).

This assumption is mild since πθ concentrates around θ? as
β tends to infinity. The order 1/β is arbitrary, hence the
assumption can be further relaxed. The following lemma
establishes an upper-bound for A2.
Lemma 2. Under assumptions H1 and 6, the following
bound holds: Ūβ − U? = O(1/β).

We now present our main result, which can be easily proven
by combining Lemmas 1 and 2.
Theorem 1. Assume that the conditions H1-6 hold. Then
the ergodic error of the proposed algorithm is bounded as
follows:∣∣EÛN − U?∣∣ = O

(1

Nh
+ max(1, lmax)h+

1

β

)
. (15)

200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations (n)

320

340

360

380

U
(θ

n
)

Simulator
OpenMPI

Figure 1. The comparison of the simulated and the real implemen-
tation of as-L-BFGS with W = 40 workers.

More explicit constants and a discussion on the relation of
the theorem to other recent theoretical results are provided
in the supplementary document.

Theorem 1 provides a non-asymptotic guarantee for con-
vergence to a point that is close to the global optimizer
θ? even when U is non-convex, thanks to the additive
Gaussian noise. The bound suggests an optimal rate of
convergence of O(1/

√
N), which is in line with the cur-

rent rates of the non-convex asynchronous algorithms (Lian
et al., 2015). Furthermore, if we assume that the total
number of iterations N is a linear function of the num-
ber of workers, e.g. N = NWW , where NW is the num-
ber of iterations executed by a single worker, Theorem 1
implies that, in the ideal case, the proposed algorithm can
achieve a linear speedup with increasing W , provided that
lmax = O(1/(Nh2)).

Despite their nice theoretical properties, it is well-known
that tempered sampling approaches also often get stuck
near a local minimum. In our case, this behavior would
be mainly due to the hidden constant in (14), which can
be exponential in dimension d, as illustrated in (Raginsky
et al., 2017) for SGLD. On the other hand, Theorem 1 does
not guarantee that the proposed algorithm will converge to
a neighborhood of a local minimum; however, we believe
that we can also prove local convergence guarantees by us-
ing the techniques provided in (Zhang et al., 2017; Tzen
et al., 2018), which we leave as a future work.

5. Experiments
The performance of asynchronous stochastic gradient
methods has been evaluated in several studies, where the
advantages and limitations have been illustrated in various
scenarios, to name a few (Dean et al., 2012; Zhang et al.,
2015; Zheng et al., 2017). In this study, we will explore the
advantages of using L-BFGS in an asynchronous environ-
ment. In order to illustrate the advantages of asynchrony,
we will compare as-L-BFGS with mb-L-BFGS (Berahas
et al., 2016); and in order to illustrate the advantages that
are brought by using higher-order geometric information,
we will compare as-L-BFGS to asynchronous SGD (a-
SGD) (Lian et al., 2015). We will also explore the speedup
behavior of as-L-BFGS for increasing W .

We conduct experiments on both synthetic and real

Asynchronous Stochastic Quasi-Newton MCMC

Figure 2. The required time to achieve ε-accuracy in the synthetic
setting. Solid lines represent the average results and the shades
represent three standard deviations.

datasets. For real data experiments, we have implemented
all the three algorithms in C++ by using a low-level mes-
sage passing protocol for parallelism, namely the OpenMPI
library. This code can be used both in a distributed environ-
ment or a single computer with multiprocessors. For the
experiments on synthetic data, we have implemented the
algorithms in MATLAB, by developing a realistic discrete-
event simulator. This simulated environment is particularly
useful for understanding the behaviors of the algorithms in
detail since we can explicitly control the computation time
that is spent at the master or worker nodes, and the commu-
nication time between the nodes. This simulation strategy
also enables us to explicitly control the variation among the
computational powers of the worker nodes; a feature that is
much harder to control in real distributed environments.

Linear Gaussian model: We conduct our first set of ex-
periments on synthetic data where we consider a rather sim-
ple convex quadratic problem whose optimum is analyti-
cally available. The problem is formulated as finding the
MAP estimate of the following linear Gaussian probabilis-
tic model:

θ ∼ N (0, I), Yi|θ ∼ N (a>i θ, σ
2
x), ∀i = 1, . . . , NY .

We assume that {an}Nn=1 and σ2
x are known and we aim at

computing θ?. For these experiments, we develop a para-
metric discrete event simulator that aims to simulate the
algorithms in a controllable yet realistic way. The simu-
lator simulates a distributed optimization algorithm once
it is provided four parameters: (i) µm: the average com-
putational time spent by the master node at each iteration,
(ii) µw: the average computational time spent by a single
worker at each iteration, (iii) σw: the standard deviation of
the computational time spent by a single worker per itera-
tion, and (iv) τ : the time spent for communications per iter-
ation. All these parameters are in a generic base time unit.
Once these parameters are provided for one of the three al-
gorithms, the simulator simulates the (a)synchronous dis-
tributed algorithm by drawing random computation times
from a log-normal distribution whose mean and variance
is specified by µw and σ2

w. Figure 1 illustrates a typical
outcome of the real and the simulated implementations of
as-L-BFGS, where we observe that the simulator is able to
provide realistic simulations that can even very well reflect

Figure 3. The required time to achieve ε-accuracy by as-L-BFGS
for increasing number of workers. Solid lines represent the aver-
age results and the shades represent three standard deviations.

the fluctuations of the algorithm.

In our first experiment, we set d = 100, σ2
x = 10, NY =

600, we randomly generate and fix the vectors {an}n in
such a way that there will be a strong correlation in the
posterior distribution, and we finally generate a true θ and
the observations Y by using the generative model.

For each algorithm, we fix µm, µs, and τs to realistic val-
ues and investigate the effect of the variation among the
workers by comparing the running time of the algorithms
for achieving ε-accuracy (i.e., (U(θn) − U?)/U? ≤ ε) for
different values of σ2

w when W = 40. We repeat each ex-
periment 100 times. In all our experiments, we have tried
several values for the hyper-parameters of each algorithm
and we report the best results. All the hyper-parameters are
provided in the supplementary document.

Figure 2 visualizes the results for the first experiment. We
can observe that, for smaller values σ2

w as-L-BFGS and mb-
L-BFGS perform similarly, where a-SGD requires more
computational time to achieve ε-accuracy. However, as
we increase the value of σ2

w, mb-L-BFGS requires more
computational time in order to be able to collect suffi-
cient amount of stochastic gradients. The results show that
both asynchronous algorithms turn out to be more robust to
the variability of the computational power of the workers,
where as-L-BFGS shows a better performance.

In our second experiment, we investigate the speedup be-
havior of as-L-BFGS within the simulated setting. In this
setting, we consider a highly varying set of workers and set
σ2
w = 200 and vary the number of workers W . As illus-

trated in Figure 3, as W increases, lmax increases as well
and the algorithm hence requires more iterations in order
to achieve ε-accuracy, since a smaller step-size needs to
be used. However, this increment in the number of itera-
tions is compensated by the increased number of workers,
as we observe that the required computational time grace-
fully decreases with increasing W . We observe a similar
behavior for different values of σ2

w, where the speedup is
more prominent for smaller σ2

w.

Large-scale matrix factorization: In our next set of
experiments, we consider a large-scale matrix factoriza-
tion problem (Gemulla et al., 2011; Şimşekli et al., 2015;
Şimşekli et al., 2017), where the goal is to obtain the

Asynchronous Stochastic Quasi-Newton MCMC

0 0.5 1 1.5 2 2.5 3

Wall-clock Time (m. sec) ×10
4

2

4

6

8

R
M
S
E

ML-1M

a-SGD

mb-L-BFGS

as-L-BFGS

0 1 2 3 4 5 6

Wall-clock Time (m. sec) ×10
4

0

2

4

6

8

‖∇
U
(θ

n
)‖

2

×10
5 ML-1M

a-SGD

mb-L-BFGS

as-L-BFGS

0 5 10 15

Wall-clock Time (m. sec) ×10
5

0

2

4

6

8

10

R
M
S
E

ML-10M

a-SGD

mb-L-BFGS

as-L-BFGS

0 5 10 15

Wall-clock Time (m. sec) ×10
5

0

2

4

6

‖∇
U
(θ

n
)‖

2

×10
6 ML-10M

a-SGD

mb-L-BFGS

as-L-BFGS

0 2 4 6 8

Wall-clock Time (m. sec) ×10
5

4

5

6

7

8

9

R
M
S
E

ML-20M

a-SGD

mb-L-BFGS

as-L-BFGS

0 2 4 6 8

Wall-clock Time (m. sec) ×10
5

0

2

4

6

8

10

‖∇
U
(θ

n
)‖

2

×10
6 ML-20M

a-SGD

mb-L-BFGS

as-L-BFGS

Figure 4. The convergence behavior of the algorithms on the
MovieLens datasets for W = 10.

MAP solution of the following probabilistic model: Frk ∼
N (0, 1), Gks ∼ N (0, 1), Yrs|F,G ∼ N

(∑
k FrkGks, 1

)
.

Here, Y ∈ RR×S is the data matrix, and F ∈ RR×K and
G ∈ RK×S are the factor matrices to be estimated.

In this context, we evaluate the algorithms on three large-
scale movie ratings datasets, namely MovieLens 1Million
(ML-1M), 10Million (ML-10M), and 20Million (ML-
20M) (grouplens.org). The ML-1M dataset contains
1 million non-zero entries, where R = 3883 (movies) and
S = 6040 (users). The ML-10M dataset contains 10 mil-
lion non-zero entries, resulting in a 10681 × 71567 data
matrix. Finally, the ML-20M dataset contains 20 million
ratings, resulting in a 27278 × 138493 data matrix. We
have conducted these experiments on a cluster of more than
500 interconnected computers, each of which is equipped
with variable quality CPUs and memories. In these exper-
iments, we have found that the numerical stability is im-
proved when Hn is replaced with (Hn + ρI) for small
ρ > 0. This small modification does not violate our the-
oretical results. The hyper-parameters are provided in the
supplementary document.

Figure 4 shows the performance of the three algorithms on
the MovieLens datasets in terms of the root-mean-squared-
error (RMSE), which is a standard metric for recommenda-
tion systems, and the norm of the gradients through itera-
tions. In these experiments, we set K = 5 for all the three
datasets and we set the number of workers toW = 10. The
results show that, in all datasets, as-L-BFGS provides a sig-
nificant speedup over mb-L-BFGS thanks to asynchrony.
We can observe that even when the speed of convergence
of mb-L-BFGS is comparable to a-SGD and as-L-BFGS
(cf. the plots showing the norm of the gradients), the final
RMSE yielded by mb-L-BFGS is poorer than the two other

10
0

10
2

10
4

10
6

Wall-clock Time (m. sec)

10
0

10
1

R
M
S
E

W=1

W=2

W=3

W=4

W=5

W=10

W=20

5 10 15 20
Workers (W)

0

5

10

15

20

T
im

e
S
p
ee
d
u
p

Linear Speedup
as-L-BFGS

Figure 5. The convergence behavior of as-L-BFGS on the ML-
1M dataset for increasing number of workers. The ‘time speedup’
is computed as the ratio of the running time with 1 worker to the
running time of W workers.

methods, which is an indicator that the asynchronous al-
gorithms are able to find a better local minimum. On the
other hand, the asynchrony causes more fluctuations in as-
L-BFGS when compared to a-SGD.

As opposed to the synthetic data experiments, in all the
three MovieLens datasets, we observe that as-L-BFGS pro-
vides a slight improvement in the convergence speed when
compared to a-SGD. This indicates that a-SGD is able to
achieve a comparable convergence speed by taking more
steps while as-L-BFGS is computing the matrix-vector
products. However, this gap can be made larger by consid-
ering a more efficient, yet more sophisticated implementa-
tion for L-BFGS computations (Chen et al., 2014).

In our last experiment, we investigate the speedup proper-
ties of as-L-BFGS in the real distributed setting. In this
experiment, we only consider the ML-1M dataset and run
the as-L-BFGS algorithm for different number of workers.
Figure 5 illustrates the results of this experiment. As we in-
crease W from 1 to 10, we obtain a decent speedup that is
close to a linear speedup. However, when we set W = 20
the algorithm becomes unstable, since the term lmaxh in
(15) dominates. Therefore, for W = 20 we need to de-
crease the step-size h, which requires the algorithm to be
run for a longer amount of time in order to achieve the same
error as we achieved when W was smaller. On the other
hand, the algorithm achieves a linear speedup in terms of
iterations; however, the corresponding result is provided in
the supplementary document due to the space constraints.

6. Conclusion
In this study, we proposed an asynchronous parallel
L-BFGS algorithm for non-convex optimization. We
developed the algorithm within the SG-MCMC frame-
work, where we reformulated the problem as sam-
pling from a concentrated probability distribution. We
proved non-asymptotic guarantees and showed that as-L-
BFGS achieves an ergodic global convergence with rate
O(1/

√
N) and it can achieve a linear speedup. Our ex-

periments supported our theory and showed that the pro-
posed algorithm provides a significant speedup over the
synchronous parallel L-BFGS algorithm.

grouplens.org

Asynchronous Stochastic Quasi-Newton MCMC

Acknowledgments
The authors would like to thank to Murat A. Erdoğdu
for fruitful discussions. This work is partly supported by
the French National Research Agency (ANR) as a part
of the FBIMATRIX project (ANR-16-CE23-0014), by the
Scientific and Technological Research Council of Turkey
(TÜBİTAK) grant number 116E580, and by the industrial
chair Machine Learning for Big Data from Télécom Paris-
Tech.

References
Agarwal, A. and Duchi, J. C. Distributed delayed stochas-

tic optimization. In Advances in Neural Information Pro-
cessing Systems, pp. 873–881, 2011.

Ahn, S., Shahbaba, B., and Welling, M. Distributed
stochastic gradient MCMC. In International conference
on machine learning, pp. 1044–1052, 2014.

Berahas, A. S., Nocedal, J., and Takác, M. A multi-batch
L-BFGS method for machine learning. In Advances in
Neural Information Processing Systems, pp. 1055–1063,
2016.

Byrd, R. H., Hansen, S. L., Nocedal, J., and Singer, Y.
A stochastic quasi-Newton method for large-scale opti-
mization. SIAM Journal on Optimization, 26(2):1008–
1031, 2016.

Chen, C., Ding, N., and Carin, L. On the convergence of
stochastic gradient MCMC algorithms with high-order
integrators. In Advances in Neural Information Process-
ing Systems, pp. 2269–2277, 2015.

Chen, C., Carlson, D., Gan, Z., Li, C., and Carin, L.
Bridging the gap between stochastic gradient MCMC
and stochastic optimization. In AISTATS, 2016a.

Chen, C., Ding, N., Li, C., Zhang, Y., and Carin, L.
Stochastic gradient MCMC with stale gradients. In Ad-
vances In Neural Information Processing Systems, pp.
2937–2945, 2016b.

Chen, W., Wang, Z., and Zhou, J. Large-scale L-BFGS
using MapReduce. In Advances in Neural Information
Processing Systems, pp. 1332–1340, 2014.

Şimşekli, U., Badeau, R., Cemgil, A. T., and Richard,
G. Stochastic quasi-Newton Langevin Monte Carlo. In
ICML, 2016a.

Şimşekli, U., Badeau, R., Richard, G., and Cemgil,
A. T. Stochastic thermodynamic integration: effi-
cient Bayesian model selection via stochastic gradient
MCMC. In ICASSP, 2016b.

Şimşekli, U., Durmus, A., Badeau, R., Richard, G.,
Moulines, E., and Cemgil, A. T. Parallelized stochas-
tic gradient Markov Chain Monte Carlo algorithms for
non-negative matrix factorization. In ICASSP, 2017.

Dalalyan, A. S. Further and stronger analogy between sam-
pling and optimization: Langevin Monte Carlo and gra-
dient descent. Proceedings of the 2017 Conference on
Learning Theory, 2017.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., and Ng, A. Y.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Duan, J. An Introduction to Stochastic Dynamics. Cam-
bridge University Press, New York, 2015.

Durmus, A., Şimşekli, U., Moulines, E., Badeau, R., and
Richard, G. Stochastic gradient Richardson-Romberg
Markov Chain Monte Carlo. In NIPS, 2016.

Fu, T., Luo, L., and Zhang, Z. Quasi-Newton Hamiltonian
Monte Carlo. In UAI, 2016.

Gelfand, S. B. and Mitter, S. K. Recursive stochastic algo-
rithms for global optimization in Rˆd. SIAM Journal on
Control and Optimization, 29(5):999–1018, 1991.

Gemulla, R., Nijkamp, E., J., H. P., and Sismanis, Y. Large-
scale matrix factorization with distributed stochastic gra-
dient descent. In ACM SIGKDD, 2011.

Hwang, C. Laplace’s method revisited: weak convergence
of probability measures. The Annals of Probability, pp.
1177–1182, 1980.

Li, D.-H. and Fukushima, M. On the global convergence
of the BFGS method for nonconvex unconstrained opti-
mization problems. SIAM Journal on Optimization, 11
(4):1054–1064, 2001.

Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous par-
allel stochastic gradient for nonconvex optimization. In
Advances in Neural Information Processing Systems, pp.
2737–2745, 2015.

Loizou, N. and Richtárik, P. Momentum and stochas-
tic momentum for stochastic gradient, Newton, proxi-
mal point and subspace descent methods. arXiv preprint
arXiv:1712.09677, 2017.

Ma, Y. A., Chen, T., and Fox, E. A complete recipe for
stochastic gradient MCMC. In Advances in Neural In-
formation Processing Systems, pp. 2899–2907, 2015.

Asynchronous Stochastic Quasi-Newton MCMC

Mattingly, J. C., Stuart, A. M., and Tretyakov, M. V.
Convergence of numerical time-averaging and station-
ary measures via Poisson equations. SIAM Journal on
Numerical Analysis, 48(2):552–577, 2010.

Moritz, P., Nishihara, R., and Jordan, M. A linearly-
convergent stochastic L-BFGS algorithm. In Artificial
Intelligence and Statistics, pp. 249–258, 2016.

Moulines, E. and Bach, F. R. Non-asymptotic analysis of
stochastic approximation algorithms for machine learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 451–459, 2011.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, Berlin, 2006.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex
learning via stochastic gradient Langevin dynamics: a
nonasymptotic analysis. In Proceedings of the 2017
Conference on Learning Theory, volume 65, pp. 1674–
1703, 2017.

Roberts, G. O. and Stramer, O. Langevin Diffusions
and Metropolis-Hastings Algorithms. Methodology and
Computing in Applied Probability, 4(4):337–357, De-
cember 2002. ISSN 13875841.

Schraudolph, N. N., Yu, J., and Günter, S. A stochastic
quasi-Newton method for online convex optimization. In
Artificial Intelligence and Statistics, pp. 436–443, 2007.

Şimşekli, U. Fractional Langevin Monte carlo: Exploring
Levy driven stochastic differential equations for Markov
chain Monte Carlo. In ICML, pp. 3200–3209, 2017.

Şimşekli, U., Koptagel, H., Güldaş, H., Cemgil, A. T.,
Öztoprak, F., and Birbil, Ş. İ. Parallel stochastic gradi-
ent Markov Chain Monte Carlo for matrix factorisation
models. arXiv preprint arXiv:1506.01418, 2015.

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
Asynchronous stochastic gradient MCMC with elastic
coupling. arXiv preprint arXiv:1612.00767, 2016.

Teh, Y. W., Thiery, A. H., and Vollmer, S. J. Consistency
and fluctuations for stochastic gradient Langevin dynam-
ics. Journal of Machine Learning Research, 17:1–33,
2016.

Tzen, B., Liang, T., and Raginsky, M. Local optimality
and generalization guarantees for the langevin algorithm
via empirical metastability. In Proceedings of the 2018
Conference on Learning Theory, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochas-
tic gradient Langevin dynamics. In International Con-
ference on Machine Learning, pp. 681–688, 2011.

Xu, P., Chen, J., and Gu, Q. Global convergence of
Langevin dynamics based algorithms for nonconvex op-
timization. arXiv preprint arXiv:1707.06618, 2017.

Ye, N., Zhu, Z., and Mantiuk, R. Langevin dynamics with
continuous tempering for training deep neural networks.
In Advances in Neural Information Processing Systems,
pp. 618–626. 2017.

Yousefian, F., Nedić, A., and Shanbhag, U. On stochas-
tic and deterministic quasi-Newton methods for non-
strongly convex optimization: convergence and rate
analysis. arXiv preprint arXiv:1710.05509, 2017.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-
ing with elastic averaging sgd. In Advances in Neural
Information Processing Systems, pp. 685–693, 2015.

Zhang, Y. and Sutton, C. A. Quasi-Newton methods for
Markov Chain Monte Carlo. In Advances in Neural In-
formation Processing Systems, pp. 2393–2401, 2011.

Zhang, Y., Liang, P., and Charikar, M. A hitting time anal-
ysis of stochastic gradient langevin dynamics. In Pro-
ceedings of the 2017 Conference on Learning Theory,
volume 65, pp. 1980–2022, 2017.

Zhao, R., Haskell, W. B., and Tan, V. Y. F. Stochastic L-
BFGS: Improved convergence rates and practical accel-
eration strategies. IEEE Transactions on Signal Process-
ing, 2017.

Zhao, S.-Y. and Li, W.-J. Fast asynchronous par-
allel stochastic gradient decent. arXiv preprint
arXiv:1508.05711, 2015.

Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma,
Z., and Liu, T. Asynchronous stochastic gradient de-
scent with delay compensation. In Proceedings of the
34th International Conference on Machine Learning,
volume 70, pp. 4120–4129, 2017.

Zhou, C., Gao, W., and Goldfarb, D. Stochastic adaptive
quasi-Newton methods for minimizing expected values.
In International Conference on Machine Learning, pp.
4150–4159, 2017.

Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
SUPPLEMENTARY DOCUMENT

Umut Şimşekli1, Çağatay Yıldız2, Thanh Huy Nguyen1, Gaël Richard1, A. Taylan Cemgil3
1: LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

2: Department of Computer Science, Aalto University, Espoo, 02150, Finland
3: Department of Computer Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey

1. The Approximate Euler-Maruyama Scheme
1.1. Connection with gradient descent with momentum

The standard Euler-Maruyama scheme for the SDE (8) can be developed as follows:

θn+1 = θn + hHn(θn)pn, (S1)

pn+1 = pn − hHn(θn)∇θU(θn)− hγpn +
h

β
Γn(θn) +

√
2hγ

β
Zn+1 (S2)

= (1− hγ)pn − hHn(θn)∇θU(θn) +
h

β
Γn(θn) +

√
2hγ

β
Zn+1 (S3)

where h is the step-size and {Zn}Nn=1 is a collection of standard Gaussian random variables.

We can obtain simplified update rules if we define un , hpn and use it in (S3). The modified update rules are given as
follows:

hpn+1 = hpn − h2Hn(θn)∇θU(θn)− h2γpn +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S4)

un+1 = un − h2Hn(θn)∇θU(θn)− hγun +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S5)

= (1− hγ)︸ ︷︷ ︸
γ′

un − h2︸︷︷︸
h′

Hn(θn)∇θU(θn) +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S6)

= γ′un − h′Hn(θn)∇θU(θn) +
h′

β
Γn(θn) +

√
2h′(1− γ′)

β
Zn+1, (S7)

where γ′ ∈ (0, 1). If we use the modified Euler scheme as described in (Neal, 2010) and replace pn with pn+1 in (S1), we
obtain the following update equation:

θn+1 = θn + hHn(θn)pn+1 (S8)
= θn +Hn(θn)un+1. (S9)

Note that, when β →∞ we have the following update rules:

un+1 = γ′un − h′Hn(θn)∇θU(θn) (S10)
θn+1 = θn +Hn(θn)un+1, (S11)

which coincides with Gradient descent with momentum when Hn(θ) = I for all n.

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

1.2. Numerical integration with stale stochastic gradients

We now focus on (S1) and (S2). We first drop the term Γn, replace the gradients ∇U with the stochastic gradients, and
then modify the update rules by using stale parameters θn−ln and pn−ln . The resulting scheme is given as follows:

θn+1 = θn + hHn(θn−ln)pn−ln , (S12)

pn+1 = pn − hHn(θn−ln)∇θŨn(θn−ln)− hγpn−ln +

√
2hγ

β
Zn+1. (S13)

By using a similar argument to the one used in Section 1.1, we define un , hpn, h′ = h2, γ′ = hγ, and obtain the
following update equations:

θn+1 = θn +Hn(θn−ln)un−ln , (S14)

un+1 = un − h′Hn(θn−ln)∇θŨn(θn−ln)− γ′un−ln +

√
2h′γ′

β
Zn+1. (S15)

2. Proof of Proposition 1
Proof. We start by rewriting the SDE given in (8) as follows:

dXt =

−

[
0 0
0 γ

β I

]
︸ ︷︷ ︸

D

+

[
0 −Ht(θt)β

Ht(θt)
β 0

]
︸ ︷︷ ︸

Qt(X)

[
β∇θU(θt)

βpt

]
︸ ︷︷ ︸
∇XE(Xt)

+

[
0

1
βΓt(θt)

]
︸ ︷︷ ︸

Γt(Xt)

 dt+
√

2DdWt. (S16)

Here, we observe that D is positive semi-definite, Q is anti-symmetric. Furthermore, for all i ∈ {1, 2, . . . , 2d} we observe
that [

Γt(X)
]
i

=

2d∑
j=1

∂[D + Qt(X)]ij
∂Xj

. (S17)

The assumptions H1 and 2 directly imply that the function−(D+Qt(X))∇XE(X)+Γt(X) is locally Lipschitz continuous
in X for all t. Then, the desired result is obtained by applying Theorem 1 of (Ma et al., 2015) and Proposition 4.2.2 of
(Kunze, 2012).

3. Proof of Lemma 1
3.1. Preliminaries

In the rest of this document, if there is no specification, the notation E
[
F
]

will denote the expectation taken over all the
random sources contained in F .

Before providing the proof of Lemma 1, let us consider the following Itô diffusion:

dXt = b(Xt)dt+ σ(Xt)dWt, (S18)

where Xt ∈ R2d, b : R2d → R2d, σ : R2d → R2d×2d, and Wt is Brownian motion in R2d. The generator L for (S18) is
formally defined as follows:

Lf(Xt) , lim
h→0+

E[f(Xt+h)|Xt]− f(Xt)

h
=
(
b(Xt) · ∇+

1

2

(
σ(Xt)σ(Xt)

>) : ∇∇>
)
f(Xt), (S19)

where f : Rn → R is any twice differentiable function whose support is compact. Here, a · b denotes the inner product
between vectors a and b, A : B by definition is equal to tr{A>B} for some matrices A and B. In our study, the generator
for the diffusion (S16) is then defined as follows: (define n = t/h and use (S19))

Ln ,
(
Hnpn · ∇θ −

(
Hn∇θU(θn) + γpn −

1

β
Γn(θn−ln)

)
· ∇p

)
+ D : ∇X∇>X . (S20)

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

We also define the following operator for the approximate Euler-Maruyama scheme with delayed updates:

L̃n ,
(
Hnpn · ∇θ −

(
Hn∇θŨ(θn−ln) + γpn

)
· ∇p

)
+ D : ∇X∇>X . (S21)

By using the definitions Ln and L̃n, we obtain the following identity:

L̃n = Ln −∆Vn, (S22)

where ∆Vn ,
(
Hn(θn−ln)(∇θŨn(θn−ln) − ∇θU(θn)) + 1

βΓ(θn−ln)
)
· ∇p. This operator essentially captures all the

errors induced by the approximate integrator.

We now proceed to the proof of Lemma 1. The proof uses several technical lemmas that are given in Section 6.

3.2. Proof of Lemma 1

Proof. We first consider the Euler-Maruyama integrator of the SDE (S16), to combine (S1) and (S3) into a single equation,
given as follows:

Xn+1 = Xn − h(D + Qn(Xn))∇E(Xn) + hΓn+1(Xn) +
√

2hDZ ′n+1

where Z ′n is a standard Gaussian random variable in R2d, h is the step-size, D, Q, and Γ are defined in (S16). We then
modify this scheme such that we replace the gradient ∇E with the stale stochastic gradients and we discard the term Γ.
The resulting numerical integrator is given as follows:

Xn+1 = Xn − h(D + Qn(Xn−ln))∇Ẽn(Xn−ln) +
√

2hDZ ′n+1. (S23)

Note that (S23) coincides with the proposed algorithm, given in (5).

In the sequel, we follow a similar strategy to (Chen et al., 2016b). However, we have additional difficulties caused by the
usage of L-BFGS matrices, which are reflected in the operator ∆Vn. Since we are using the Euler-Maruyama integrator,
we have the following inequality (Chen et al., 2015):

E[ψ(Xn)|Xn−1] = (I+ hL̃n)ψ(Xn−1) +O(h2). (S24)

By summing both sides of (S24) over n, taking the expectation, and using (S22), we obtain the following:
N∑
n=1

E[ψ(Xn)] = ψ(X0) +

N−1∑
n=1

E[ψ(Xn)]− h
N∑
n=1

E[∆Vnψ(Xn−1)] + h

N∑
n=1

E[Lnψ(Xn−1)] +O(Nh2). (S25)

By rearranging the terms and dividing all the terms by Nh, we obtain:

Eψ(XN)− ψ(X0)

Nh
=
−
∑N
n=1E[∆Vnψ(Xn−1)] +

∑N
n=1E[Lnψ(Xn−1)]

N
+O(h). (S26)

By using the Poisson equation given in (12) for each Lnψ(Xn−1) and rearranging the terms, we obtain:

E[
1

N

∑
n

(U(θn)− Ūβ)] =
E[ψ(XN)]− ψ(X0)

Nh
+

∑N
n=1E[∆Vnψ(Xn−1)]

N
+O(h). (S27)

By assumption H3, the term E[ψ(XN)] − ψ(X0) is uniformly bounded. Then, by Assumption H3 and Lemma S5, we
obtain the following bound:

E[
1

N

∑
n

(U(θn)− Ūβ)] = O
(1

Nh
+ max(lmax, 1)h+

1

β

)
, (S28)

as desired.

Remark 1. Theorem 1 significantly differentiates from other recent results. First of all, none of the references we are
aware of provides an analysis for an asynchronous stochastic L-BFGS algorithm. Aside from this fact, when compared
to (Chen et al., 2016a), our bound handles the case of delayed updates and provides an explicit dependence on β. When
compared to (Chen et al., 2016b), our analysis considers the tempered case and handles the additional difficulties brought
by the L-BFGS matrices and their derivatives. On the other hand, our analysis is also significantly different than the
ones presented in (Raginsky et al., 2017) and (Xu et al., 2017), as it considers the asynchrony and L-BFGS matrices, and
provides a bound for the ergodic error.

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

4. Proof of Lemma 2
Proof. We use the same proof technique given in (Raginsky et al., 2017)[Proposition 11]. We assume that πθ admits
a density with respect to the Lebesgue measure, denoted as ρ(θ) , 1

Zβ
exp(−βU(θ)), where Zβ is the normalization

constant: Zβ ,
∫
Rd

exp(−βU(θ))dθ. We start by using the definition of Ūβ , as follows:

Ūβ =

∫
Rd
U(θ)πθ(dθ) =

1

β
(H(ρ)− logZβ), (S29)

whereH(ρ) is the differential entropy, defined as follows:

H(ρ) , −
∫
Rd
ρ(θ) log ρ(θ)dθ. (S30)

We now aim at upper-boundingH(ρ) and lower-bounding logZβ . By Assumption H6, the distribution πθ has a finite sec-
ond order moment, therefore its differential entropy is upper-bounded by the differential entropy of a Gaussian distribution
that has the same second order moment. Then, we obtain

H(ρ) ≤ 1

2
log[(2πe)d det(Σ)] (S31)

≤ 1

2
log[(2πe)d

(tr(Σ)

d

)d
] (S32)

≤ d

2
log
(

2πe
Cβ
βd

)
, (S33)

where Σ denotes the covariance matrix of the Gaussian distribution. In (S32) we used the relation between the arithmetic
and geometric means, and in (S33) we used Assumption H6.

We now lower-bound logZβ . By definition, we have

logZβ = log

∫
Rd

exp(−βU(θ))dθ (S34)

= −βU? + log

∫
Rd

exp(β(U? − U(θ)))dθ (S35)

≥ −βU? + log

∫
Rd

exp(−βL‖θ − θ
?‖2

2
)dθ (S36)

= −βU? +
d

2
log(

2π

Lβ
). (S37)

Here, in (S36) we used Assumption H1 and (Nesterov, 2013)(Lemma 1.2.3).

Finally, by combining (S29), (S33), and (S37), we obtain

Ūβ − U? =
1

β
(H(ρ)− logZβ)− U? (S38)

≤ 1

β

(d
2

log
(
2πe

Cβ
βd

)
+ βU? − d

2
log(

2π

Lβ
)
)
− U? (S39)

=
1

β

d

2
log
(eCβL

d

)
(S40)

= O
(1

β

)
. (S41)

This finalizes the proof.

5. Proof of Theorem 1
Proof. We decompose the error, as follows:

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

∣∣∣EÛN − U?∣∣∣ =
∣∣∣E[

1

N

N∑
n=1

(U(θn)− U?)]
∣∣∣ (S42)

=
∣∣∣E[

1

N

N∑
n=1

(
U(θn)− Ūβ]

)
+
(
Ūβ − U?

)∣∣∣ (S43)

≤
∣∣∣E[

1

N

N∑
n=1

(
U(θn)− Ūβ]

)∣∣∣︸ ︷︷ ︸
A1

+
(
Ūβ − U?

)
︸ ︷︷ ︸

A2

, (S44)

where the term A1 is bounded by Lemma 1 and the term A2 is bounded by Lemma 2. This finalizes the proof.

6. Technical Lemmas
For convenience, let us introduce the following notations: X̄k , (X0, . . . , Xk). Let us also denote Ωn the (uniform)
random subsample, which is chosen independently of (X̄n), used for iteration n.

Lemma S3. Let fk(X) , ‖X −Xk−1‖. Under the assumptions H2-5, the following bound holds:

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2

)
(S45)

where EX̄k denotes the expectation taken over the random variables X0, . . . , Xk.

Proof. The proof is similar to [(Chen et al., 2016b), Lemma 8], we provide the proof for completeness. We first consider
the following estimate which uses the Lipschitz property of∇θU(θ):

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
≤ LEX̄n

[
‖θn−ln − θn‖

]
≤ LEX̄n

[∥∥∥ n−1∑
i=n−ln

(θi − θi+1)
∥∥∥]

≤ L
n−1∑

i=n−ln

EX̄n

[∥∥∥θi − θi+1

∥∥∥]

≤ L
n−1∑

i=n−ln

EX̄n

[∥∥∥Xi −Xi+1

∥∥∥]

= L

n−1∑
i=n−ln

EX̄n

[
fi+1(Xi+1)

]
. (S46)

Using law of total expectation, we have

EX̄n

[
fi+1(Xi+1)

]
= E

[
fi+1(Xi+1)

]
= E

[
E
[
fi+1(Xi+1)|Xi

]]
= E

[
ehLi+1fi+1(Xi) +O(h2)

]
= E

[
fi+1(Xi) + hLi+1fi+1(Xi) +O(h2)

]
≤ hE

[
Li+1fi+1(Xi)

]
+O(h2). (S47)

The third equality is due to the fact that Euler integrator is a first order integrator. Then we applied Assumption H5 and

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

fi+1(Xi) = 0 to obtain the last two lines. Finally, by combining (S46) and (S47), we obtain:

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
≤ L

n−1∑
i=n−ln

(hE
[
Li+1fi+1(Xi)

]
+O(h2))

≤ L
n−1∑

i=n−lmax

(hE
[
Li+1fi+1(Xi)

]
+O(h2))

≤ Llmaxh max
i∈Jn−lmax+1,nK

E
[
Lifi(Xi−1)

]
+O(h2).

This completes the proof.

Lemma S4. If Assumption H2 holds then the following bound holds:

‖Γn‖ = O(
1

β
), (S48)

where Γn is defined in (S16).

Proof. If ln > 0 then ‖Γn(θn)‖ = 0 since Hn will not depend on θn (see (9) for the definition of Γn). For ln = 0, by
the Lipschitz continuity of Hn, the first order partial derivatives of Hn are all bounded by LH . Then, ‖Γn‖ = 1

β ‖Γn‖ is
therefore bounded by a quantity that is proportional to β−1.

Lemma S5. Let fk(X) , ‖X −Xk−1‖. Under the assumptions H2-5, the following bound holds:

E
[
∆Vnψ(Xn−1)

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2 + β−1

)
. (S49)

Proof. First, by using the triangular inequality we have:

‖E
[
∆Vnψ(Xn−1)

]
‖ =‖E

[
(Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) +

1

β
Γn(θn−ln)) · ∇pψ(Xn−1)

]
‖

≤‖E
[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

+ ‖E
[1

β
Γn(θn−ln) · ∇pψ(Xn−1)

]
‖. (S50)

Applying Assumption H3 and Lemma S4, we obtain the bound for the second term in the above sum:

A1 , ‖E
[1

β
Γn(θn−ln) · ∇pψ(Xn−1)

]
‖ = O(β−1). (S51)

We note that the expectation is taken over (X̄n,Ωn), where X̄n and Ωn are independent. Hence, the first term in (S50) can
be rewritten as follows:

A2 ,‖E
[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

=‖EX̄n
[
EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]]
‖

=
∥∥EX̄n[EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θŨn−ln(θn)) · ∇pψ(Xn−1)

]
+ EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn)

−∇θUn(θn)) · ∇pψ(Xn−1)
]]∥∥.

As Hn and ∇pψ(Xn−1) are independent of the random subsample Ωn, we have

EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn)−∇θUn(θn)) · ∇pψ(Xn−1)

]
= Hn(θn−ln)EΩn

[
∇θŨn−ln(θn)−∇θUn(θn)

]
· ∇pψ(Xn−1)

= 0.

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

As a result,

A2 = ‖EX̄n
[
EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θŨn−ln(θn)) · ∇pψ(Xn−1)

]]
‖

= ‖EX̄n
[
Hn(θn−ln)(∇θU(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

≤ CEX̄n
[
‖∇θU(θn−ln)−∇θU(θn)‖

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2

)
. (S52)

The inequality in (S52) is deduced from the fact thatHn is bounded by (Berahas et al., 2016)[Lemma3.3] and∇pψ(Xn−1)
is bounded by assumptions, and the last equality is due to Lemma S3. Finally, by combining (S50), (S51), and (S52), we
obtain (S49), which concludes the proof.

7. Additional Experimental Results
In this section, we provide the result where we illustrate the iteration speedup of as-L-BFGS on the ML-1M dataset.

10
3

Iterations (N)

10
0

10
1

R
M
S
E

W=1

W=2

W=3

W=4

W=5

W=10

W=20

Figure S1. The convergence behavior of as-L-BFGS on the ML-1M dataset for increasing number of workers.

8. Algorithm Parameters Used in the Experiments
8.1. Linear Gaussian model

Table 1 lists the algorithm parameters for the synthetic data experiments. We fixed the L-BFGS memory sizes for mb-L-
BFGS and as-L-BFGS to M = 3. The remaining parameters are the step sizes (h, h′), timeout duration of mb-L-BFGS
server (Tmb), the friction parameter (γ′), and the inverse temperature (β) of as-L-BFGS.

Table 1. The list of algorithm parameters that are used in the experiments on the linear Gaussian model.
a-SGD mb-L-BFGS as-L-BFGS

h h Tmb (base units) h′ γ′ β

1× 10−3 5× 10−2 10 4× 10−4 3× 10−2 5× 102

Table 2 lists the parameters of the simulator. The parameters are (i) µm: the average computational time spent by the
master node at each iteration, (ii) µw: the average computational time spent by a single worker at each iteration, and (iii)
τ : the time spent for communication per iteration. In all cases we set τ = 10, NΩ = NY /100, NO = NΩ/3.

Table 2. The list of simulator parameters that are used in the experiments on the linear Gaussian model.
a-SGD mb-L-BFGS as-L-BFGS

µm µw µm µw µm µw

0 1000× NΩ

N 30 1000× NΩ

NY
0 1000× NΩ

NY
+ 60

Asynchronous Stochastic Quasi-Newton MCMC – Supplementary Document

8.2. Large-scale matrix factorization

Table 3 lists the algorithm parameters for different data sets. We fixed the L-BFGS memory sizes for mb-L-BFGS and
as-L-BFGS to M = 3. In all experiments we set ρ = 3, NΩ = NY /100, NO = NΩ/3.

Table 3. The list of algorithm parameters that are used in the experiments on the large scale matrix factorization.
a-SGD mb-L-BFGS as-L-BFGS

h h Tmb (m. sec.) h′ γ′ β

ML-1M 1× 10−6 5× 10−7 400 2× 10−8 1× 10−1 1× 103

ML-10M 2× 10−7 1× 10−8 3400 1× 10−9 3× 10−2 1× 103

ML-20M 1× 10−7 1× 10−8 4500 1× 10−9 1× 10−3 1× 103

References
Berahas, Albert S, Nocedal, Jorge, and Takác, Martin. A multi-batch L-BFGS method for machine learning. In Advances

in Neural Information Processing Systems, pp. 1055–1063, 2016.

Chen, C., Ding, N., and Carin, L. On the convergence of stochastic gradient MCMC algorithms with high-order integrators.
In Advances in Neural Information Processing Systems, pp. 2269–2277, 2015.

Chen, C., Carlson, D., Gan, Z., Li, C., and Carin, L. Bridging the gap between stochastic gradient MCMC and stochastic
optimization. In AISTATS, 2016a.

Chen, C., Ding, N., Li, C., Zhang, Y., and Carin, L. Stochastic gradient MCMC with stale gradients. In Advances In Neural
Information Processing Systems, pp. 2937–2945, 2016b.

Kunze, M. Stochastic differential equations. Lecture notes, University of Ulm, 2012.

Ma, Y. A., Chen, T., and Fox, E. A complete recipe for stochastic gradient MCMC. In Advances in Neural Information
Processing Systems, pp. 2899–2907, 2015.

Neal, R. M. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 54, 2010.

Nesterov, Y. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business
Media, 2013.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex learning via stochastic gradient Langevin dynamics: a
nonasymptotic analysis. In Proceedings of the 2017 Conference on Learning Theory, volume 65, pp. 1674–1703, 2017.

Xu, P., Chen, J., and Gu, Q. Global convergence of Langevin dynamics based algorithms for nonconvex optimization.
arXiv preprint arXiv:1707.06618, 2017.

