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All-optical reservoir computing on a photonic chip
using silicon-based ring resonators

Florian Denis-le Coarer, Marc Sciamanna, Andrew Katumba, Matthias Freiberger, Joni Dambre, Peter Bienstman
and Damien Rontani

Abstract—We present in our work numerical results on the
performance of a 4× 4 swirl-topology photonic reservoir inte-
grated on a silicon chip. Nonlinear microring resonators are used
as nodes. We analyse the performance of such a reservoir on
a classical nonlinear boolean task (the delayed XOR task) for
(i) various designs of the reservoir in terms of lengths of the
waveguides between consecutive nodes, and (ii) various injection
parameters (injected power and optical detuning). From this
analysis, we find that this kind of reservoir can perform - for a
large variety of parameters - the delayed XOR task at 20 Gb/s
with bit error rates lower than 10−3, and an averaged injection
power lower than 2.5 mW.

Index Terms—Reservoir computing, Silicon photonics, Ring
resonators.

I. INTRODUCTION

The development of machine learning solutions in the
physical layer appears as a promising approach to address the
new challenges brought by the increasing amount of data to
process [1]. Compared to existing software-based solutions,
dedicated hardware platforms allow to process data at higher
speed and better energy efficiency [2], even enabling real-
time computation [3]. Amongst the existing machine-learning
approaches, reservoir computing - a supervised learning tech-
nique that appeared a decade ago - has focused a lot of
attention [4]–[6]. This is mainly due to its relatively straight-
forward implementation, both in software and hardware, and
a simple training procedure. As a result, this concept has
displayed state-of-the-art performance on various hardware
platforms [7]–[9], including photonics ( [10] and references
therein).

Photonics reservoir computing (PRC) is a candidate tech-
nology that has attracted lots of attention in the last few
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Département de la Moselle, AIRBUS GDI Simulation, through the funding
of the Chair in Photonics and PIANO project. D.R acnowledges the support
of AFOSR (grant No. FA-9550-15-1-0279 and FA9550-17-1-0072). All the
authors acknowledge the financial support of the BELSPO IAP P7-35 program
Photonics@be and the EU Horizon 2020 PHRESCO Grant (Grant No.
688579). (Corresponding authors : Florian Denis-le Coarer and Damien
Rontani)

F. Denis-le Coarer, M. Sciamanna, and D. Rontani are with the
Chair in Photonics, LMOPS EA 4423 laboratory, CentraleSupélec,
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years [11]–[24], due to its ability to perform typical tasks
of artificial neural-networks : emulation of simple boolean
operations [23], pattern generation [24], chaotic time series
prediction [17], or bit-sequences recognition [20]. Multiple
photonic implementations have been proposed and they in-
clude a single nonlinear node with delayed feedback such
as optoelectronic oscillators [11] and laser diode with op-
tical feedback [12]; coupled photonic crystal cavities [24],
integrated photonic reservoirs using passive nodes made of
delay lines and splitters [22], [23], networks of semiconductor
optical amplifiers [19], or networks of InGaAsP/InP-based ring
resonators [20].

In this work, we propose a novel photonics architecture
of reservoir computing integrated on a silicon chip, using
Silicon-on-Insulator (SOI) microring (MR) resonators as non-
linear nodes. This integrated element exhibits rich nonlinear
dynamical behaviors [25]–[31]. SOI microrings resonators are
mostly used as optical filters [32], but can also be integrated
in more complex architectures and perform other types of all-
optical information processing such as boolean functions [33],
thresholding [34], pulse restoration [35], or ASK-to-PSK con-
version [36].

We build here a 4 × 4 swirl reservoir topology using
SOI microring resonators as nodes. We perform an in-depth
numerical analysis of the performance of such a reservoir and
investigate the impact of new degrees of freedom, namely the
injected power, the optical detuning, and possible resonance
mismatches between the microring resonators. The perfor-
mance of the reservoir architecture is based on the typical
delayed XOR task by quantifying the bit-error rate (BER).
We compare the performance of our reservoir with those of a
similar topology, but using linear nodes made of waveguides,
splitters, and combiners [22], [23]. We demonstrate that our
architecture can reach BER level comparable to those of the
passive reservoir (< 10−3) at data rate of 20 Gb/s, and over
a wide range of design parameters. Furthermore, the power
consumption required to reach this level of performance using
Return-to-Zero (RZ) input signal is only 2.4 mW (0.15 mW
per node), which is in the same order of magnitude than the
power used in the previous design, where Non-Return-to-Zero
(NRZ) input signals were necessary to perform at best.

This work is organised as follows. We first describe the
theoretical reservoir model used in our numerical simulation,
and the physical model of a SOI nonlinear microring resonator,
which is the building block of the reservoir. Then after that,
from an analysis of the stability of a nonlinear ring resonator,
we study the optimum parameters of injection (power injected
in each node, and optical detuning) for the reservoir in order
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to get the best performance. Then we present the simulated
performance of the new reservoir architecture studied in this
work. Finally, a last section is devoted to discussions and
conclusions.

II. RESERVOIR MODEL

The photonic reservoir is a 16-node (4 × 4) swirl reser-
voir in which each node is a nonlinear microring resonator
(see [25], [26] and the following section). The swirl topology
- introduced in [22], [23] - allows sufficient mixing of the
input signals while satisfying to the planarity constraint of an
integrated implementation and minimizing the power losses
in the structure at each combiner. The connections between
neighbouring nodes are ensured by long waveguides, which
introduce a non-negligible inter-delay due to the finite-time
propagation of optical signals. We depict in Fig. 1 a schematic
of the integrated photonic reservoir studied in this work.

The reservoir model is given by Eqs. (1) - (2) :

x[k+1] = f (x[k],Wresx[k]+Win (u[k+1]+ubias)) , (1)
yout[k] = Woutxdetector[k]. (2)

Equation (1) is the reservoir state update equation, where
x is the state of the reservoir; f is a nonlinear vector field
to account for the nonlinear behaviour of the reservoir nodes
and u is the input signal to the reservoir. ubias is a bias
signal applied to the nodes of the reservoir, that can be
non-zero in the case of NRZ signals, or - as in our case -
zero for RZ signals. Wres is the interconnection matrix, that
represents the connections between the nodes of the reservoir,
and taking into account splitting ratios, losses, and random
phase shifts uniformly distributed on [−π, π]. Finally, Win is
the input matrix, representing the input weight on each node.
In our architecture, we inject the same power modulation in
all the active nodes with random phase shifts, hence Win is a
16× 16 diagonal matrix with random elements sampled from
a uniform distribution over the interval [−π, π].

Equation (2) gives the output yout of the reservoir. xdetector
are the states of the reservoir after the detectors, and Wout is
the readout matrix comprising the output weights that need to
be determined through training by a ridge regression.

The detector used in our simulations is the same as the
one used in previous work [23] and its model is based on
the Alphalas UPD-15-IR2-FC photodetector. This takes into

Input

u[k]

Output

y[k]

Reservoir

x[k]

Fig. 1. Illustration the 4× 4 swirl topology of the photonics reservoir under
investigation. Each node is a nonlinear microring resonator. Nodes are linked
by waveguides with typical losses of 3.0 dB/cm.

account the bandwidth limitation of the detector (modelled
by a low-pass filter with a 3 dB cutoff), the response-time
limitations, the responsivity, and various noise contributions,
including shot noise and thermal noise. The total noise σ2

n is
given by Eq. (3) :

σ2
n = 2qB (〈I〉+ 〈Id〉) +

4kBTB

RL
, (3)

where B is the bandwidth (B = 25 GHz), 〈I〉 and 〈Id〉 are
respectively the mean value of the photocurrent and the dark
current (〈Id〉 = 0.1 nA), q is the elementary particle charge,
kB is Boltzmann’s constant, T is the temperature (in K), and
RL is the load impedance (RL = 50 Ω). The mean value
of the photocurrent is calculated from 〈I〉 = r · NEP ·

√
B

and the values given in the datasheet of the photodetector :
the responsivity r = 0.5 A/W, and the noise equivalent power
(NEP = 10−15 W/

√
Hz).

III. SINGLE NODE OF THE RESERVOIR

A. Nonlinear microring resonator

We present in this section the detailed model of a nonlinear
microring resonator, used as one of the building blocks of our
reservoir architecture, and shown in Fig. 2. The theoretical
framework we use is based on the well-established coupled-
mode theory (CMT). The model described in our work has
already been proposed and was able to correctly describe
for the SOI microrings a wide range of dynamical behaviors
observed experimentally [25], [26].

The input/output relation is given in Eq. (4), in which sin
is the input signal (with Pin = |sin|2 the input power), sout
the output signal (with Pout = |sout|2 the output power), φc
the phase propagation in the bus waveguide, κ the coupling
between the bus waveguide and the microring, and a the
complex amplitude of the optical mode in the cavity (with
|a|2 the energy in the cavity).

sout = ejφcsin + κa. (4)

The state variables of the SOI nonlinear microring resonator
within the CMT-framework are : a the complex amplitude
of the optical mode, ∆T the mode-averaged temperature
difference between the circular waveguide of the microring
and its surroundings, and N the number of free carriers. These
variables account for the physical effects taking place in a
nonlinear microring resonator : specifically, (i) the two-photon
absorption (TPA), which generates free carriers; (ii) the free

κ
sin sout

MR

Fig. 2. Illustration of a SOI microring resonator as a nonlineaer node of the
reservoir. The node is a two-ports photonics component integrated on silicon.
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carrier absorption (FCA) (i.e.) absorption of light by the free
carriers; (iii) the free carrier dispersion (FCD) and (iv) losses.

The nonlinear dynamical equations controlling the temporal
evolution of the three state variables are given in Eqs. (5)-
(7), with typical time scales τa ≈ 21 ps, τth = 65 ns, and
τfc = 5.3 ns.

da

dt
=
[
j (ωr + δωnl − ω)− γloss

2

]
a+ κsin, (5)

d∆T

dt
= −∆T

τth
+

Γthγabs|a|2

ρSicp,SiVth
, (6)

dN

dt
= − N

τfc
+

ΓFCAβSic
2|a|4

2~ωV 2
FCAn

2
g

, (7)

where ω = 2πc/λ and ωr = 2πc/λr with λr = 1552.770 nm
are the frequency of the input light and the resonance fre-
quency of the ring, respectively. The relaxation times for the
temperature variations and the free carriers are respectively
given by τth and τfc. TPA in silicon is governed by the
constant βSi. nSi, cp,Si, and ρSi, which are the refractive
index, the thermal capacity, and the density of the bulk silicon,
respectively. We neglect dispersion, thus the group index ng
is equal to nSi. We also define the effective volumes and
confinements for each nonlinear effect : VFCA, ΓFCA, VTPA,
and ΓTPA.

Losses also play an important role, as they introduce
coupling between the three state variables. The total loss
γloss results from the sum of absorption losses γabs, coupling
losses into the waveguide γcoup (with κ = j

√
γcoupejφc ), and

radiation losses γrad. The absorption losses in the ring are due
to linear surface absorption, TPA, and FCA, as presented in
Eq. (8) :

γabs = γabs,lin + ΓTPA
βSic

2|a|2

n2gVTPA
+ ΓFCA

σSic

ng
N, (8)

where γabs,lin is the linear absorption constant, and σSi is the
absorption cross section of FCA in silicon. In the case of a
critically coupled ring, we also have γcoup = γabs,lin + γrad.

Finally, we give in Eq. (9) the expression of the nonlinear
detuning δωnl, that is caused by the thermo-optic effect and
FCD, while the Kerr-effect is here neglected :

δωnl = −ωr
ng

(
dnSi
dT

∆T +
dnSi
dN

N

)
. (9)

As for any optical injection study, the two parameters of
interest are the input power Pin = |sin|2, and the wavelength
difference between the injected light and the resonance wave-
length of the nonlinear microring resonator, that is the optical
detuning δλ = λ−λr. For the other parameters of the model,
we use the typical numerical values listed in table I( [25],
[26]). These values will be later used in all our numerical
simulations.

IV. OPERATING POINT OF THE RESERVOIR

It is necessary to choose an operating point of the reservoir
to achieve a good level of performance to solve complex
tasks. It was demonstrated that an adequate operating point
for a reservoir is a fixed point, close to instabilities in order

TABLE I
PARAMETERS VALUES USED IN THE SIMULATIONS OF THE MICRORING

MODEL, ADAPTED FROM [25], [26].

Parameter Value
βSi 8.4 × 10−12 m·W−1

dnsi/dT 1.86 × 10−4 K−1

dnsi/dN −1.73 × 10−27 m3

σSi 10−21 m2

ρSi 2.33 g·cm−3

cp,Si 0.7 J·g−1·K−1

ng = nSi 3.476
ηlin 0.4
γabs,lin

2ηlin/205 ps−1

γcoup 2/205 ps−1

τth 65 ns
τfc 5.3 ns
Γth 0.9355
ΓTPA 0.9964
ΓFCA 0.9996
Vth 3.19 µm3

VTPA 2.59 µm3

VFCA 2.36 µm3

to maximize the complexity of the transient to the steady-
state [37]. We make the simple assumption that the reservoir
will be in a steady state if a single node of the reservoir is on
a fixed point. This is a reasonable assumption because of the
weak linear optical coupling due to the losses induced by the
waveguides (3 dB/cm), the splitters (3 dB for each splitter),
and the combiners (3 dB for each combiner).

Hence, we first simulate a single, uncoupled, nonlinear
microring resonator subjected to steps of optical power be-
tween Pin0 = 0 mW and several maximum values Pin1 .
The simulations are performed as follow : we integrate the
CMT-model of the nonlinear microring resonator (see [25],
[26] for the equations and the parameters values) over 2.5 µs
with a power step from Pin0

= 0 mW to the value of Pin1

at t = 100 ns. We use an Euler integration method with a
1.0 ps integration time step, and a 10.0 ps sampling time.
These simulations are performed using the Caphe software
environment [38].

We then extract from the time series the consecutive extrema
for each value of the maximum input power, after deleting the
transients. We plot the extrema for each value of the maximum
input power at different values of the optical detuning, and
obtain the bifurcation diagrams shown in Figs. 3(a)-(c), for
respectively (a) δλ = 0 pm, (b) δλ = −50 pm, and (c) δλ =
50 pm.

Figure 3(a) shows the output power of a microring resonator
with an optical detuning δλ = 0 pm, which is a fixed
point for Pin1

< 0.52 mW, and a self-pulsation (SP) for
Pin1 > 0.54 mW. For an optical detuning δλ = −50 pm
(see Fig. 3(b)), the output power is always a fixed point for
Pin1

< 2.0 mW. Finally, we see in Fig. 3(c) that, for an optical
detuning δλ = 50 pm, the output power is stationary for
Pin1

< 0.38 mW, and a self-pulsating for Pin1
> 0.40 mW.

From these bifurcation diagrams, we identify an operating
point for the reservoir in terms of power amplitude modulation,
for each value of the optical detuning. For δλ = 0 pm, we
choose Pin1

= 0.5 mW (close to the SP bifurcation point).
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Fig. 3. (a-c) Bifurcation diagrams of a single nonlinear microring resonator.
The bifurcation parameter is the injected power Pin (in mW), and we give
the diagrams for various values of the optical detuning. (a) δλ = 0 pm,
(b) δλ = −50 pm, and (c) δλ = 50 pm. (d) Stability map of a nonlinear
microring resonator in the (δλ, Pin) plane. Figure adapted from [25], [26],
using continuation techniques.

For δλ = −50 pm, any value of the injected power is possible,
but we also choose Pin1

= 0.5 mW to guarantee low levels
of energy consumption. Finally, for δλ = 50 pm, we choose
Pin1 = 0.3 mW.

Finally, in Fig. 3(d), we present a theoretically obtained
stability map of a nonlinear microring resonator. This shows
the ring’s dynamical behavior in the optical detuning/injected
power plane, and for a given set of injection parameters. We
find three different regions associated to stable fixed points,
self-pulsing, and bistability when two different states can
be reached depending of the initial conditions. Each region
is delimited by bifurcation points : two saddle-node and a
supercritical Hopf bifurcation for the bistable and self-pulsing
region, respectively. Note that this map was originally pre-
sented in a normalized parameter plane [25], [26], but we have
recomputed it with continuation techniques and reformatted it
with respect to our parameters of interest.

With Fig. 3(d), it is possible to extract the information of
Figs. 3(a-c) for any optical detuning; thus finding the value
of injected power for which the microring is on a fixed point
close to self-pulsing. This allows to set an optimal operating
parameter conditions for the reservoir.

V. NUMERICAL SIMULATIONS : METHODS &
PERFORMANCE

A. Simulation methods

We obtain the reservoir states through the simulation, using
the Caphe photonic circuit simulator [38], of the 4 × 4 (16
nodes) swirl reservoir, described by Eqs. (1) and (2), using
nonlinear microring resonators as nodes.

The performance of the reservoir is measured on the delayed
XOR task, as defined in Eq. (10). The current output bit y[n]
for this task is the Boolean XOR operation between the current
input bit x[n] with the bit that is ndelay bits in the past
x[n − ndelay]. This task is considered as the most difficult
two-bits binary delayed task, due to the nonlinear separability
in machine learning terms [23]. In our simulations, we always
assume ndelay = 1.

y[n] = x[n]⊕ x[n− ndelay]. (10)

The bit stream fed into the reservoir consists of 20,000
randomly chosen bits. The training of the linear readouts is
performed using regularized ridge regression on 16,000 bits,
using the scikit-learn library [39]. The testing is done on the
4,000 remaining bits, for a regularization parameter chosen
using the best case from a five-fold cross-validation. We report
the error rates on the test data, hence the minimum measurable
error rate is 2.5 × 10−4. Multiple-input simulations are per-
formed with the same bit stream injected simultaneously with
the same input power weights on all 16-nodes. For the readout
layer, we also use the discrete states xdetector of all 16-nodes
to perform the training and the testing of the reservoir. We
use in all our performance simulations a sampling rate of 160
Gb/s.

In this work, we investigate the optimal design of the
reservoir in terms of interconnection lengths, for a fixed data
rate. Hence, we will plot the reservoir performance as a
function of the reservoir inter-delay, that is the time the light
needs to travel in the waveguide from one node to the next. The
length L of the bus waveguide between two consecutive nodes
can then be obtained through Eq. (11), where nSi = 3.476
is the refractive index of the bulk silicon, and tdelay is the
reservoir inter-delay.

L =
c× tdelay
nSi

. (11)

The section is organised as follows : we present the perfor-
mance of the 16-nodes reservoir when focusing alternatively
on the influence of the bit rate, the optical detuning and the
power modulation.

B. Performance : influence of the bit rate

The reservoir performance is plotted in Fig. 4. We focus
on the influence of the data rate, and give the performance
as a function of the reservoir inter-delay at 10 Gb/s (black
dots), 15 Gb/s (red squares), 20 Gb/s (blue triangles), and
30 Gb/s (green diamonds), respectively. In order to compare
with previous work, we give in Fig. 4(a) the performance
of the fully passive reservoir of [22], [23], and in Fig. 4(b)
the performance of the reservoir using nonlinear microring
resonators as nodes (called MR-reservoir for clarity purposes).

In the case of the passive reservoir (Fig. 4(a)), the bit
stream is fed on all nodes through a power modulation from
Pin0

= 0.1 mW and Pin1
= 0.2 mW. In the MR-reservoir

(Fig. 4(b)), we fix the optical detuning at δλ = 50.0 pm, and
we modulate the injected power between Pin0 = 0.0 mW
and Pin1

= 0.3 mW, according to the optimal injection
parameter conditions determined previously. In this reservoir,
all microrings have the same resonance frequency, and we have
used the photodetector model previously described.

The results presented in this figure suggest that the reservoir
with nonlinear microrings as nodes can perform the typical
delayed XOR task with error rates about 2.5 10−4 (lowest
achievable value with the number of bit used in testing) for
various values of the inter-delay at high bit rates. We also
see that the range of inter-delay values, where the reservoir
performs at its best, is slightly greater for lower bit rates. This
is similar to the passive reservoir (Fig. 4), but our architecture
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Fig. 4. Error rate - for the XOR task - as a function of the reservoir inter-
delay for various bit rates : 10 Gb/s (black dots), 15 Gb/s (red squares), 20
Gb/s (blue triangles), and 30 Gb/s (green diamonds). Comparison between (a)
the passive reservoir of [22], [23], and (b) the dynamically active reservoir.
(a) : we modulate the injected power between Pin0 = 0.1 mW and Pin1 =
0.2 mW. (b) : the optical detuning is δλ = 50.0 pm, and we modulate the
injected power between Pin0 = 0.0 mW and Pin1 = 0.3 mW. The minimum
acceptable error rate is 2.5 × 10−4.

can achieve lower error rates. We notice also a reduced range
of inter-delay values for the best performance compared to
a passive reservoir. This is most likely due to the internal
time scale of the optical mode τa ≈ 20 ps in the microring
resonator model. This time scale is close to the optimal value
of inter-delay in term of reservoir performance.

We present also in Fig. 5(a) normalized time series gener-
ated by four nodes of the reservoir, along with the input power
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S
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n
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W
]
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Time series of four nodes
(a)
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Trained reservoir
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32 64

Fig. 5. (a) Time series of four different nodes of the reservoir for the following
injection conditions (black line) : an optical detuning δλ = 50.0 pm, a power
modulation between Pin0 = 0.0 mW and Pin1 = 0.3 mW at 20 Gb/s, and
an inter-delay tinterdelay = 18.75 ps. (b) Desired output (green curve),
trained output of the reservoir (blue curve), and decision threshold (red line)
for the same injection parameters. These parameters correspond to an optimal
value of the error rate of Fig. 4.

in each node. These time series are obtained for the simulation
of the MR-reservoir for an optical detuning δλ = 50.0 pm, a
power modulation comprised between Pin0 = 0.0 mW and
Pin1 = 0.3 mW, and an inter-delay tinterdelay = 18.75 ps.
This injection point corresponds to a optimal of the error
rate in Fig. 4(b). Finally, in Fig. 5(b), we show the output
of the trained reservoir for the same injection parameters as
in Fig. 5(a). The green curve is the desired output, the blue
curve is the output of the trained reservoir, and the red line is
the decision threshold. For both Fig. 4(a) and Fig. 4(b), the
time is normalized so that one bit is equal to one unit of time.

C. Performance : influence of the optical detuning

In this part, we focus on the influence of the optical
detuning on the MR-reservoir performance. Figure 6(a) gives
the performance of the reservoir as a function of the inter-delay
for four different values of the optical detuning : δλ = −50 pm
(red squares), δλ = 0.0 pm (blue triangles), δλ = 50 pm
(black dots), and δλ = 100 pm (green diamonds). The RZ
power modulation is chosen so that a microring alone is in
a stationary state, but close to a bifurcation point. Referring
to Fig. 3(a)-(c), the high value of the power modulation is
Pin1

= 0.3 mW for δλ = 50 pm, and Pin1
= 0.5 mW for

δλ = 0 pm, δλ = 100 pm, and δλ = −50 pm.
In this figure, we have considered that the microrings are

strictly the same, meaning that all 16 nonlinear microring
resonators have the same resonance frequency. For more
realistic simulations, we give in Fig. 6(b) - and for the same
input conditions - the performance of the MR-reservoir when
the resonance frequencies of the microrings are different.
The resonance frequencies of the 16 microring resonators
follow a Gaussian distribution centred on respectively δλ ∈
{−50, 0.0, 50, 100} pm, with a 10 pm standard deviation,
that is a rather pessimistic value with regard to the current
technology.

Figure 6 shows that the reservoir performs better when the
value of the optical frequency of the injected light is detuned
with respect to the resonance frequency of the nonlinear node
(typically in our study δλ ∈ {−50, 50, 100} pm), than when
the light is injected at the resonance frequency of the microring
resonator (i.e. δλ = 0 pm). Note that the performance is
similar for those three different values of the optical detuning
(δλ ∈ {−50, 50, 100} pm). Intuitively, this can be understood
by the filtering properties of microrings : they absorb more
optical power if the frequency of the injected light is close
to their resonance. As a result, the wave-mixing between the
nodes in the network is reduced, thus impeding the reservoir
computer performance. Figure 6(b) shows a good robustness
of the reservoir with regards to heterogeneities in the frequency
resonance between the nodes, providing that the detuning of
the injected light is larger than the standard deviation of the
heterogeneities in resonance.

In order to corroborate the results of Fig. 6, we plot in
Fig. 7 the performance of the reservoir as a function of the
optical detuning. More specifically, we have set the inter-delay
(18.75 ps), the power modulation between Pin0

= 0.0 mW and
Pin1

= 0.5 mW, and we have followed the horizontal dashed
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Fig. 6. Error rate - for the XOR task - as a function of the reservoir inter-delay
for various values of the optical detuning at 20 Gb/s. The power modulation
is chosen so that a microring alone is in a stationary state, but close to the
instabilities, with Pin0 = 0.0 mW. δλ = −50 pm and Pin1 = 0.5 mW (red
squares), δλ = 0.0 pm and Pin1 = 0.5 mW (blue triangles), δλ = 50 pm
and Pin1 = 0.3 mW (black dots), and δλ = 100 pm and Pin1 = 0.5 mW
(green diamonds). In (a), the microrings are all identical, and in (b), each
microring has a different value of the resonance frequency. The minimum
acceptable error rate is 2.5 × 10−4.

line of Fig. 3(d). This value of inter-delay corresponds to the
best choice in terms of interconnection length, as it ensures
relatively small connection waveguides, while the mismatches
in the frequency resonance of the rings does not affect the
performance of the reservoir (see Fig. 6(b)). Similarly to
Fig. 6(b), we have introduced mismatches in the resonance
frequency between the rings. We realize seven experiments for
each optical detuning; the results are averaged and we give the
error bars.

Figure 7 unveils a better level of performance when the
frequency of the injected light is far from the frequency
resonance of the nonlinear microring resonators. We see also
that the performance are better for negative values of the
frequency detuning. This can be understood by looking at the
stability map of Fig. 3(d), and the horizontal dashed line that
we have followed. For positive values of the optical detuning
from 0 pm and 75 pm, a nonlinear microring resonator is self-
pulsing for an injected power of 0.5 mW, thus meaning the
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Fig. 7. Error rate - for the XOR task - as a function of the optical detuning
for a power modulation between Pin0 = 0.0 mW and Pin1 = 0.5 mW, an
inter-delay of 18.75 ps, and a bitrate 20 Gb/s. Error bars are given for seven
series of simulations. The minimum acceptable error rate is 2.5 × 10−4.

reservoir is not on a steady state and consequently reducing
its performance.

D. Performance : influence of the injection power
In this section, we focus on the power budget considera-

tions. More specifically, we fix the optical detuning between
the injected light and the resonance frequency of the rings
(δλ = 50 pm), we fix again the interconnection delay at
18.75 ps, and we plot the performance of the reservoir for
various values of the power modulation. This is always a
return-to-zero (RZ) modulation, and we plot the error rate as a
function of the high value of the power modulation, following
the vertical dashed line of Fig. 3(d). Note that we have also
introduced mismatches in the resonance frequency between
the rings, similarly to previous studies. We give the average
and the error bars for seven series of simulations.

Figure 8 shows that values of the injected power lower than
10−4 W result in a degradation of the performance, due to
a reduction of total power on each node and wave-mixing
between the nodes through losses in the other integrated
elements (waveguides, splitters, combiners). We also see that
the performance of the reservoir are low for high values of
the modulation (Pin1

> 10−3 W), due to the fact that each
node is self-pulsing for these injection parameters (see stability
map, Fig. 3(d)). Finally, the optimal operating condition at
this particular optical detuning is when the high value of the
power modulation leads a single microring resonator to be in a
steady state, but close to instabilities. However, we find a very
good performance obtained for the high value of the power
modulation Pin1 = 0.5 10−3 W, where a single microring
resonator alone is self-pulsing.

In the previous sections, we have perform most of our
simulations at δλ = 50 pm, with a power modulation from
Pin0 = 0.0 W to Pin1 = 0.3 mW, which is in the interval of
best performance at this particular detuning. Hence the total
power budget is very low. Indeed the chip is only powered by
the optical power using the same bit stream input on each node,
thus the averaged power needed for the reservoir to perform is
Nnodes × 0.5× (Pin1 − Pin0) = 2.4 mW (with Nnodes = 16,
the number of nodes in the reservoir). Moreover, unlike the
purely passive reservoir, where a bias power was necessary to
perform optimally, the MR-reservoir has the best performance
when there is no power bias, thus reducing the mean power
consumption.
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Fig. 8. Error rate - for the XOR task - as a function of the high value of
the power modulation for an optical detuning δλ = 50 pm, an inter-delay of
18.75 ps, and a bitrate 20 Gb/s. The low value of the power modulation is
Pin0 = 0.0 mW. Error bars are given for seven series of simulations. The
minimum acceptable error rate is 2.5 × 10−4.



IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 7

VI. CONCLUSIONS

To conclude, we have suggested a novel integrated reservoir
architecture using microring resonators as nonlinear nodes,
that can perform at state-of-the-art level of performance on
a nonlinear Boolean task for various operating parameter
conditions. We also have connected the performance of the
reservoir computer with the nonlinear properties of the nodes
stability with respect to injected power and frequency detuning
between the injected light and the resonance of the rings.

More specifically, we have studied the influence of the data
rate, and shown that the intrinsic presence of three distinct time
scales in the model of the nonlinear nodes leads to the need
to carefully design the reservoir in terms of the length of the
interconnections between the nodes. We have also investigated
the influence of two critical operational parameters in the
network dynamics : (i) the injected power and (ii) the optical
detuning. We have found that a large variety of operating
conditions can lead to optimal performance of the reservoir on
the typical delayed XOR task, when some important conditions
are fulfilled. First, each node should be in a steady state,
close to instabilities. This condition, along with a stability
map of a single node, allows us to choose the operating
condition of the complete reservoir parameters for optimal
performance. We have also found a good robustness when
we introduce heterogeneities in the properties of the nonlinear
nodes, for example in the frequency resonance between the
ring resonators.

We have demonstrated that this integrated reservoir can
perform very well on a typical boolean task, with very low
power consumption. Considering the RZ power modulation
between Pin0

= 0.0 mW and Pin1
= 0.3 mW with the same

bit stream input on each node, the power budget is very good,
and could be further improved in future work by reducing the
number of injected nodes, for instance by injecting the data
only on the four central nodes, as suggested in previous work
by some of the authors [23]. Moreover, from an experimental
point of view, it is simpler to inject the data on fewer nodes,
as it reduces the routing density on the chip.

Contrary to the passive reservoir of [22], [23] in which
the nonlinearity is in the readout ((i.e.) the detector), we
have integrated nonlinear elements (the microring resonators)
in the recurrence of the network. This work shows that the
performance on this particular task in terms of BER and power
consumption are very similar with the previous design. This is
mainly due to the losses limiting the mixing in both architec-
tures with or without embedded nonlinear elements. A differ-
ent internal architecture with better losses management would
probably enhance our performance in presence of microring
resonators. The current results motivate further investigations
on the performance of this kind of structure, especially by
studying the performance on other tasks such as time series
generation, chaos prediction, or nonlinear channel equalization
to see if the nonlinearities in the recurrence of the network
have a good impact on the performance of the reservoir for
these complex tasks [10]. This opens new research venues
aiming at integrated, high-speed, energy-efficient, all-optical
data processing for telecom applications.
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Université de Lorraine (France). In his is young academic career, he has been
the recipient of an IBM Faculty Award in Cognitive Computing in 2015 and
a JSPS Fellowship for overseas researchers in 2016. He has authored and
co-authored 18 publications in international peer-reviewed journals and more
than 45 contributions in international conferences.


	Introduction
	Reservoir model
	Single node of the reservoir
	Nonlinear microring resonator

	Operating point of the reservoir
	Numerical simulations : methods & performance
	Simulation methods
	Performance : influence of the bit rate
	Performance : influence of the optical detuning
	Performance : influence of the injection power

	Conclusions
	References
	Biographies
	Florian Denis le Coarer
	Marc Sciamanna
	Andrew Katumba
	Matthias Freiberger
	Joni Dambre
	Peter Bienstman
	Damien Rontani


