
HAL Id: hal-01810601
https://hal.science/hal-01810601v1

Preprint submitted on 8 Jun 2018 (v1), last revised 11 Oct 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine Tasks for k-Test-and-Set
Petr Kuznetsov, Thibault Rieutord

To cite this version:

Petr Kuznetsov, Thibault Rieutord. Affine Tasks for k-Test-and-Set. 2018. �hal-01810601v1�

https://hal.science/hal-01810601v1
https://hal.archives-ouvertes.fr

Affine Tasks for k-Test-and-Set

Petr Kuznetsov ∗ Thibault Rieutord∗

Abstract

The paper proposes a surprisingly simple characterization of a classical class of models of
distributed computing, captured by an affine task : A subcomplex of the second iteration of
the standard chromatic subdivision. We show that the class of affine task we propose has an
element equivalent, regarding task solvability, to any wait-free shared-memory model in which
processes have additionally access to k-test-and-set objects. Our results thus extend existing
affine characterization beyond fair models.

Distributed computing deals with a jungle of models, parameterized by types of failures, synchrony
assumptions and communication primitives. Determining relative computability power of these
models (“is model A more powerful than model B?”) is an intriguing and important problem.

This paper deals with shared-memory models in which a set of crash-prone asynchronous
processes communicate via invoking operations on a collection of shared objects, which, by default,
include atomic read-write registers.

Topology of wait-freedom. The wait-free model [15] makes no assumptions on when and where
failures might occur. Herlihy and Shavit proposed an elegant characterization of wait-free (read-
write) task computability via the existence of a specific simplicial map from geometrical structures
describing inputs and outputs [18].

A task T has a wait-free solution using read-write registers if and only if there exists a simplicial,
chromatic map from some subdivision of the input simplicial complex, describing the inputs of T , to
the output simplicial complex, describing the outputs of T , respecting the task specification ∆. In
particular, we can choose this subdivision to be a number of iterations of the standard chromatic
subdivision (denoted Chr, Figure 1). Therefore, the celebrated Asynchronous Computability Theorem
(ACT) [18] can be formulated as:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆ is a
carrier map from I to sub-complexes of O, is wait-free solvable if and only if there exists
a natural number ` and a simplicial map φ : Chr`(I) → O carried by ∆ (informally,
respecting the task specification ∆).

The output complex of the immediate snapshot (IS) task is precisely captured by Chr [4]. By
solving the IS task iteratively, where the current iteration output is used as the input value for
the next one, we obtain the iterated immediate snapshot (IIS) model, captured by iterations of
Chr. The ACT theorem can thus be interpreted as: the set of wait-free (read-write) solvable task
is precisely the set of tasks solvable in the IIS model. The ability of (iteratively) solving the IS
task thus allows us to solve any task in the wait-free model. Hence, from the task computability
perspective, the IS task is a finite representation of the wait-free model.

∗LTCI, Télécom ParisTech, Université Paris-Saclay

1

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Figure 1: Chr(s), the standard chromatic subdivision of a 2-simplex, the output complex of the
3-process IS task.

Figure 2: In blue, R1−res , the affine task of 1-resilience.

Adversaries. Given that many fundamental tasks are not solvable in the wait-free way [2, 18, 23],
more general models were considered. Delporte et al. [8] introduced the notion of an adversary, a
collection A of process subsets, called live sets. A run is in the corresponding adversarial A-model if
the set of processes taking infinitely many steps in it is a live set of A. For example, the t-resilient
n-process model is defined via an adversary At−res that consists of all process subsets of size n− t
or more. At−res is superset-closed [20], as it contains all supersets of its elements.

Saraph et al. [24] recently proposed a direct characterization of t-resilient task computability via
a specific task Rt−res . The task is defined as a restriction of the double immediate snapshot task:
the output complex of the task is a sub-complex consisting of all simplices of the second degree of
the standard chromatic subdivision of the task’s input complex, except the simplices adjacent to
the (n− t− 1)-skeleton of the input complex. Intuitively the output complex of Rt−res contains
all of 2-round IS runs in which every process “sees” at least n − t − 1 other processes. We call
such tasks affine [11, 13], as the geometrical representation of their output complexes are unions
of affine spaces. An affine task consists in solving a (generalized) simplex agreement [4, 18] on the
corresponding sub-complex of Chr2 s.

Figure 2 depicts the output complex of R1−res , the affine task for the 3-process 1-resilient model.
Solving a task T in the t-resilient model is then equivalent to finding a map from iterations of

2

Rt−res (applied to the input complex of T) to the output complex of T .
Similarly, the affine task of the k-obstruction-free adversary, consisting of all process subsets

of size at most k, was recently determined by Gafni et al. [11]. Note that such an adversary is
symmetric [26], as it only depends on the sizes of live sets, and not on process identifiers. Unlike
At−res (which is also symmetric), the k-obstruction-free one is not superset-closed.

Topology of fair adversaries. In this paper, we present a compact topological characterization
of wait-free shared memory models enhanced with k-test-and-set objects. We define an affine
task Rk−T&S capturing the task computability of any wait-free shared memory models enhanced
with k-test-and-set objects. Our characterization can be put as the following generalization of the
ACT [18]:

A task T = (I,O,∆) is solvable in a wait-free shared memory models enhanced with
k-test-and-set objects. if and only if there exists a natural number ` and a simplicial
map φ : R`

k−T&S (I)→ O carried by ∆.

We believe that the results can be extended to all “practical” restrictions of the wait-free model
which may result in a complete computability theory for distributed computing shared-memory
models.

Roadmap. Section 1 describes our model. Section 2 defines the affine task Rk−T&S . In Section 3,
we show that R∗k−T&S can be simulated in the wait-free shared memory model enhanced with
k-test-and-set objects. In Section 4, we show that reciprocally any task solvable in the wait-free
shared memory model enhanced with k-test-and-set objects can be solved in R∗k−T&S . Section 7
reviews related work and Section 8 concludes the paper.

1 Preliminaries

We assume a system of n asynchronous processes, Π = {p1, . . . , pn}. Two models of communication
are considered: (1) atomic snapshots [1] and (2) iterated immediate snapshots [4, 18].

Atomic snapshot models. The atomic-snapshot (AS) memory is represented as a vector of
n shared variables, where each process pi is associated with the position i. The memory can be
accessed with two operations: update and snapshot. An update operation performed by pi modifies
the value at position i and a snapshot returns the vector current state.

A protocol is a deterministic distributed automaton that, for each process and each its local
state, stipulates which operation and state transition the process may perform. A run of a protocol
is a possibly infinite sequence of alternating states and operations. An AS model is a set of infinite
runs.

In an infinite run of the AS model, a process that takes only finitely many steps is called faulty,
otherwise it is called correct. We assume that in its first step, a process shares its initial state
using the update operation. If a process completed this first step in a given run, it is said to be
participating, and the set of participating processes is called the participating set. Note that every
correct process is participating.

3

(a) Ordered run: {p2}, {p1}, {p3}. (b) Synchronous run: {p1, p2, p3}.

Figure 3: Examples of valid sets of IS outputs.

Iterated Immediate Snapshot model. In the iterated immediate snapshot (IIS) model, pro-
cesses proceed through an infinite sequence of independent memories M1,M2, Each memory Mr

is accessed by a process with a single WriteSnapshot operation [3]: the operation performed by pi
takes a value vir and returns a set Vir of submitted values (w.l.o.g, values of different processes are
distinct), satisfying the following properties (See Figure 3 for IS examples):

• self-inclusion: vir ∈ Vir;

• containment: (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir);

• immediacy: vir ∈ Vjr ⇒ Vir ⊆ Vjr.

In the IIS communication model, we assume that processes run the full-information protocol,
in which, the first value each process writes is its initial state. For each r > 1, the outcome of the
WriteSnapshot operation on memory Mr−1 is submitted as the input value for the WriteSnapshot
operation on Mr. There are no failures in the IIS model, all processes go through infinitely many IS
instances.

Note that the wait-free AS model and the IIS model are equivalent as regards task solvability [3,
16].

Tasks. In this paper, we focus on distributed tasks [18]. A process invokes a task with an input
value and the task returns an output value, so that the inputs and the outputs across the processes
respect the task specification. Formally, a task is defined through a set I of input vectors (one
input value for each process), a set O of output vectors (one output value for each process), and a
total relation ∆ : I 7→ 2O that associates each input vector with a set of possible output vectors.
We require that ∆ is a carrier map: ∀ρ, σ ∈ I, ρ ⊆ σ: ∆(ρ) ⊆ ∆(σ). An input ⊥ denotes a
non-participating process and an output value ⊥ denotes an undecided process. Check [16] for more
details on the definition.

In the k-set consensus task [6], input values are in a set of values V (|V | ≥ k+ 1), output values
are in V , and for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥ values
in O is a subset of values in I of size at most k. The case of 1-set consensus is called consensus [9].

A protocol solves a task T = (I,O,∆) in a model M , if it ensures that in every run of M in
which processes start with an input vector I ∈ I, there is a finite prefix R of the run in which:
(1) decided values form a vector O ∈ O such that (I,O) ∈ ∆, and (2) all correct processes decide.
Hence, in the IIS model, all processes must decide.

Simplicial complexes. We use the standard language of simplicial complexes [16,25] to give a
combinatorial representation of the IIS model. A simplicial complex is defined as a set of vertices

4

and an inclusion-closed set of vertex subsets, called simplices. The dimension of a simplex σ is
|σ| − 1, and any subset of σ is one of its faces. We denote by s the standard (n− 1)-simplex: a fixed
set of n vertices and all its subsets.

Given a complex K and a simplex σ ∈ K, σ is a facet of K, denoted facet(σ,K), if σ is not a
face of any stricly larger simplex in K. Let facets(K) = {σ ∈ K, facet(σ,K)}. A simplicial complex
is pure (of dimension n) if all its facets have dimension n. A simplicial complex is chromatic if it is
equipped with a coloring function — a non-collapsing simplicial map χ from its vertices to s, in
one-to-one correspondence with n colors. In our setting, colors correspond to processes identifiers.

Standard chromatic subdivision and IIS The standard chromatic subdivision [18] of a complex
K, ChrK (Chr s is depicted in Figure 1), is a complex where vertices of ChrK are couples (c, σ),
where c is a color and σ is a face of K containing a vertex of color c. Simplices of ChrK are the
sets of vertices (c1, σ1), . . ., (cm, σm) associated with distinct colors (i.e., ∀i, j, ci 6= cj) such that
the σi satisfies the containment and immediacy properties of IS. It has been shown that Chr is a
subdivision [19]. In particular, the geometric realization of Chr s, |Chr s|, is homeomorphic to |s|,
the geometric realization of s (i.e., the convex hull of its vertices). If we iterate this subdivision m
times, each time applying Chr to all simplices, we obtain the mth chromatic subdivision, Chrm.
Chrm s captures the m-round IIS model, ISm [4, 18].

Given a complex K and a subdivision of it Sub(K), the carrier of a simplex σ ∈ Sub(K) in K,
carrier(σ,K), is the smallest simplex ρ ∈ K such that the geometric realization of σ, |σ|, is contained
in |ρ|: |σ| ⊆ |ρ|. The carrier of a vertex (p, σ) ∈ Chr s is σ. In the matching IS task, the carrier
corresponds to the snapshot returned by p, i.e., the set of processes seen by p. The carrier of a simplex
ρ ∈ ChrK is simply the union (or, due to inclusion, the maximum) of the carriers of vertices in ρ.
Given a simplex σ ∈ Chr2 s, carrier(σ, s) is equal to carrier(carrier(σ,Chr s), s). carrier(σ,Chr s)
corresponds to the set of all snapshots seen by processes in χ(σ). Hence, carrier(σ, s) corresponds
to the union of all these snapshots. Intuitively, it results in the set of all processes seen by processes
in χ(σ) through the two successive immediate snapshots instances.

Simplex agreement and affine tasks. In the simplex agreement task, processes start on vertices
of some complex K, forming a simplex σ ∈ K, and must output vertices of some subdivision
of K, Sub(K), so that outputs form a simplex ρ of Sub(K) respecting carrier inclusion, i.e.,
carrier(ρ,K) ⊆ σ. In the simplex agreement tasks considered in the characterization of wait-free
task computability [4, 18], K is the standard simplex s and the subdivision is usually iterations of
Chr.

An affine task is a generalization of the simplex agreement task, where s is fixed as the input
complex and where the output complex is a pure non-empty sub-complex of some iteration of the
standard chromatic subdivision, Chr` s. Formally, let L be a pure non-empty sub-complex of Chr` s
for some ` ∈ N. The affine task associated with L is then defined as (s, L,∆), where, for every
face σ ⊆ s, ∆(σ) = L ∩ Chr`(σ). Note that L ∩ Chr`(t) can be empty, in which case the set of
participating processes must increase before processes may produce outputs. Note that, since an
affine task is characterized by its output complex, with a slight abuse of notation, we use L for both
the affine task (s, L,∆) and its ouput complex.

By running m iterations of this task, we obtain Lm, a sub-complex of Chr`m s, corresponding to
a subset of IS `m runs (each of the m iterations includes ` IS rounds). The affine model associated
with L, denoted L∗, corresponds to the set of infinite runs of the IIS model where every prefix

5

(a) Complex R2
1−T&S (b) Complex R2

2−T&S

Figure 4: R2
1−T&S and R2

2−T&S in blue.

restricted to a multiple of ` IS rounds belongs to the subset of IS `m runs associated with Lm.

2 Affine task for k-test-and-set

The affine task corresponding to k-test-and-set and read-write shared memory, denoted Rn−1
k−T&S , is

defined as a subset of the standard chromatic subdivision, Rn−1
k−T&S ⊆ Chr(sn−1), as follow:

Definition 1

Rn−1
k−T&S = {σ ∈ Chr(sn−1)|∀σ′ ⊆ σ, ∀v, v′ ∈ σ′, carrier(v) = carrier(v′) : |σ′| ≤ k}.

The definition says that Rn−1
k−T&S includes all simplices of Chr(sn−1) which does include a face

of size greater or equal to k sharing the same carrier.
To see that the definition of Rn−1

k−T&S indeed define an affine task, it must be checked that

Rn−1
k−T&S is a pure sub-complex of dimension n− 1. To see that that any simplex σ ∈ Rn−1

k−T&S is

a subset of another simplex σ′Rn−1
k−T&S such that |σ′| = n, one can see that σ can be inductively

completed by vertices of missing colors one by one with at each iteration a vertex with a carrier not
previously present in the current simplex. The fact that all subset σ′ of a simplex σ ∈ Rn−1

k−T&S is

also part of Rn−1
k−T&S is a direct corollary of its definition.

This approach would imply to formally prove the intuitively previously stated fact, the advantage
of such a definition is that it is easy to show that the complex is k-connected on any restriction
on up to k processes as any simplex of size smaller or equal to k is included (or dimension k − 1).
Alternatively it can be put in Rn−1

k−T&S definition that only subsets of (n− 1)-dimensional simplex

of Rn−1
k−T&S are allowed.

3 Solving Rn
k−T&S with k-Test-and-Set and read-write shared mem-

ory.

Solving Rn
k−T&S using access to shared memory and access to k-Test-and-Set objects is not very

difficult. It was previously resolved in [14, 22], the idea consist on using a level-based immediate
snapshot implementation which additionally uses access to k-test-and-set objects.

A level-based implementation of an immediate snapshot implementation works as follow: (1)
process write their input in memory associated with a level ` starting at ` = n; (2) proceed to a

6

snapshot of memory; (3) if the snapshot contains ` values associated with a level `′ ≤ ` then the
process returns with the snapshot consisting of theses ` values, otherwise the process re-iterate the
process using the level `− 1. The formal description can be found in Algorithm 1.

Algorithm 1: Level-based immediate snapshot implementation for pi.

1 Shared Objects: MEM [1 . . . n] ∈ V al × N), initially (⊥,⊥);
2 Init: level = n+ 1, value = InputV alue, snap = ∅;

3 Do
4 level = level − 1;
5 MEM [i].Update(value, level);
6 snap = MEM.Snapshot();

7 While |{(v, `) ∈ snap, ` ≤ level}| 6= level;
8 Return {(v, `) ∈ snap, ` ≤ level};

Lemma 1 In an execution of Algorithm 1, at most ` processes can reach the (n− `)th iteration of
the while loop.

Proof. Let us show this result by induction on the number of iterations k. If k = 1, then at most n
processes can reach the first iteration of the while loop as there is n processes in the system. Assume
that the lemma holds for iteration k, then at most n−k processes may reach iteration k of the while
loop. If there is strictly less than k or if a process crash during iteration k, then the lemma property
holds for iteration k + 1. Assume that exactly n− k + 1 processes reach iteration k and complete
this iteration of the while loop and consider the process p which takes last its iteration snapshot. As
all n− k + 1 processes must have previously updated their register with a value associated to level
n− k + 1 and may have been replaced only with the same input value associated to a smaller level
value and as at most n− k+ 1 have updated their register with an associated value smaller or equal
to n−k+1 (i.e., have access the kth iteration of the while loop), then p obtains a snapshot containing
exactly n − k + 1 values associated with a level smaller or equal to n − k + 1 and thus exit the
while loop. Therefore the lemma property holds for level k+1 which completes the induction proof. �

Theorem 2 Algorithm 1 implements an immediate snapshot operation.

Proof. According to Lemma 1, every correct process eventually exit the while loop and thus returns
a set of immediate snapshot input values. The immediate snapshot properties are as follows:

• self-containment : A process returns a set of input values including its own. Indeed, a process
returning at level ` (i.e., with a variable level currently set to `), returns all input values
associated to a level smaller or equal to ` thus its own as its last update on its register include
its input value associated to the level `.

• containment : The set of values V and V ′, returned by two processes p and p′ respectively,
are such that either V ⊆ V ′ or V ′ ⊆ V . Consider that p returns at level ` and p′ returns at
level `′, w.l.o.g., with `′ ≤ `. Assume that there is a input value from a process p′′ returned

7

by p′ but not by p. p′′ must have reached level `′ and thus has reached level `, but as its
input value is not included by p, p′ must have updated its register in iteration corresponding
to level ` after p proceeded to its snapshot for the same level. But p must have observed `
processes which already accessed the iteration corresponding to level ` to exit the loop, as it
does not include p′′ this imply that strictly more than ` processes accessed to this iteration, a
contradiction with the property of Lemma 1.

• Immediacy : Given two processes p and p′ returning the set of values V and V ′ respectively, if
V includes the input value from p′ then V ′ ⊆ V . To see that the set returned by Algorithm 1
verify this property, assume that this is not the case. By the inclusion property we have that
V (V ′. Thus, with ` and `′ the level at which p and p′ returned respectively, we have that
` = |V | < |V ′| = `′. This implies that p′ only updated his register with an associated level
greater or equal to `′, and so p′ input value cannot have been returned by p as only values
associated to a level smaller or equal to ` are returned, a contradiction.

�

The modification proposed in [14, 22] to solve Rn
k−T&S , consist on modifying the level-based

immediate snapshot implementation on its third (conditional) step as follow: (3’) if the snapshot
contains ` values associated with a level `′ ≤ ` then the process access the k-test-and-set object
number ` and if it obtains true, then it returns with the snapshot consisting of theses ` values,
otherwise, in both else conditions, the process re-iterate the process using the level `− 1.The formal
description can be found in Algorithm 2.

Algorithm 2: Solving Rn
k−T&S for process pi.

1 Shared Objects: MEM [1 . . . n] ∈ V al × N), initially (⊥,⊥);
2 Init: level = n+ 1, exit = true, value = InputV alue, snap = ∅;

3 Do
4 Do
5 level = level − 1;
6 MEM [i].Update(value, level);
7 snap = MEM.Snapshot();

8 While |{(v, `) ∈ snap, ` ≤ level}| 6= level;
9 exit = k-Test&Set[level];

10 While ¬exit;
11 Return {(v, `) ∈ snap, ` ≤ level};

Lemma 3 In an execution of Algorithm 2, at most ` processes can reach the (n− `)th iteration of
the inner while loop.

Proof. Let us show this result by induction on the number of iterations k of the inner while loop.
If k = 1, the claim is trivially verified. Let us assume that the lemma holds for iteration k, then
at most n − k processes may reach iteration k of the while loop. If there is strictly less than k
or if a process crash during iteration k, then the lemma property holds for iteration k + 1. So

8

let us now assume furthermore that exactly n− k + 1 processes reach iteration k and complete it
without crashing, and consider the process p which takes last its iteration snapshot. As all n− k+ 1
processes must have previously updated their register with a value associated to level n− k + 1 and
may have been replaced only with the same input value associated to a smaller level value and as at
most n− k + 1 have updated their register with an associated value smaller or equal to n− k + 1
(i.e., have access the kth iteration of the while loop), then p obtains a snapshot containing exactly
n− k + 1 values associated with a level smaller or equal to n− k + 1 and thus exit the inner while
loop.

If p the obtains true as output to the accessed k-test-and-set object, then it exit the second
while loop and returns from the algorithm. Otherwise, if p obtains false, this implies that another
process accessed the k-test-and-set object and, if it does not crash, received true. Therefore as this
process can only be one of the n − k + 1 which accessed the kth iteration, one less process par-
ticipate and therefore the lemma property holds for level k+1, which completes the induction proof. �

Theorem 4 Algorithm 2 solves Rn
k−T&S.

Proof. First let us show that Algorithm 2 solves the immediate snapshot task. It can be noticed
that the proof of Theorem 2 still applies to the modified version of Algorithm 2, only Lemma 1
proof is no longer, but Lemma 3 may be used as replacement.

As Algorithm 2 solves the immediate snapshot task, all left to be shown is that at most k
process output at the same level, i.e., are provided with the same output set and thus are asso-
ciated to vertices on the same carrier. It is trivial to see that this is the case. Indeed, consider
a set of processes Q all outputting on the same level `, they therefore all accessed the same k-
Test-and-Set object (associated to level `) and all obtained true as object output. As at most k
processes may obtain the output true from a k-Test-and-Set object, then Q is of a size of at most k. �

4 Simulating k-Test-and-Set and read-write shared memory in
Rn
k−T&S

∗.

Simulating k-Test-and-Set and read-write shared memory in Rn
k−T&S

∗ is rather simple. The idea is
to use the restriction on the number of process with the same immediate snapshot output to solve
access to k-Test-and-Set by simulating a write operation. Read/write simulations using iterated
(immediate) snapshots are quite common in the literature and any one of them can be used for
our purpose. With their simulated write values, processes add a tag which can correspond to a
classic write or to a k-test-and-set operation where the write content is replaced with the identifier
of the corresponding accessed simulated object. To decide what to return on a completed simulated
operation corresponding to a k-test-and-set operation, processes check whether the returned snapshot
contains more than k accesses to the corresponding k-test-and-set object and if there is less or equal
to k accesses they return true and otherwise false.

By using a full information protocol which associate all past operations to any simulated
operations, this simple scheme ensure that at most k processes obtains a true as output to an access
to a given k-test-and-set object. The structure of Rn

k−T&S ensure that simulated snapshots contains

9

at most k new inputs not returned in a previous round and therefore that at least one process
accessing a given k-test-and-set object returns true.

5 Solving Rn
k−T&S in the {(k + 1, k)}-model.

Solving Rn
k−T&S in the {(k + 1, k)}-model directly is more difficult than using the equivalent

read/write shared memory model with access to k-test-and-set objects. The idea is to run an
adaptive BGG-simulation where by batches, k simulators first give output to processes on a set of
k + 1 levels. More precisely, BG-simulators from range mk to (m+ 1)k − 1 simulate processes, in a
depth first manner, up to level m(k + 1) and ignoring first the output test on levels higher or equal
to (m+ 1)(k + 1). Every time a process is provided with an output, then the range are updated by
shifting the target range for each terminated process on a smaller level or on a level included in the
target range.

6 Simulating the {(k + 1, k)}-model in Rn
k−T&S

∗.

Simulating the {(k + 1, k)}-model in Rn
k−T&S

∗ directly is not much difficult than simulating shared
memory and access to k-test-and-set objects according that at most k + 1 processes may access the
same object. The idea is still to use simulated write operation for agreement operation, instead of
returning true, a process returns its own proposal and instead of returning false, a process returns
the proposal from any other process which accessed the object in previous rounds.

7 Related work

Herlihy and Shavit [18] proposed a characterization of wait-free task computability through the
existence of a simplicial map from a subdivision of the input complex of a task I to its output
complex O. (The reader is referred to [16] for a thorough discussion of the use of combinatorial
topology in distributed computability.) Herlihy and Rajsbaum [17] studied colorless task computabil-
ity in the special case of superset-closed adversaries. They show that the protocol complex of a
superset-closed adversary with minimal core size c is (c− 2)-connected. This result, obtained via an
iterative application of the Nerve lemma, gives a combinatorial characterization of superset-closed
adversaries. The characterization only applies to colorless tasks, and it does not allow us to express
the adversary in an affine way.

Gafni et al. [13] introduced the notion of an affine task and characterized task computability in
iterated adversarial models via infinite subdivisions of input complexes, assuming a limited notion of
solvability that only guarantees outputs to “fast” processes [5,10] (i.e., “seen” by every other process
infinitely often). The liveness property defined in this paper for iterated models guarantees outputs
for every process, which allowed us to establish a task-computability equivalence with conventional
non-iterated models.

Saraph et al. [24] gave a compact combinatorial characterization of t-resilient task computability.
Note that At−res is a superset-closed (and thus fair) adversary. Our solution of the affine task RA
in the α-model is inspired by the t-resilient solution of Rt−res in [24]. Gafni et al. [11] presented
affine tasks for the model of k-set consensus and, thus, k-concurrency and k-obstruction-freedom,
which can be expressed as a symmetric and thus fair adversary.

10

The notions of agreement functions and a fair adversaries were introduced by the first two
authors in [21]. One can determine the agreement function of any given adversary using the formula
suggested earlier for the set consensus power [12]. It has been shown in [21] that agreement functions
encode enough information to characterize the task computability of any fair adversary.

8 Concluding remarks

This paper propose a new affine characterization of the wait-free shared memory model enhanced
with k-test-and-set objects. Just as the wait-free characterization [18] implies that the IS task
captures the wait-free model, our characterization equates any such model with a (compact) affine
task embedded in the standard chromatic subdivision.

Interestingly, unlike [24], we cannot rely on the shellability [16] (and, thus, link-connectivity) of
the affine task. Link-connectivity of a simplicial complex C allows us to work in the point set of its
geometrical embedding |C| and use continuous maps (as opposed to simplicial maps that maintain
the simplicial structure). For example, the existence of a continuous map from |RAt−res | to any
|Rk
At−res

| implies that RAt−res indeed captures the general task computability of At−res [24]. In
general, however, the existence of a continuous map onto C only allows us to converge on a single
vertex [16]. If C is not link-connected, converging on one vertex allows us to compute an output only
for a single process, and not more. Unfortunately, only very special adversaries, such as At−res , have
link-connected counterparts (see, e.g., the affine task corresponding to 1-test-and-set in Figure 4a).
Instead of relying on link-connectivity, this paper takes an explicit algorithmic way of showing that
iterations of Rk−T&S simulate the wait-free shared memory model enhanced with k-test-and-set
objects. An interesting question is to which extent point-set topology and continuous maps can be
applied in affine characterizations.

Nailed down, this may allow us to compactly capture all “natural” models [11], such as, e.g.,
generic adversarial models or the set consensus collections models [7] for which only special cases of
k-set consensus [11] and k-test-and-set have been, in this sense, understood so far.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.

[2] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In STOC, pages 91–100. ACM Press, May 1993.

[3] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In PODC,
pages 41–51, New York, NY, USA, 1993. ACM Press.

[4] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In PODC ’97: Proceedings of the sixteenth annual
ACM symposium on Principles of distributed computing, pages 189–198, New York, NY, USA,
1997. ACM Press.

[5] Zohir Bouzid, Eli Gafni, and Petr Kuznetsov. Strong equivalence relations for iterated models.
In OPODIS, pages 139–154, 2014.

11

[6] Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. In Proceedings of the 9th ACM Symposium on Principles of Distributed
Computing, pages 311–324, Québec City, Québec, Canada, August 1990.

[7] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr Kuznetsov:. Set-consensus
collections are decidable. In OPODIS, 2016.

[8] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The
disagreement power of an adversary. Distributed Computing, 24(3-4):137–147, 2011.

[9] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[10] Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proceedings of the 17th Symposium on Principles of Distributed Computing,
1998.

[11] Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-write memory and k-set con-
sensus as an affine task. In OPODIS, 2016. Technical report: https://arxiv.org/abs/1610.01423.

[12] Eli Gafni and Petr Kuznetsov. Turning adversaries into friends: Simplified, made constructive,
and extended. In OPODIS, pages 380–394, 2010.

[13] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability
theorem. In ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris,
France, July 15-18, 2014, pages 222–231, 2014.

[14] Eli Gafni, Michel Raynal, and Corentin Travers. Test & set, adaptive renaming and set
agreement: A guided visit to asynchronous computability. In SRDS, pages 93–102, 2007.

[15] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):123–149, January 1991.

[16] Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2014.

[17] Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless tasks. In
PODC, pages 253–260, 2012.

[18] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(2):858–923, 1999.

[19] Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and
Applications, 14(1):1–13, 2012.

[20] Petr Kuznetsov. Understanding non-uniform failure models. Bulletin of the EATCS, 106:53–77,
2012.

[21] Petr Kuznetsov and Thibault Rieutord. Agreement functions for distributed computing models.
In NETYS, pages 175–190, 2017.

12

[22] Achour Mostéfaoui, Michel Raynal, and Corentin Travers. Exploring gafni’s reduction land:
From mega to wait-free adaptive (2p-[p/k])-renaming via k-set agreement. In DISC, pages
1–15, 2006.

[23] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

[24] Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability theorems for
t-resilient systems. In DISC, pages 428–441, 2016.

[25] Edwin H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[26] Gadi Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

13

