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The dynamic structure factor of superfluid 4He has been investigated at very low temperatures
by inelastic neutron scattering. The measurements combine different incoming energies resulting
in an unprecedentedly large dynamic range with excellent energy resolution, covering wave vectors
Q up to 5 Å−1 and energies ω up to 15 meV. A detailed description of the dynamics of superfluid
4He is obtained from saturated vapor pressure up to solidification. The single-excitation spectrum
is substantially modified at high pressures, as the maxon energy exceeds the roton-roton decay
threshold. A highly structured multi-excitation spectrum is observed at low energies, where clear
thresholds and branches have been identified. Strong phonon emission branches are observed when
the phonon or roton group velocities exceed the sound velocity. The spectrum is found to display
strong multi-excitations whenever the single-excitations face disintegration following Pitaevskii’s
type a or b criteria. At intermediate energies, an interesting pattern in the dynamic structure factor
is observed in the vicinity of the recoil energy. All these features, which evolve significantly with
pressure, are in very good agreement with the Dynamic Many-body calculations, even at the highest
densities, where the correlations are strongest.

I. INTRODUCTION

Understanding the dynamics of correlated bosons is
a subject of general interest in several fields of physics.
Bose-Einstein condensation and superfluidity1,2, first
found in 4He, are fundamental phenomena that imprint
remarkable signatures on the dynamics of these systems.
Experimentally, superfluid 4He is the simplest example of
strongly correlated bosons. The interaction potential is
particularly well known, and substantial effort has been
devoted to develop a coherent theoretical framework able
to describe and explain the extraordinary properties of
this quantum fluid1–11. The theoretical methods can be
generalized to other many-body problems, including for
instance up-to-date approaches of the complex case of
correlated fermions12–16.

The prediction by Landau3 of the phonon-roton exci-
tation spectrum of superfluid 4He and its direct observa-
tion in the dynamic structure factor S(Q,ω) using neu-
tron scattering techniques4,17 are cornerstones of modern
physics, at the origin of the present microscopic descrip-
tions of matter5,18,19. The dynamics of superfluid 4He
at very low temperatures, in the vicinity of the ground
state, is dominated by the “phonon-maxon-roton” exci-
tation branch. The corresponding excitations, extremely
sharp, correspond essentially to poles of the dynamic
density-density response function. They are referred to
as “single-excitations” in the neutron scattering litera-
ture, and as “quasi-particles” in theoretical works. An
effective description of the dynamics of such systems can
be obtained in terms of these modes, allowing for in-
stance a very accurate statistical evaluation of the low

temperature thermodynamic properties4,20.

Sharp excitations are absent above twice the roton
energy4,17,21, and the dynamics at intermediate ener-
gies is described in terms of broad excitations, named
“multi-excitations” for reasons described below. Multi-
excitations still have a significant statistical weight in
the dynamic structure factor4,17,22–30. Their spectrum is
known to display some structure since the early measure-
ments of Svensson, Martel, Sears and Woods23. More re-
cent investigations24–29 showed that some features could
be ascribed to multi-excitations. These were related
to pairs of high density-of-states roton (R) and maxon
(M) modes (noted hereafter 2R, 2M, and MR). The
broad ridges observed in S(Q,ω) at SVP (see Figure 1
of Ref. 24), and at 20 bars (see Figure 1 of Ref. 29) were
consistent with the calculated energies of the main com-
binations (2R, 2M and MR).

A much finer structure in the dynamic response was
observed in our recent work at zero pressure30, includ-
ing sharp thresholds, narrow branches, and a new two-
phonon decay process, the “ghost phonon”. Explaining
this rich dynamic response, observed from the continuum
limit to subatomic distances, constitutes a challenge and
an opportunity for microscopic theories.

Finally, at high energies, the dynamic structure fac-
tor gradually approaches a quasi-free-particle behavior22

described by the impulse approximation4,17,31.

Even though helium is one of the most intensively in-
vestigated physical substances, measurements covering a
large kinetic range are scarce. The canonical results by
Cowley and Woods22, Dietrich et al.32 or Svensson et
al.23 have a low resolution by modern standards, while
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later measurements specialize in specific ranges27–29,33,34.
Our extensive high-resolution measurements, presented
in Fig. 1, provide a detailed and complete map of the
dynamics of superfluid 4He. In addition to its aesthetic
merits, the picture shows new features which are the ob-
ject of this manuscript.

Helium is highly compressible. Since the atomic corre-
lations depend on the density, it is interesting to investi-
gate the pressure dependence of the density excitations.
Much of the earlier work has been focused on the effect
of pressure on the single-excitation response, in order to
determine, for example, the Landau parameters charac-
terizing the dispersion curve. The multi-excitation spec-
trum has also been found experimentally27–29,32–35 and
theoretically4,7,9,36 to be strongly modified by the pres-
sure. It was therefore desirable to extend our recent high
sensitivity measurements30 to finite pressures, and more
particularly near solidification, where theory9 predicted
radical changes in the dynamics.

In this manuscript, we present a detailed investigation
of the effect of pressure on the dynamics of superfluid
4He. We cover a large energy and wave vector range while
preserving the resolution needed to observe the fine struc-
ture of the spectra. High resolution maps of the dynamic
structure factor S(Q,ω) have been obtained at saturated
vapor pressure (SVP) and at P = 24 bars, close to so-
lidification, as shown in Fig. 1. Additional measurements
have been made in a smaller dynamic range at the inter-
mediate pressures 5 and 10 bars. We finally compare our
data to microscopic calculations of S(Q,ω) within the
Dynamic Many-Body theory9 performed at the densities
corresponding to the experimental pressure conditions.

II. EXPERIMENTAL DETAILS

The measurements were performed on the IN5 time-
of-flight spectrometer at the high-flux reactor of Institut
Laue Langevin. Our previous work30 at low tempera-
tures and saturated vapor pressure used cold neutrons of
energy Ei=3.55 meV. In the present work, we combine
data taken using four different incident neutron energies,
Ei=3.55, 5.11, 8.00, and 20.45 meV, for which the en-
ergy resolution (FWHM) at elastic energy transfer was
0.070, 0.12, 0.23 and 0.92 meV, respectively. This allowed
us to obtain a complete map of the dynamic structure
factor at the most relevant pressures, i.e., saturated va-
por pressure (SVP) and near solidification (P = 24 bars).
We also investigated a few intermediate pressures using
Ei=3.55 meV.

The cylindrical sample cell was made out of alu-
minum 5083, with 1 mm wall thickness and 15 mm inner
diameter30. Cadmium disks of 0.5 mm thickness were
placed inside the cell every centimeter to reduce multi-
ple scattering. The cell was thermally connected to the
mixing chamber of a very low temperature dilution re-
frigerator using massive OFHC copper pieces. Heat ex-
changers made out of sintered silver powder were used to

provide a good thermal contact with the helium sample.
Care was taken to thermally anchor the filling capillary
at several places along the dilution unit, in order to re-
duce heat leaks to the cell. The measurements were all
performed at very low temperatures, well below 100 mK,
i.e. essentially at zero temperature for the properties
under investigation.

High purity (99.999 %) helium gas was condensed in
the cell at low temperatures, using a gas handling sys-
tem including a “dipstick” cold trap operated in a helium
storage dewar. The dipstick was used to condense the gas
and to pressurize the helium sample. The pressure in the
system was measured with a precision of 6 mbars with
a 0-60 bars Digiquartz gauge located at the top of the
cryostat. The corresponding precision for the pressures
inside the cell is 20 mbars, after applying helium hydro-
static head corrections. The actual pressures in the cell
for the nominal 0, 5, 10 and 24 bars are essentially 0 (SVP
at 100 mK), 5.01(2), 10.01(2) and 24.08(2) bars.

III. DATA REDUCTION

Standard time-of-flight data-reduction37 was used to
obtain the dynamic structure factor S(Q,ω) from the
raw data. The contribution of the cell scattering was
subtracted, as well as that of double scattering events of
type “inelastic helium scattering plus elastic scattering
from the cell”. This type of double scattering is essen-
tially independent of wave vector.

The contribution of the multiple scattering within the
helium was corrected using Monte Carlo simulations38.
Due to the small diameter of our sample cell and the
presence of several cadmium plates, multiple scattering
corrections are small (the ratio of double-scattered to
single-scattered neutrons is on the order one percent30),
but may be comparable to the multi-excitation signal. It
is therefore essential to verify that multiple scattering is
not contaminating the spectra in the energy and wave
vector regions of interest, and perform the corrections
when necessary, in particular at low Q.

Since multiple scattering depends on the incident neu-
tron energy, as shown in figure 2, while multi-excitations
do not, Monte Carlo calculations can be used to select
the most appropriate incident neutron energy for the ex-
periments, and also to experimentally distinguish multi-
excitations from multiple scattering.

The only input needed by the Monte Carlo
simulations38 in the present case is the initially measured
scattering function S(Q,ω) after corrections for multiple
scattering processes involving the cell, and the coherent
scattering cross section of 4He, σc = 1.34 barns. We first
calculate the total scattering cross section38,39 σs(Ei):

σs(Ei) =
Nσc
2k2i

∫
QdQ

∫
S(Q,ω)dω, (1)

where N is the number of scatterers and ki the incident
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FIG. 1. S(Q,ω) of superfluid 4He as a function of wave vector and energy transfer, measured at T ≤ 100 mK at (a) saturated
vapor pressure (P ≈ 0) and (b) near solidification (P = 24 bars). The plots combine data measured at different incident neutron
energies (Ei=3.55, 5.1, 8.00 and 20.45 meV) for an optimum energy resolution; the dashed black lines represent the limits of

the corresponding kinetic ranges. The dotted red line is the free 4He atom recoil energy Er = ~2Q2

2M
. The color-coded intensity

scale is in units of meV−1.

neutron wave vector.

We find σs(Ei = 3.55 meV)=0.64 barns, about one half
of the coherent scattering cross section σcoh. The multi-
ple scattering fraction is 0.8 % for Ei=3.55 meV, increas-
ing slightly with pressure from 0.79 % at SVP to 1.06 %
at 24 bars. This agrees well with calculations using the
semi-analytical method developed by Sears40, which give

FIG. 2. Monte Carlo calculation of the contribution of double-
scattering within the helium to S(Q,ω). Results are shown
for two incident neutron energies, Ei=3.55 and 5.11 meV. The
color-coded intensity scale is in units of meV−1.

values increasing from 0.93 % to 1.09 % for the same pres-
sures. Multiple scattering can be seen in the experimen-
tal spectra at low wave vectors, thus providing a way to
check the Monte Carlo calculations used to eliminate this
effect. This is a crucial step in the data analysis, needed
to ensure that all the features we report in S(Q,ω) do
indeed correspond to multi-excitations.

The calculated contribution due to multiple scattering
within the helium has been subtracted from the spectra
measured using incident neutron energies Ei=3.55 and
5.11 meV. This was found to be unnecessary for Ei=8.00
and 20.45 meV, because multiple scattering processes are
negligible in the corresponding regions of the“combined”
spectra of Fig. 1.

An overall scale factor was applied to S(Q,ω) at SVP,
so that the weight of the single excitation Z(Q) agrees
with that of Cowley and Woods22 near the roton, i.e.,
Z(Q = 2 Å−1)=0.93 at SVP. At higher pressures, the
same scaling factor was used, but corrected for the den-
sity ratio ρ(P )/ρ(P = 0).

IV. EXPERIMENTAL RESULTS

A. Spectra at SVP and P=24 bars in a large
dynamic range

Our comprehensive results on the dynamic structure
factor S(Q,ω) at SVP and P = 24 bars are shown in
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FIG. 3. Dynamic structure factor S(Q,ω) combining data
at four incident neutron energies: spectra for different wave
vectors Q at SVP (green diamonds) and P = 24 bars (purple
squares). The dashed lines are Gaussian fits of the resolution-
limited phonon-roton peaks (off scale). The black lines repre-
sent the helium recoil energy. At Q = 3 Å−1, the purple and
green lines represent the two-roton energy 2∆R at SVP and
P = 24 bars, respectively. At Q = 1 Å−1, MR and MM are
the energy positions at SVP of the maxon-roton and maxon-
maxon multi-excitations, respectively.

Fig. 1. These maps were obtained by combining the four
different neutron energies. Higher energies make a larger
dynamic range accessible, but the instrumental energy
resolution deteriorates rapidly (see section II). Since the
corresponding dynamic ranges have a substantial over-
lap, we can select the most appropriate data set in terms
of resolution, neutron counts or cleanest background for
each region of the Q − ω plane. The S(Q,ω) maps are
built in the following way: first, the spectrum measured
at Ei=3.55 meV is represented; outside its useful kinetic
range, the data at Ei=5.11 meV are added, then the data
at Ei=8.00 meV and finally, the data at Ei= 20.45 meV.

The constant wave vector scans presented in Fig. 3,
obtained as particular “cuts” of Fig. 1, provide a com-
plementary perspective on the data. The phonon-roton
single-excitation mode is very narrow at the scale of
Figs. 1 and 3, and the observed width is essentially a mea-

sure of the experimental energy resolution (with the re-
markable exception of the maxon at high pressures, which
is discussed in the next section). The influence of a finite
energy resolution is clearly seen in Fig. 1 as a width dis-
continuity in the Pitaevskii plateau4,21, between ranges
corresponding to different incident neutron energies. It is
important to note, however, that the experimental broad-
ening effects are negligible in all the multi-excitation re-
gion investigated in the present work (except at the end
of the Pitaevskii plateau).

Merging data measured with different resolutions has
been successfully achieved, judging from the remarkable
continuity in intensity between the different regions rep-
resented in Fig. 1. This is essentially due to the fact
that the sharpest multi-excitations are found in the low
energy and low wave vector sector, adequately covered
by our high resolution data at Ei=3.55 and 5.11 meV.
Conversely, the spectra in the quasi-free particle re-
gion, at high energies and wave-vectors, are intrinsically
broad, and adequately covered by our data at 8.00 and
20.45 meV, in spite of their lower resolution. Using op-
timized incident neutron energies reveals the complete
evolution of the system, characterized by several multi-
excitation branches merging progressively at high wave
vectors to form a broad but rather intense feature. In-
tensity in this region was observed in early studies4,17,
but the data where either strongly truncated24,25,29, or
measured with low resolution22. This feature finally be-
comes, after a strong oscillation, a less intense branch
progressively approaching the free particle parabolic dis-
persion.

B. High resolution spectra as a function of pressure

We present in this section the spectra obtained using
an incident neutron energy of Ei=3.55 meV, for wave vec-
tors up to Q = 2.5 Å−1 and energies up to ω=2.22 meV.
The results are shown in Fig. 4(a), where we represent
our earlier data30 at SVP, the present data at 5 and
10 bars, and the data at P = 24 bars discussed in the
previous section. One can readily note that both the
single-excitation and the multi-excitation components of
the dynamic structure factor are modified by the pres-
sure.

Our results for the single-excitations dispersion mea-
sured at several pressures, shown in Fig. 5a, are in excel-
lent agreement with previous works4,17,24,25,28,32,34,41,42.
The roton parameters at each pressure have been ob-
tained from fits of the single-excitations dispersion rela-
tion εQ(Q) to the expression

εQ = ∆R +
~2

2mµR
(Q−QR)2 + b(Q−QR)3 + c(Q−QR)4,

(2)
where ∆R is the roton energy gap, QR the wave vector
at the roton minimum, and µR the roton effective mass;
b and c are additional adjustable parameters. Fits were
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FIG. 4. (a) S(Q,ω) of superfluid 4He measured as a func-
tion of wave vector and energy transfer, at P = 0, 5, 10 and
24 bars and temperature T ≤ 100 mK. The incident neu-
tron energy is Ei=3.55 meV. (b) Dynamic many-body theory
calculation of S(Q,ω) at corresponding densities (n=0.0215,
0.0230, 0.0240 and 0.0255 Å−3, see text). Note that the main
features of the experimental data are well reproduced. The
color-coded intensity scale is in units of meV−1. The inten-
sity is cut off at 1 meV−1 in order to emphasize the multi-
excitations region. The apparent width of the phonon-roton
excitations in the experimental plot is due to an energy reso-
lution of 0.07 meV, while the calculated phonon-roton disper-
sion curve has been highlighted by a thick red line.

made over a total wave vector range ∆Q up to 0.47 Å−1.
Due to the large number of individual detectors and the
high neutron rate of IN5, the statistical uncertainty of the
fits is very good (see Table I). The roton mass determined
in our work is lower than the one obtained by Andersen
et al.24,25 using a parabolic fit of the roton minimum,
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FIG. 5. a) Dispersion relation εQ(Q) of the single-excitations
measured at 0, 5, 10 and 24 bars. Note the flattening of the
curve at the maxon at high pressures. b) The wave vector
dependence of the measured width (FWHM) of the single-
excitation peaks. The measured width reflects the shape of
the experimental resolution ellipsoid cut by the dispersion re-
lation curve at different angles. At 24 bars, however, a physi-
cal broadening of the maxon is clearly observed.

but it agrees well with earlier measurements41 where the
parabolic fit was limited to a very narrow wave vector
range.

P (bars) ∆R (meV) QR (Å−1) µR

0 0.7416(10) 1.9260(2) 0.1240(4)

5.01(2) 0.7143(10) 1.9655(2) 0.1096(4)

10.01(2) 0.6885(10) 1.9963(2) 0.1000(4)

24.08(2) 0.6254(10) 2.0579(2) 0.0879(4)

TABLE I. Roton energy gap ∆R, wave vector of the roton
minimum QR and roton effective mass µR; values in paren-
thesis are one standard deviation errors from least-squares fits
described in the text.

A similar analysis can be performed in the maxon re-
gion. The corresponding maxon parameters ∆M , QM

and µM (d and e are additional adjustable parameters)
have been calculated by fits of εQ in the maxon region,

over a wave vector range ∆Q on the order of 0.8 Å−1, to
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the formula:

εQ = ∆M−
~2

2mµM
(Q−QM )2+d(Q−QM )3+e(Q−QM )4.

(3)
The results are given in Table II.

P (bars) ∆M (meV) QM (Å−1) µM 2∆R

0 1.1966(10) 1.1073(2) 0.492(1) 1.4832(20)

5.01(2) 1.2422(10) 1.1089(3) 0.541(1) 1.4286(20)

10.01(2) 1.2668(10) 1.1150(3) 0.614(2) 1.3777(20)

24.08(2) 1.2662(10) 1.1336(4) 0.915(3) 1.2508(20)

TABLE II. Maxon energy ∆M , wave vector QM and effective
mass µM ; values in parenthesis are one standard deviation
errors from least-squares fits described in the text. The last
column gives twice the energy of the roton gap 2∆R, for com-
parison with the value of ∆M .

As expected for a system approaching localization43,
the phonon and the maxon energies increase steadily
with pressure, while the energy of the roton minimum
decreases. The single-excitation data of Fig. 5a clearly
show in addition a substantial flattening at the level of
the maxon in the dispersion curve corresponding to a
pressure of 24 bars. Earlier results at this pressure did
not detect this effect32,34, while more recent systematic
results by Gibbs et al.28 were limited to pressures below
20 bars. The data at 24 bars are qualitatively different
from those at low pressures because the maxon energy
exceeds twice the roton energy. At high pressures, the
maxon excitation can therefore decay by phonon emis-
sion, exactly as in the case of higher wave vectors, at the
Pitaevskii’s plateau21.

We also observe the corresponding broadening of the
maxon single-excitation (Fig. 5b): the measured maxon
total width of 0.012 meV, obtained after subtraction of
the instrumental resolution, is substantial compared to
typical phonon and roton widths (see Ref. 42 and ref-
erences therein). The excitations in the maxon re-
gion broaden until they become unobservable in confined
helium17,44,45, where very high pressures can be reached
before solidification.

We now concentrate on the multi-excitation region,
shown in Fig. 4(a), which displays highly structured spec-
tra for all pressures. The data for the pressures 5 and 10
bars are qualitatively similar to our previous results at
saturated vapor pressure30. The high resolution spec-
tra display very clearly a threshold in energy at about
1.5 meV. This feature, which corresponds to the decay of
an excitation into a pair of rotons, depends on pressure,
since the roton energy depends on pressure. In addition,
we observe several well-defined multi-excitation branches
displaying substantial dispersion. Their gradual evolu-
tion reflects, as will be shown in section VI, the change
with pressure of the single-excitation dispersion.

We also observe important qualitative changes at high
pressures. We examine first the multi-excitation region

of the “ghost-phonon”. This multi-phonon excitation,
observed in our previous work, appears as a linear exten-
sion of the phonon branch30. We observe in the present
work that the ghost-phonon intensity strongly decreases
with pressure until it disappears at some pressure below
24 bars.

We also see very clearly in Fig. 1(a) a multi-phonon
region just above the roton branch for wave vectors of
the order of 2.2 to 2.4 Å−1. The high resolution spectra
at Ei=3.55 meV only show part of this multi-excitation
region, but the results have been completed by spectra
taken at Ei= 5.11 meV at SVP and 24 bars, shown in
Fig. 1. The intensity of these multi-excitations, described
in detail in Section VI C, decreases strongly with pres-
sure, behaving similarly as the ghost-phonon.

The multi-excitation spectra are strongly modified at
high pressures, as the maxon enters the multi-excitations
continuum. Fig. 4 shows that substantial intensity devel-
ops at this pressure for energies just above the maxon.
Similar effects were also observed by Graf et al.33, Tal-
bot et al.46, and by Gibbs et al.27–29 at a lower pressure
(20 bars). The present data benefit from a sharper reso-
lution, as can be seen by directly comparing spectra at
Q ≈ 1 Å−1 around the maxon peak.

All these effects will discussed in detail in section VI in
the context of a comparison with theoretical calculations.

V. CALCULATIONS WITH THE DYNAMIC
MANY-BODY THEORY

We present in this section our calculations of the dy-
namic structure factor of superfluid 4He at zero tempera-
ture obtained within the Dynamic Many-Body theory6,9.

A. State of the art of Theory

Theoretical studies of the dynamic structure function
in 4He began with the work of Feynman47, and Feynman
and Cohen48. The Feynman theory of elementary exci-
tations was developed in a systematic Brillouin-Wigner
perturbation theory by Jackson and Feenberg49–51. An
important contribution was the identification of classes of
theories for the dynamic structure function52 that satisfy
the ω0 and ω1 sum rules exactly.

The most complete evaluation of the phonon-roton dis-
persion relation in terms of Brillouin-Wigner perturba-
tion theory was carried out by Lee and Lee53 who ob-
tained an impressive agreement with the experimental
phonon-roton spectrum up the wave vector of 2.5 Å−1.
The major drawback with these early calculations was
that the required input, pair and three-body distribution
functions, were poorly known.

Manousakis and Pandharipande36,54 used input states
of the Brillouin-Wigner perturbation theory including
“backflow” correlations in the spirit of Feynman and Co-
hen. Through the gradient operator acting on the wave
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function, specific dynamic correlations are introduced to
all orders. The “backflow-function” is, however, chosen
per physical intuition rather than by fundamental prin-
ciples, and the evaluation of the perturbative series be-
comes very complicated. Topologically, diagrams similar
to those of Lee and Lee53 were included. While the accu-
racy of the theoretical roton energy is comparable to that
of Lee and Lee, one can clearly see an inconsistency since
the energy of the Pitaevskii plateau21 lies below twice
the energy of the roton gap.

The first theoretical descriptions of the multi-
excitations36,54,55 were qualitatively in agreement with
the early multi-excitations data22,32,33. The simplest
version of Correlated Basis Functions theory produces
phonon, maxon and roton modes, as well as multi-
phonons. In this approximation, the calculated multi-
excitations decay into Feynman modes instead of the
correct single-excitations; large gaps are found in the
spectrum, and many predicted features are not seen in
the experiments. Other features calculated in the multi-
excitation region do indeed survive in recent theories, like
the presence of intensity above the phonon branch and
that of a well-defined 2-roton threshold (these effects are
described below). These calculations, as well as many
others addressing specific aspects of the multi-excitation
dynamics, could not be quantitatively compared to the
experimental results, but they motivated further inves-
tigations on multi-particle dynamics. Reviews can be
found in Ref. 4 and 5.

More recent calculations9 used a hybrid approach
of Brillouin-Wigner perturbation theory and equations
of motion for time-dependent multi-particle correlation
functions to derive a self-consistent theory of the dynamic
density-density response of 4He. The self-consistency
of this semi-analytic method allows the identification of
mode-mode coupling processes that lead to observable
features in the dynamic structure function. The underly-
ing physical mechanisms, their relationship to the ground
state structure, and the consequences on the analytic
properties of the dynamic structure function, emerge di-
rectly from the theory.

A very different approach involves novel numerical
methods7,8,10,15,56 that give access to dynamic properties
of quantum fluids. These important algorithmic devel-
opments will reproduce, extend and complete the exper-
imental data with the future development of computing
power; their present accuracy and consistency, however,
are still limited in the multi-excitations region investi-
gated here.

B. Dynamic Many-Body Theory calculation

In order to calculate quantitatively both the single-
excitation and the multi-excitation response, our calcu-
lations include up to three-body dynamic fluctuations in
the correlation functions of the equations of motion9. We
derive the self-consistent density-density response of 4He

χ(Q,ω), expressed as

χ(Q,ω) =
S(Q)

ω − Σ(Q,ω)
+

S(Q)

−ω − Σ(Q,−ω)
(4)

where S(Q) is the static structure factor, and the self-
energy Σ(Q,ω) is determined by the integral equation

Σ(Q,ω) = ε0(Q) +
1

2

∫
d3pd3k

(2π)3n
δ( ~Q− ~p− ~k)×

|V (3)( ~Q; ~p,~k)|2

ω − Σ(p, ω − ε0(k))− Σ(k, ω − ε0(p))
. (5)

In this expression, ε0(Q) is the Feynman dispersion rela-
tion, and V (3) the three-body coupling matrix element.
The simplest approximation for V (3), the so-called con-
volution approximation51, including static ground state
triplet correlations57, improves the density–dependence
of the roton minimum visibly. The most advanced
calculation6, which is taken here and in Ref. 9, sums an
infinite series of diagrams, the so-called “fan-diagrams”
which is the minimum set of diagrams that must be in-
cluded to reproduce exact features of V (3) for both, long
wavelength and short distances.

Linear response theory4,9 provides the relation between
the experimental dynamic structure factor and the dy-
namic susceptibility calculated by the theory described
above: the dynamic structure factor S(Q,ω) is propor-
tional to the imaginary part of the dynamic susceptibility
χ(Q,ω), the linear response of the system to a density
fluctuation.

Full maps of S(Q,ω) have been calculated for different
atomic densities, see Fig. 10 in Ref. 9. The data shown
in Figs. 1 and 4 correspond to n = 0.0215, 0.0230, 0.0240
and 0.0255 Å−3, values which provide the best overall
agreement with the experiment. They turn out to be
very close to the experimental results for P = 0, 5, 10
and 24 bars, nexp=0.0218, 0.0230, 0.0239 and 0.0258 Å−3.
The small shift in density is within the expected accuracy
of the theoretical calculations.

The calculations presented here have been performed
using only the most relevant diagrams9. This approx-
imation is sufficient to provide an excellent description
of the dynamics, but minor discrepancies can still be
seen. The most salient effect is that the roton energy
is overestimated; at zero pressure, for instance, the cal-
culated value is 0.83 meV while the measured value is
0.7416(10) meV. This discrepancy could be resolved by
including additional diagrams, but it does not seem nec-
essary to perform such a tedious calculation given the
quality of the agreement already achieved at this stage.

The calculation provides absolute values for the struc-
ture factor. In our previous work30, the calculated val-
ues were multiplied by an overall normalization factor of
1.28 in order to have Z(Q = 2 Å−1)=0.93 near the roton.
Here, this normalization has not been applied. Given the
finite number of diagrams involved in the calculations, a
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factor of this order is within their estimated absolute ac-
curacy.

C. Mode-mode coupling

Multi-excitations arise from the enhanced response of
the system at particular energies and wave vectors cor-
responding to two or more single-excitations into which
they can decay. The theory considers (see equation 5)
the most relevant processes where a density fluctuation

( ~Q, ω) of wave vector ~Q and energy ω decays into a pair
of single-excitations with corresponding values (~p, ωp)

and (~k, ωk). The calculations have been shown to be
in excellent agreement with experiment at saturated va-
por pressure30. Here we investigate the general pressure
dependence of the dynamics, and several particularly
intense mode-mode couplings. The latter were exam-
ined theoretically in Ref. 9, and additional calculations
specialized to the main mode-mode couplings (phonon-
phonon, phonon-roton, roton-roton, maxon-roton) can
be found in Ref. 58. The next section provides a de-
tailed comparison between the theory and the experi-
mental data.

VI. IDENTIFICATION OF THE
MULTI-EXCITATIONS

Above the sharp and intense phonon-maxon-roton dis-
persion curve, we observe a highly-structured multi-
excitation region. Multi-excitations are relatively strong
if they can decay into a pair of high intensity single-
excitation modes. The energy and momentum of these
pair combinations is directly related, by the conservation
of energy and momentum, to those of the underlying
elementary excitations. It is possible to determine the
position of the main multi-excitation resonances in the
dynamic structure factor map (2-Phonons, 2-Rotons, 2-
Maxons and Maxon-Roton) from pure kinematic consid-
erations, i.e. energy and momentum conservation. The
challenge for microscopic theories is to predict the inten-
sity of the multi-excitation spectrum, if possible in a large
dynamic range. Obtaining the fine structure we observe
requires a quantitative calculation of mode couplings.

We first present in this Section a brief description of
the kinematic constraints for different pair-excitations,
setting the framework for their identification. The fol-
lowing two subsections concentrate on new features ob-
served in the multi-excitation spectrum, that we named
“ghost-phonon” and “ghost-roton”. We then describe a
different type of multi-excitations, associated to roton-
roton coupling, which we observed in particular “above
the maxon” and “beyond the roton”. We conclude this
Section by a discussion on higher order multi-excitations,
and the progressive evolution to the high energy regime.

A. Kinematic constraints for pair-excitations

The kinematic constraints calculated for the main low
energy multi-excitations are shown in Fig. 6. We use be-
low the notation R− and R+ to distinguish rotons on
each side of the roton minimum.
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FIG. 6. Kinematically allowed regions for different multi-
phonon processes: P-P (including P-M−), P-R−, and P-R+.
See text for details.

The allowed regions are necessarily located above the
single-excitations dispersion curve. The P-P region is
found at low wave vectors. Beyond the maxon, P-R−

excitations are allowed in a large region delimited by
the dispersion curve and two lines starting at the maxon
maximum and at the roton minimum, with slopes equal
to −c and +c, respectively, where c is the speed of sound.
P-R+ excitations occupy a region delimited by the dis-
persion curve and a line starting from the roton minimum
with slope −c. There is a large overlap with the P-R−

region.

The case of 2R, not shown, is particularly simple, with
a threshold at twice the roton energy, 2∆R. The situa-
tion for 2M processes is similar, with an upper limit equal
to 2∆M . M-R combinations of excitations may lead to
branches with substantial dispersion. The kinematic con-
straints are sufficient to determine unambiguously which
are the dominant processes in some multi-excitations re-
gions, in particular at lowQ above the phonon dispersion,
and inside the roton parabolic dispersion curve.

The evolution of the observed multi-excitations in a
large energy range, for different pressures, is illustrated in
Figs. 1 and 4. We can distinguish different types of multi-
excitations. Several narrow branches are easily identified,
as indicated in Fig. 7, as corresponding to 2P, 2R, 2M and
M-R processes. The 2R feature is observed in Fig. 4 as a
clear threshold, both in the theoretical and experimental
data.
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FIG. 7. Map of S(Q,ω) at SVP identifying remarkable
mode-mode coupling regions: phonon-phonon (2P, with an
ellipse around the “ghost-phonon”), phonon-roton (P+R, a
region marked by a triangle, which includes an ellipse indicat-
ing more specifically a high-intensity “ghost-roton” region),
roton-roton (2R, marked by a rectangle around 1.5 meV), and
at higher energies the roton-maxon (R+M) and maxon-maxon
(2M) regions. The description of the different lines is given
in Fig. 1.

B. Phonon-phonon coupling: the ghost-phonon

The ghost-phonon9,30 (see Section IV B and Fig. 7)
corresponds to a process where a high energy multi-
excitation decays into a pair of phonons of lower en-
ergy. In the case of phonon single-excitations, anoma-
lous dispersion opens the phase space needed for such
processes. The anomalous character of the phonon dis-
persion strongly decreases with increasing pressure, and
normal dispersion is recovered at high pressures4,17,59,60.
The ghost-phonon intensity follows this trend: the pres-
sure dependence is strong, and the ghost-phonon is
clearly suppressed at P = 24 bars, as shown in the ex-
perimental and theoretical results in Fig. 4, and in more
detail in Fig. 8.

Cuts of S(Q,ω) at several wave vectors at the ghost-
phonon level are presented for P=0, 5 and 10 bars in
Fig. 9. The ghost-phonon peaks for the different wave
vectors are clearly located on the extension of the linear
part of the phonon branch. According to the calcula-
tions [see Eq. (6.4) of Ref. 9], the ghost-phonon remains
visible until twice the wave vector up to which the dis-
persion relation is to a good approximation linear. In-
deed, Fig. 9 shows that the energy, strength and shape of
the calculated ghost-phonon are in excellent quantitative
agreement with the experiment at all pressures.

En
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FIG. 8. Left: measured dynamic structure factor S(Q,ω)
in the ghost-phonon region at P = 0, 5, 10 and 24 bars.
The dashed straight lines correspond to the sound disper-
sion curve at each pressure, taken from direct measurements
of the sound velocity61. Right: calculated dynamic structure
factor at corresponding densities, n = 0.0215, 0.0230, 0.0240
and 0.0255 Å−3, respectively (see text). The dashed straight
lines correspond to the calculated sound velocities. The color-
coded intensity scale is in units of meV−1.

C. Phonon-roton coupling and the emergence of
the ghost-roton

One notes in Fig. 4, for all pressures, the presence
of substantial intensity in the region within the roton
parabola. Near the roton minimum, where P-R processes
are expected to dominate, we observe that the intensity is
not symmetric with respect to the roton minimum wave
vector QR: a faint branch, clearly related to the kine-
matic limitation for P-R+ processes (see Fig. 6) is seen
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FIG. 9. Dynamic structure factor S(Q,ω) in the ghost-
phonon region: spectra for different wave vectors Q at (a)
P = 0 bar, (b) P = 5 bars and (c) P = 10 bars. Filled cir-
cles: Experimental S(Q,ω). Theoretical dynamic structure
factor spectra shown as solid lines at densities n = 0.0215,
0.0230 and 0.0240 Å−3. Dashed lines: Intensity of the
phonon-roton mode (cut off) calculated directly from the self
energy9 and convolved with the instrumental resolution of
0.07 meV. The blue lines represent the linear phonon disper-
sion εQ(P )/~Q = C0(P ), where C0(P ) is the sound velocity
at a given pressure61.

for Q < QR, while a strong branch is formed just above
the dispersion curve for Q > QR. These new features,
and in particular the one for Q > QR, provide a signifi-
cant contribution to the multi-excitations weight at low
pressures (Fig. 10). They appear as an extension of the
roton parabolic dispersion towards higher energies, and
by analogy with the ghost-phonon, we call these multi-
excitations “ghost-rotons”.

It is remarkable that the intensity in this region of
the P-R multi-excitations, as was the case for the ghost-
phonon, is high at P = 0, but is suppressed in the 24 bars
data, as shown in Figs. 10, 11 and 12. The origin of these
effects is discussed below.

Spectra for several wave vectors in the region of the
ghost-roton are shown in Fig. 12 at P = 0 and 24 bars (ex-
periment), and in Fig. 13 for the corresponding densities
n = 0.0215 and 0.0255 Å−3 (theory). We observe a good
agreement between theory and experiment, even at the
highest densities, near solidification. Studies of mode-
mode couplings58,62 can therefore be most conveniently
performed in the ghost phonon and the ghost-roton re-
gions, rather than looking for a very small broadening of
single excitations.

Pitaevskii21 described the decay of single-excitations
when their group velocity reaches the velocity of sound.
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FIG. 10. Theoretical and experimental results for S(Q,ω)
at saturated vapor pressure displaying enhanced multi-
excitations (“ghost-rotons”) above the R+ roton branch, in
the supersonic rotons region. The dashed lines represent the
limits of different neutron kinetic ranges, see Fig. 1. The small
oscillations observed along some contours should be disre-
garded, they result from numerical discretization.

He named this mechanism of single-excitation broaden-
ing ”‘type a”’. The process considered here, however,
is the emission of phonons by multi-excitations in the
vicinity of nearly supersonic single-excitations. The gen-
eration of multi-excitations by neutron scattering in the
R+ rotons region by this mechanism was qualitatively
predicted by Burkova63. Here we show that the ghost-
roton corresponds to this effect, that the ghost-phonon is
a similar effect, involving supersonic phonons, and that
both are correctly predicted by the Dynamic Many-Body
Theory9.

It has been observed by Dietrich et al.32 and confirmed
by several groups (see42 and references therein) that the
R+ rotons group velocity reaches the sound velocity for
Q ≈ 2.2 Å−1 at low pressures, but remains below the
speed of sound near the melting pressure. We show in
Figs. 14 and 15 our measured and calculated curves for
the group velocity of the single-excitations, for different
pressures. Two regions of interest are clearly seen: the
first one, at low wave vectors, corresponds to the anoma-
lous dispersion region and gives rise to the ghost-phonon,
while the second occurs for wave vectors somewhat above
that of the roton minimum (and slightly below the roton
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FIG. 11. Theoretical and experimental results for S(Q,ω)
at P = 24 bars. A comparison with Fig. 10 shows that at
high pressures, ghost-roton multi-excitations are strongly sup-
pressed. They are masked by the finite energy resolution in
the experimental graph, but still visible in the calculation.

minimum, but with a much smaller intensity), producing
the ghost-roton.

According to the analytic calculations by Burkova63,
the neutron-scattering spectrum which corresponds to
the production of one roton should have a linear wing
on the high-energy side, with a slope which depends on
the wave vector. This is not really observed, neither in
the experimental data, nor in the Dynamic Many-Body
calculation: the linear part, if any, is probably not visible
at the scale of the graphs (see Figs. 10, 11, 12 and 13), or
is buried inside a broadened single-excitations branch.

Several effects are thus observed when the roton single-
excitations approach the speed of sound: a broadening of
the roton branch, a downward bending of the dispersion
curve, and the appearance of a multi-phonon region just
above the distorted dispersion curve. These effects are
large at low pressures; the rapid increase of the sound
velocity with pressure is responsible for the suppression
of the ghost-roton multi-excitations at 24 bars.

D. Roton-roton coupling

We discuss now a different type of multi-excitations,
related to Pitaevskii’s “type b” single-excitations decay
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FIG. 12. S(Q,ω) measured in the region of the ghost-roton
at P = 0 (upper graph). At P = 24 bars (lower graph) one
observes the suppression of the ghost-roton. Dashed lines are
Gaussian fits of the single-excitation peaks. A comparison
with Figs. 10 and 11 clarifies the origin of the observed roton-
peak asymmetry for some wave vectors.

processes where the disintegration of a single-excitation
occurs as its energy exceeds twice the roton gap21,63.

At high pressures, the maxon energy exceeds twice the
roton gap, and a maxon can decay into two rotons. We
described in Section IV B the broadening of the maxon
as it enters the continuum. At 24 bars, the maxon is in
the continuum of the multi-excitations for wave vectors
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FIG. 13. S(Q,ω) calculated for wave vectors in the region
of the ghost-roton, at densities n = 0.0215 and 0.0255 Å−3,
associated to P = 0 and P = 24 bars respectively.
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FIG. 14. The experimentally determined group velocity of
single-excitations normalized by the sound velocity61, as a
function of wave vector for several pressures.

between Q = 0.8 and Q = 1.5 Å−1. Under these con-
ditions, a strong multi-excitation intensity is observed
above the maxon (Figs. 16 and 17). The very character-
istic “rainbow-like” measured spectrum is in very good
agreement with the theoretical calculation, showing in
particular that the weight of the maxon is transferred to
the two-roton excitations.

The multi-excitations discussed above, observed above
the maxon at high pressure, are a special case of roton-
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FIG. 15. The theoretically calculated group velocity of single-
excitations normalized by the calculated sound velocity, as a
function of the wave vector, for several densities. The experi-
mental values of the densities for P = 0, 5, 10 and 24 bars are
nexp=0.0218, 0.0230, 0.0239 and 0.0258 Å−3.

roton decay. In fact, a sharp roton-roton threshold is
observed at all wave vectors (Figs. 1, 4 and 17), in re-
gions located far from single-excitations. The roton-
roton threshold is, in particular, observed at low Q in
the present work. It is also clear, in fact, that the in-
tensity of the RR threshold is enhanced in the vicinity
of single-excitations, as was the case above the maxon
at 24 bars, but also in the region above the Pitaevskii
plateau. Theory and experiment display a similar shape
of the spectra and intensity pattern around the roton-
roton threshold, at all pressures (see Figs. 1 and 4).

E. Higher order multi-excitations

The sharp “branches” described above correspond to
decay mechanisms into 2-excitations. Phase-space argu-
ments show that the signal of higher order processes will
be distributed in a rather featureless way in the energy-
wave vector space, due to the vector addition of mo-
menta. However, the data of Fig. 1 show that the multi-
excitations region at wave vectors on the order of 1.5 Å−1

extends to rather high energies, on the order of 4 meV.
This last value constitutes a clear experimental demon-
stration that multi-excitations of higher order, related to
3 and 4 single-excitations (the energy of rotons and max-
ons is on the order of 1 meV), play a significant role in
the dynamics of superfluid 4He.

One can also examine the corresponding effect on the
wave vector axis, beyond the end-point of the Pitaevskii
plateau. The plateau could be expected to end at
2QR, for a multi-excitation of energy 2∆R decaying
into two rotons of colinear wave vectors. Previous
measurements35,64,65 have found that the plateau in-
tensity vanishes at Q = 3.6 Å−1, considerably below
2QR = 3.84 Å−1. This is also observed in the present
work, as seen in Figs. 1 and 3. This effect has been at-
tributed to the decay into two rotons with an attractive
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FIG. 16. S(Q,ω) in the region of the maxon at P = 24 bars
(experiment) and at the corresponding density of 0.0255 Å−3

(theory).

R-R interaction66, but other possible interpretations of
the data are presently debated. We also note that the
intensity does not extend to higher Q-values at higher
energies as expected for decays into 3- and 4-excitations
processes, an effect which is probably related to the small
phase-space available for colinear combinations of wave
vectors. As discussed above, the energy, a scalar, is a bet-
ter probe for detecting high order multi-excitation pro-
cesses. The data at 24 bars display similar effects with
a simple shift towards higher wave vectors, due to the
larger value of QR=2.06 Å−1 at this pressure.

We now concentrate on the multi-excitations region
located slightly below the free-particle dispersion curve,
around 2.5 Å−1 (see Fig. 1). Earlier studies22,35,67 ob-
served a rather intense broad feature extending to higher
energies. We find here a much finer structure than previ-
ously believed, and also that it depends rather strongly
on the pressure. Multi-excitations in this region can only
decay into 3 or more single-excitations, which is there-
fore of interest for mode-mode coupling theories. The
fact that we observe a high intensity peak is probably
related, at these relatively high energies, to an enhanced
system response in the vicinity of the free-particle disper-
sion curve, which is the asymptotic behavior at higher

FIG. 17. Dynamic structure factor S(Q,ω): spectra for dif-
ferent wave vectors Q in the maxon region, at P = 24 bars.
Filled circles: Experimental S(Q,ω). Solid lines: theory at
the density n=0.0255 Å−3. Dashed lines: Intensity of the
phonon-roton mode (cut off) calculated directly from the self
energy9 and convolved with the instrumental resolution of
0.07 meV. Blue line: energy of the roton-roton threshold. PR
indicates phonon-roton multi-excitations.

energies. The peak at 24 bars is less intense than the
corresponding one at SVP, suggesting that the maxon,
strongly reduced at this pressure, is involved in the cor-
responding decay processes.

Finally, at the highest energies explored here,
S(Q,ω) progressively converges towards the free-particle
parabola, remaining below it (see Fig. 1). The so-called
“glory” oscillations seen as a function of Q, both in the
peak position and the width, are well documented in the
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literature68. Directly related to the corresponding os-
cillations in the static structure factor S(Q), they result
from the hard core part of the 4He-4He interaction poten-
tial and from quantum coherence effects. Earlier works
could not fit the spectra of the first oscillation with a sin-
gle peak. The highly structured multi-excitations seen in
the present work show that this peak of unusual shape
results in fact from the superposition of a few multi-
excitation “branches” corresponding to decays into a few
single-excitations. Again, the dynamic structure factor
in this region depends on pressure, and the spectra for
Q ≈ 3.5 Å−1 are strongly affected by the collapse of the
maxon.

VII. CONCLUSION

A comprehensive understanding of the dynamics of in-
teracting Bose systems, going from the Landau quasi-
particles and multi-excitations regimes, up to the high-
energy limit where the independent particle dynamics
is recovered, emerges from our combined experimental
and theoretical work. The up-to-now largely unexplored
multi-excitations regime has been systematically investi-
gated. Ghost-phonon and ghost-roton regimes have been
observed, associated to phonon emission in the region
of nearly supersonic multi-excitations, by a Cherenkov-
like process qualitatively predicted by Burkova’s exten-

sion of Pitaevskii’s theory. Several other multi-excitation
branches or thresholds have been observed and identified
in the low energy sector, where an excellent quantitative
agreement is found with the predictions of the Dynamic
Many-Body theory. This agreement extends even to high
pressures, near solidification, as shown for example for
the remarkable case of the maxon disintegration into two
rotons. The calculations including specific multiparti-
cle fluctuations to all orders9 provide a good description
of the dynamics for energies as high as 2 meV. Above
this value, higher order processes dominate the dynam-
ics. Our high energy/wave vector data call for further
theoretical developments able to describe quantitatively
the behavior observed at higher energies, above the sim-
ple multi-excitations region but still substantially below
the quasi-free particle (impulse-approximation) sector.
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