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A TOPOLOGICAL INVARIANT FOR MODULAR

FUSION CATEGORIES

AJINKYA KULKARNI, MICHAËL MIGNARD, AND PETER SCHAUENBURG

Abstract. The modular data of a modular category C, consist-
ing of the S-matrix and the T -matrix, is known to be a incom-
plete invariant of C. More generally, the invariants of framed links
and knots defined by a modular category as part of a topological
quantum field theory can be viewed as numerical invariants of the
category. Among these invariants, we study the invariant defined
by the Borromean link colored by three objects. Thus we obtain
a tensor that we call B. We derive a formula for the Borromean
tensor for the twisted Drinfeld doubles of finite groups. Along with
T , it distinguishes the p non-equivalent modular categories of the
form Z(VecωG) for G the non-abelian group Z/qZ ⋊ Z/pZ, which
are not distinguished by the modular data.

1. Introduction

The modular data of a modular category C comprises the S- and
T -matrices, two square matrices indexed by the isomorphism classes of
simples; they define a projective representation of the modular group.
On the one hand one could say that these two matrices are just par-
ticular instances of the topological invariants defined by a modular
category in the framework of a topological quantum field theory: the
S-matrix is the invariant defined for a Hopf link colored by two sim-
ples of the category, and the T -matrix contains the components of
a kink. On the other hand, one may feel that the modular data is
somewhat privileged among the topological invariants associated to
the category: Invertibility of the S-matrix already features in the def-
inition; invariance properties with respect to the modular group are
key for the appearance of modular categories in conformal field the-
ory; last but not least properties of the modular data are important
for the purely algebraic study of modular categories. The importance
of the modular data has led to the question being seriously considered
(and stated as not quite a conjecture in [BNRW16]) as to whether a
modular category (and hence the TQFT associated to it) is already
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determined fully by the modular data. This was refuted in [MS17a]
by a family of examples that are taken among the particularly accessi-
ble class of group-theoretical modular categories, more specifically the
Drinfeld centers of pointed fusion categories, which were already con-
sidered, in the guise of representation categories of twisted Drinfeld
doubles of finite groups, in [DPR90]. It turns out in fact that arbi-
trarily many inequivalent modular categories can give rise to the same
modular data; the examples are defined by the same noncommutative
group, endowed with different three-cocycles; the smallest example in
[MS17a] concerns the nonabelian group of order 55, although it is not
known whether smaller examples exist.

This result naturally gives rise to the following question: Can one
find other invariants that distinguish the modular categories in these
families? Note that this was not how the categories were found to
be distinct in [MS17a], where rather the inexistence of suitable equiv-
alences was proved through the characterization of such equivalences
via Morita equivalence of pointed fusion categories. Recent general re-
sults on the correspondence between modular categories and topolog-
ical quantum field theories [BDSV15] imply that the entire extended
TQFT defined by the category can be viewed as a complete invariant.
This does not, of course, solve the concrete problem of finding invari-
ants that one can compute for specific categories and use to distinguish
them —the entire TQFT is a rather formidable collection of data.

The simple idea of the present paper is to consider the invariant of a
certain framed link defined by the modular categories in question and
view it as an invariant of the category, much like the invariant of the
Hopf link giving the S-matrix. The particular link we will use is known
as the borromean rings. This is partly an obvious candidate for naive
reasons: It is the closure of a three-strand braid, which is the next more
complicated thing over the two-strand braid whose closure is the Hopf
link; having three strands might allow the associativity constraint of the
category (which, after all, is encoded in the three-cocycle that makes
the basic difference in the aforementioned examples) to have a greater
influence on the invariant. Since the invariant obtained from a full
twist on three strands (like the Hopf link comes from a full twist on two
strands) is easily seen to be determined by the modular data, making
inverse braidings appear seems necessary, and the braid whose closure
gives the borromean rings does this in a somewhat symmetric fashion.
It may also be a good candidate for a slightly less naive reason: The
borromean rings are three circles that are pairwise not linked, yet form
a nontrivial link. This is a somewhat subtle topological phenomenon
which one may hope gives rise to an invariant whose properties are not
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covered by those of the S-matrix, which records precisely what happens
if two rings are linked. (In fact, the rings seem to have appeared in
15th century Italy as a heraldic symbol for this very reason: They are
supposed to symbolize the political (and marital) alliances between the
Borromeo, Sforza, and Visconti families, which was such that removing
any one of them would have broken the alliance of the three.) Whether
the motivations are justified by the success is perhaps doubtful: The
borromean tensor does not at all distinguish the categories described
above. In fact it does not seem to “see” the three-cocycle at all that
makes the difference between the categories. It is only the T -matrix
taken together with the B-tensor that makes it impossible to find a
bijection between the simples of the different categories that would
map these data to each other.

The same general idea of using link invariants to distinguish modu-
lar categories not distinguished by modular data was also pursued in
[BDG+18], where the authors show that the invariant of the White-
head link, along with the T -matrix, does distinguish the five inequiv-
alent modular categories defined from the nonabelian group of order
55. We are grateful to the authors for letting us see an advance copy
of their preprint. At the time we knew by computer experiments that
the invariant of the borromean rings, taken together with the modular
data, also distinguishes the categories in this particular example, and
we knew which components of the “borromean tensor” (given by the
invariants of the borromean link with its three components colored by
three simples of the category) are responsible for this success. We had
not finished writing our findings, and we had not completed the results
in section 6 showing that the T -matrix together with the borromean
tensor is sufficient to distinguish the modular categories associated to
the nonabelian groups of order pq (for all primes p, q for which such a
group exists).

The paper is organized as follows: After introducing conventions and
notations, we first revisit the modular data of twisted Drinfeld doubles
to give a slightly improved formula for the S-matrix, but mostly to
introduce the methods to be used later. We formally define the Bor-
romean tensor in section 4 and record some symmetry properties it
enjoys. In section 5 we give an explicit formula for the Borromean
tensor for twisted Drinfeld doubles, with some useful specializations
that we then use in section 6 to explicitly distinguish the inequivalent
modular categories found in [MS17a] by the new numerical invariant
that is the T -matrix together with the B-matrix. An appendix gives
some GAP codes for computing the B-tensor (and the S-matrix). Ex-
perimenting with computer calculation was an important step in our
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work, although computer help is not needed to prove the main result;
some calculations were performed using HPC resources from PSIUN
CCUB (Centre de Calcul de l’Université de Bourgogne).

2. Preliminaries

Throughout the paper we will consider modular categories, that is,
braided spherical C-linear fusion categories C such that the square ma-
trix S whose coefficients are the traces of the square of the braiding
on pairs of simple objects is invertible. We refer to [BK01, ENO05a,
EGNO15] for background. We will denote by (Xi)i∈I a set of repre-
sentatives of the isomorphism classes of simple objects of C, and write
i∗ ∈ I for the element such that Xi∗ = X∗

i is the dual object. We will
denote the pivotal trace in the category C of an endomoprhism f by
ptr(f).

One raison d’être of modular categories is that they allow the defi-
nition of a topological quantum field theory. In particular they define
invariants in C of framed knots and links. We will freely use graphical
notation for morphisms in a modular category C. The framed link in-
variant defined by a modular category can be viewed as follows: The
link is the closure of a braid. The braid in question, colored by objects
in C, defines an endomorphism of a tensor product of objects in C, and
taking the closure of the braid corresponds to taking the (pivotal) trace
of the endomorphism. To fix notations regarding this procedure, there
is a representation of the braid group on n strands

R : Bn → AutC
(
(. . . (V ⊗ V )⊗ V )⊗ V ) . . .⊗ V )

)

on the tensor product of n copies of any object V ∈ C. In the case of a
non-strict category (as indicated by the parentheses) this involves both
instances of the braiding σ, and instances of the associator isomorphism
Φ. We will also need to consider analogous morphisms defined on tensor
products of distinct objects; informally we will write

R(β) : (. . . ((V1 ⊗ V2)⊗ V3) . . .⊗ Vn)

→ (. . . ((Vβ−1(1) ⊗ Vβ−1(2))⊗ Vβ−1(3)) . . .⊗ Vβ−1(n))

for β ∈ Bn and V1, . . . , Vn ∈ C, where β also denotes the underlying
permutation of β. We note that R(ββ ′) = R(β)R(β ′) in the obvious
sense for two braids β, β ′.

The modular categories in which we will do extensive calculations
are the Drinfeld centers of pointed fusion categories; an alternative
description of these is as module categories of twisted Drinfeld doubles
of finite groups [DPR90], although these quasi-Hopf algebras will play
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no explicit role in this paper. We need to fix notations and collect a
few useful identities.

We will write g ⊲ h = ghg−1 for the action of a group on itself by
conjugation, CG(g) for the centralizer of g in G, and gG or g for the
conjugacy class of g ∈ G. Any pointed fusion category is of the form
VecωG, the category of finite-dimensional G-graded vector spaces with
associativity constraint given by

Φ: (U ⊗ V )⊗W −→ U ⊗ (V ⊗W )

(u⊗ v)⊗ w 7−→ ω(|u|, |v|, |w|)u⊗ (v ⊗ w)

for U, V,W ∈ VecωG and homogeneous elements u ∈ U, v ∈ V, w ∈ W ,
where |u| is our notation for the degree of the homogeneous element
u, and ω : G3 → C× is a three-cocycle. In the sequel, we will always
tacitly assume that elements of graded vector spaces are homogeneous
in writing such formulas.

The category VecωG, and by extension its Drinfeld center below, is
spherical with respect to the canonical pivotal structure characterized
by the property that pivotal dimensions coincide with the usual vector
space dimensions. We will not explicitly need the pivotal structure,
but only the fact that pivotal traces of endomorphisms are simply the
usual traces of the underlying linear maps.

The (right) Drinfeld center Z(V ecωG) is a modular category. The
structure of an object (W,σ·,W ) in the center, with σV,W : V ⊗W →
W ⊗ V the half-braiding for V ∈ VecωG can be described in terms of an
action (not quite a group action) of G on W [Maj98]. More precisely,
giving a half-braiding is equivalent to giving a map ⊲ : G ⊗W → W
subject to the conditions

|g ⊲ w| = g ⊲ |w|(2.1)

e ⊲ w = w(2.2)

g ⊲ h ⊲ w = α|w|(g, h)gh ⊲ w(2.3)

for g, h ∈ G and w ∈ W , the equivalence being described by the formula

V ⊗W ∋ v ⊗ w 7→ |v| ⊲ w ⊗ v ∈ W ⊗ V.

Let V ∈ Z(VecωG). Since acting by an element g ∈ G is a vector
space automorphism of V ∈ VecωG which conjugates degrees, any object
decomposes as the direct sum of objects where the degrees of nonzero
homogeneous components form a conjugacy class. Assume that the
degrees of the nonzero components of V form a conjugacy class. Then
G permutes those homogeneous components transitively, and elements
in the centralizer CG(g) map the homogeneous component Vg to itself.
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In particular, Vg is an αg-projective representation of CG(g) where

(2.4) αg(x, y) = ω(x, y, g)ω−1(x, y ⊲ g, y)ω(xy ⊲ g, x, y)

and the structure of V is determined by this projective representation
for any one g in the conjugacy class. In particular, simple objects
of Z(VecωG) are parametrized by pairs (g, χ) where g runs through a
system of representatives for the conjugacy classes of G, and χ is an
irreducible αg-projective character of CG(g).

It is convenient to note how to obtain the CG(x)-projective character
χ′ describing the action of CG(x) on Vx when x belongs to the same
conjugacy class, say x = f ⊲ g. So let c ∈ CG(x) and v ∈ Vg. We have

c ⊲ (f ⊲ v) = αg(c, f)cf ⊲ v(2.5)

f ⊲ ((f−1 ⊲ c) ⊲ v) = αg(f, f
−1 ⊲ c)cf ⊲ v(2.6)

and therefore

c ⊲ f ⊲ v = αg(c, f)α
−1
g (f, f−1 ⊲ c)f ⊲ (f−1 ⊲ c) ⊲ v.

This means that the diagram

Vg
f⊲

//

(f−1⊲c)⊲

��

Vx

c⊲

��

Vg
f⊲

// Vx

commutes up to the scalar factor αg(c, f)α
−1
g (f, f−1⊲c). By cyclicity of

the trace, the projective character of the projective CG(x)-representation
Vx is therefore χ(x), given by

(2.7) χ(x) := (f ⊲ χ)(c) := αg(c, f)α
−1
g (f, f−1 ⊲ c)χ(f−1 ⊲ c).

In particular this expression does define a projective character, and
does not depend on the choice of f ∈ G with f ⊲ g = x.

The inverse of the braiding in Z(VecωG) is given by σ−1(w ⊗ v) =
v⊗|v|−1

◮ w, where ◮ : CG⊗V → V is such that g ⊲g−1
◮ v = g−1

◮

g ⊲ v = v. From

f−1 ⊲ (f ⊲ v) = α|v|(f
−1, f)v,

f ⊲ f−1 ⊲ v = α|v|(f, f
−1)v
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one reads off

f−1
◮ v = α−1

|v| (f, f
−1)f−1 ⊲ v,(2.8)

f−1
◮ v = α−1

f⊲|v|(f
−1, f)f−1 ⊲ v,(2.9)

respectively.

3. The modular data of Z(VecωG)

It is of course well-known how to compute the modular data of the
twisted Drinfeld double of a finite group [CGR00]. In particular the
T -matrix is given by

(3.1) T(g,χ) = Θ(g, χ) =
χ(g)

χ(1)
.

We will rederive a formula for the S-matrix with only a slight ad-
vantage: The formula from [CGR00] involves a double sum, over two
conjugacy classes, or twice over the group. Our formula has only one
sum. The S-matrix is the trace of a braid on two strands (whence the
two sums, related to the two objects coloring the strands); generally,
the invariant obtained from taking the trace of a braid on n strands
would involve n summations, over the conjugacy classes associated to
the objects, but one can get away with only n − 1 summations by a
simple trick based on a well-known fact.

In the graphical calculus, taking the trace of the image of a braid in
a pivotal monoidal category amounts to closing the braid. Obviously,
one can choose to close all strands but one, which leaves us with an
endomorphism with the object labelling the remaining strand, and then
take the trace of that endomorphism. More formally:

Remark 3.1. Let V,W ∈ C and f : V ⊗W → V ⊗W . Then ptr(f) =
ptr(ptrV (f)), where

(3.2) ptrV (f) =

W☛✟
f

✡✠

W

is a partial (pivotal) trace. If W is simple, then ptrV (f) = λ · idW is a
scalar, and ptr(f) = λ dim(W ).

Working in the category Z(VecωG), where formulas for the traces of
braids involve sums over all the combinations of G-degrees of each
object (subject to some condition), this will allow us to get away with
one less sum (or, when coding the formulas, one less nested loop):
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Remark 3.2. Let V,W ∈ Z(VecωG) with W the simple object corre-
sponding to (g, χ), and let f : V ⊗W → V ⊗W . Then trV (f) = λ id;
the scalar λ is determined by the component trV (f)|Wg

: Wg → Wg of
trV (f) by λ dimWg = tr(trV (f)|Wg

), and thus tr(f) = |g| tr(trV (f)|Wg
)

As an illustration and warm-up for the calculations in section 5 we
will consider the S-matrix for two simple objects V,W ∈ Z(VecωG),
corresponding to the pairs (g, χ1) and (h, χ2). We need to compute

S(g,χ1),(h,χ2) = tr(σWV σVW ) = tr(σ2) = tr(R(σ2)),

where (no parentheses being necessary on two objects) there is no dif-
ference between the representation R of the braid group B2 on one gen-
erator σ and simply instances of the braiding of the category Z(VecωG).

If we write V = ⊕
x∈g
Vx and W = ⊕

x∈h

Wy, then for v ∈ Vx and w ∈ Wy

we have

σ2(v ⊗ w) = σ(x ⊲ w ⊗ v)

= |x⊲w| ⊲ v ⊗ x ⊲ w

= (x ⊲ y) ⊲ v ⊗ x ⊲ w.

We can endow V ⊗W with a G×G-grading composed of the G-gradings
of V and W . Then

degG×G σ
2(v ⊗ w) = ((x ⊲ y) ⊲ x, x ⊲ y)

for x = |v|, y = |w|.
For a finite group Γ, a Γ-graded vector space E, and an endomor-

phism f of E let f0 be trivial component of f with respect to the
Γ-grading of End(E). Then tr(f) = tr(f0).

In our example, considering the G × G-grading of V ⊗ W , we see
that σ2(v ⊗ w) has the same degree as v ⊗ w if and only if x and y
commute.

(3.3) (σ2)0(v ⊗ w) =

{
x ⊲ v ⊗ y ⊲ w [x, y] = 1

0 [x, y] 6= 1

In particular

SV,W = tr(σ2) = tr((σ2)0) =
∑

x∈g
y∈h

[x,y]=e

χ
(x)
1 (y)χ

(y)
2 (x)
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Using remark 3.2 we can replace the double sum by a single sum; also,
we can use (eq. (2.7)):

S(g,χ1),(h,χ2) = |h|

[x,h]=1∑

x∈g

χ
(x)
1 (h)χ2(x)

= |h|

[x,h]=1∑

x∈g

αg(h, p)α
−1
g (p, p−1 ⊲ h)χ1(p

−1 ⊲ h)χ2(x)

where p stands for any group element satisfying p⊲g = x. Alternatively,
we can use the bijection G/CG(g) → gG given by aCG(g) 7→ a ⊲ g to
rewrite

S(g,χ1),(h,χ2) =
|h|

|CG(g)|

[p⊲g,h]=1∑

p∈G

αg(h, p)α
−1
g (p, p−1 ⊲ b)χ1(p

−1 ⊲ h)χ2(p ⊲ g)

= |h|

[p⊲g,h]=1∑

p∈G/CG(g)

αg(h, p)α
−1
g (p, p−1 ⊲ h)χ1(p

−1 ⊲ h)χ2(p ⊲ g)

As mentioned, this formula is (up to conventions) quite like the formula
in [CGR00], except for two details: We have a single sum over one
conjugacy class instead of a double sum, and we have half the cocycle
(“α”) terms due to the fact that we need to use (eq. (2.7)) on only one
of the two objects.

4. The Borromean tensor

A modular category (in fact any spherical braided fusion category)
defines a numerical invariant of framed knots and links which can be
written as the pivotal trace of the image, in the category, of a braid
whose closure is the link, with its components colored by simple objects
of the category. Read differently, each fixed framed link defines a nu-
merical invariant of modular categories in this fashion. More precisely,
the invariant is then indexed by as many simple objects as the link has
components.

Among this infinite supply of numerical invariants (among which
the S-matrix and, up to a dimension factor, the T -matrix can also
be found) we pick one example, for the heuristic (and art historical)
reasons cited in the introduction:

Definition 4.1. The borromean tensor (or B-tensor) of a modular
category with simples (Xi)i∈I is the family

(4.1) Bijk := ptr(B((σ−1
2 σ1)

3)
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where B((σ−1
2 σ1)

3) ∈ AutC((Xi ⊗Xj)⊗Xk). Graphically

Bijk = ptr




i j k

i j k




=

✎ ☞
✎ ☞

i
☛✟

j k

✡✠
✍ ✌

✍ ✌

(In the graphical representation, we let i stand for Xi.)

Lemma 4.2. The following equalities hold:

(1) Bijk = Bjki = Bkij

(2) Bijk = Bjik∗

(3) Bijk = Bkji if C statisfies the F-property (see [NR11]).

Proof. Clearly cyclicity of the trace implies that the B-tensor is invari-
ant with respect to cyclic permutations of its three indices. We need
to show the other symmetry properties:

Conjugating with shows that

(4.2) tr




i j k

i j k




= tr




k j i

k j i




Furthermore, we have

j i ☛✟

k

i j ✡✠

=

j i☛✟

k

✡✠
i j

=

☛✟j i

k

✡✠i j
and thus
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tr




i j k

i j k




= tr




i j ☛✟

k

i j ✡✠




= tr




i j☛✟

k

✡✠i j




= tr




k∗ i j

k∗ i j




Combining with (4.2) we see that Bijk = Bjik∗. Together with the
cyclic permutation invariance, this yields that B is invariant under
any permutation of its indices combined with dualizing an even or odd
number of its indices according to the parity of the permutation. If the
borromean braid has finite order in the category in question (as is the
case for group-theoretical modular categories, see [NR11]), then Bijk is
also the complex conjugate of the trace of the inverse Borromean braid.
But the right hand side of (4.2) is that trace, so Bijk = Bkji. So in this
case B is invariant under permutation and dualization of its indices,
up to conjugation if the number of dualized indices has the opposite
parity of the permutation. �

For larger rank categories, these symmetry properties could serve to
speed up the computation of the borromean tensor, although, truth be
told, we have so far only used them to debug our code.

5. The borromean tensor of a twisted double

In this section we will derive an explicit formula for the borromean
tensor in the Drinfeld center of a pointed fusion category, in terms
of the group, the cohomological data, and the projective characters
parametrizing the simple objects. It should be noted that in principle
it is known how to obtain such formulas for the topological invariants
defined by braided monoidal categories. Nevertheless it is a rather
tedious undertaking to provide them in complete detail.

Consider three simple objects U, V,W ∈ Z(V ecωG), parametrized by
couples (g, χ1), (h, χ2) and (k, χ3). Take u ∈ Ux, v ∈ Vy, w ∈ Wz, where

x ∈ g, y ∈ h, z ∈ k.
Looking at the G3-degree of tensors in (U ⊗ V ) ⊗W (which is not

affected by associativity isomorphisms), we see that for u ∈ Ux, v ∈ Vy,
w ∈ Wz we have degG3(R(σ−1

2 σ1))(u⊗ v ⊗ w) = P (x, y, z) if we define
P : G3 → G3 by P (x, y, z) = (x ⊲ y, z, z−1 ⊲ x). Note P−1(x, y, z) =
(y⊲z, y⊲z−1⊲x, y). Now in order that ((σ−1

2 σ1)
3)0(u⊗v⊗w) 6= 0, we need

to have P 3(x, y, z) = (x, y, z), or equivalently P 2(x, y, z) = P−1(x, y, z).
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Comparing

P 2(x, y, z) = P (x ⊲ y, z, z−1 ⊲ x)

= ((x ⊲ y) ⊲ z, z−1 ⊲ x, (z−1 ⊲ x−1) ⊲ x ⊲ y)

= ((x ⊲ y) ⊲ z, z−1 ⊲ x, [z−1, x−1] ⊲ y)

P−1(x, y, z) = (y ⊲ z, y ⊲ z−1 ⊲ x, y)

we see that:

((σ−1
2 σ1)

3)0|Ux⊗Vy⊗Wz
6= 0

⇔





(x ⊲ y) ⊲ z = y ⊲ z

z−1 ⊲ x = y ⊲ z−1 ⊲ x

[z−1, x−1] ⊲ y = y

⇔





[[y−1, x], z] = 1

[[z, y], x] = 1

[[z−1, x−1], y] = 1

(5.1)

We evaluate the morphism R((σ−1
2 σ1)

3) in three steps.

R(σ−1
2 σ1)((u⊗ v)⊗ w)

: = Φ(V ⊗ σ−1)Φ−1(σ ⊗W )((u⊗ v)⊗ w)

= Φ(V ⊗ σ−1)Φ−1((x ⊲ v ⊗ u)⊗ w)

= Φ(V ⊗ σ−1)(ω(x ⊲ y, x, z)(x ⊲ v ⊗ (u⊗ w))

= Φ(ω(x ⊲ y, x, z)(x ⊲ v ⊗ (w ⊗ z−1
◮ u)

= ω−1(x ⊲ y, z, z−1 ⊲ x)ω(x ⊲ y, x, z)(x ⊲ v ⊗ w)⊗ z−1
◮ u

= ψ(x, z−1 ⊲ x, x ⊲ y, z)Ψ((u⊗ v)⊗ w)

with

ψ(x, x′, y, z) = ω−1(y, z, x′)ω(y, x, z)α−1
x (z, z−1)

= ω−1(y, z, x′)ω(y, x, z)α−1
x′ (z

−1, z)

Ψ(u⊗ v ⊗ w) = (|u| ⊲ v ⊗ w)⊗ |w|−1 ⊲ u

Further

R(σ−1
2 σ1)((x ⊲ v ⊗ w)⊗ z−1 ⊲ u)

= ψ(x⊲y, (z−1 ⊲x)−1 ⊲ (x⊲y), (x⊲y)⊲z, z−1 ⊲x)Ψ((x⊲v⊗w)⊗z−1 ⊲u)

= ψ(x ⊲ y, y, y ⊲ z, z−1 ⊲ x)Ψ((x ⊲ v ⊗ w)⊗ z−1 ⊲ u)
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where

Ψ((x ⊲ v ⊗ w)⊗ z−1 ⊲ u)

= α((z−1 ⊲ x)−1, x)((x ⊲ y) ⊲ w ⊗ z−1 ⊲ u)⊗ [z−1, x−1] ⊲ v

∈ W(x⊲y)⊲z ⊗ Uz−1⊲x ⊗ V[z−1,x−1]⊲y =Wy⊲z ⊗ Uz−1⊲x ⊗ Vy.

Further,

R(σ−1
2 σ1)(((x ⊲ y) ⊲ w ⊗ z−1 ⊲ u)⊗ [z−1, x−1] ⊲ v)

= ψ(y⊲z, y−1⊲(y⊲z), (y⊲z)⊲(z−1⊲x), y)Ψ((x⊲y)⊲w⊗z−1⊲u⊗[z−1, x−1]⊲v)

= ψ(y ⊲ z, z, x, y)Ψ((x ⊲ y) ⊲ w ⊗ z−1 ⊲ z ⊗ [z−1, x−1] ⊲ v)

Ψ((x ⊲ y) ⊲ w ⊗ z−1 ⊲ z ⊗ [z−1, x−1] ⊲ v)

= αx(y⊲z, z
−1)αz(y, x⊲y)ψ(y⊲z, z, x, y)([y, z]⊲u⊗[z−1, x−1]⊲v⊗[y, x]⊲w.

Thus

R((σ−1
2 σ1)

3((u⊗ v)⊗ w)

= Ω(x, y, z)[y, z] ⊲ u⊗ [z−1, x−1] ⊲ v ⊗ [y, x] ⊲ w

with

(5.2)

Ω(x, y, z) = ψ(x, z−1 ⊲x, x⊲y, z)ψ(x⊲y, y, y ⊲z, z−1⊲x)ψ(y ⊲z, z, x, y)

= ω(x ⊲ y, z, z−1 ⊲ x)ω−1(x ⊲ y, x, z)α−1
x (z, z−1)

ω(y ⊲ z, z−1 ⊲ x, y)ω−1(y ⊲ z, x ⊲ y, z−1 ⊲ x)α−1
y (z−1 ⊲ x−1, z−1 ⊲ x)

ω(x, y, z)ω−1(x, y ⊲ z, y)αz(y
−1, y)

We conclude that

B(g,χ1),(h,χ2),(k,χ3)

= tr(R((σ−1
2 σ1)

3))

= tr(R((σ−1
2 σ1)

3)0)

=
∑

x∈g,y∈h,z∈k
(eq. (5.1))

Ω(x, y, z)χx
1([y, z])χ

y
2([z

−1, x−1])χz
3([y, x]).
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Using remark 3.2, we can reduce the three summations in the pre-
ceding formula to two.

B(g,χ1),(h,χ2),(k,χ3)

= |k|
∑

x∈g,y∈h
(eq. (5.3))

Ω(x, y, k)χx
1([y, k])χ

y
2([k

−1, x−1])χ3([y, x])

= |k|
∑

x∈g,y∈h
(eq. (5.3))

Ω(x, y, k)αg([y, k], p)α
−1
g (p, p−1 ⊲ [y, k])

αh([k
−1, x−1], q)α−1

h (q, q−1 ⊲ [k−1, x−1])

χx
1([y, k])χ

y
2([k

−1, x−1])χ3([y, x]).

with

(5.3)
[[k, y], x] = 1

[[y−1, x], k] = 1

Finally, we can express the characters χx
1 , χ

y
2 in terms of χ1, χ2 using

(eq. (2.7)):

B(g,χ1),(h,χ2),(k,χ3)

= |k|
∑

p∈G/CG(g)
q∈G/CG(g)
(eq. (5.6))

Ω(p ⊲ g, q ⊲ h, k)(p ⊲ χ1)([q ⊲ h, k])

(q ⊲ χ2)([k
−1, p ⊲ g−1])χ3([q ⊲ h, p ⊲ g])

(5.4)

=
|g||h||k|

|G|2

∑

p∈G
q∈G

(eq. (5.6))

Ω(p ⊲ g, q ⊲ h, k)(p ⊲ χ1)([q ⊲ h, k])

(q ⊲ χ2)([k
−1, p ⊲ g−1])χ3([q ⊲ h, p ⊲ g])

(5.5)

with

(5.6)
[[k, q ⊲ h], p ⊲ g] = 1

[[(q ⊲ h)−1, p ⊲ x], k] = 1.

Besides the ω and α terms already hiding in Ω, the conjugated charac-
ters in the last formulae are hiding further α terms from (eq. (2.7)):

(p ⊲ χ1)([q ⊲ h, k]) = αg([q ⊲ h, k], p)α
−1
g (p, p−1 ⊲ [q ⊲ h, k])

·χ1(p
−1 ⊲ [q ⊲ h, k])

(q ⊲ χ2)([k
−1, p ⊲ g−1]) = αh([k

−1, p ⊲ g−1], q)α−1
h (q, q−1 ⊲ [k−1, p ⊲ g−1])

·χ2(q
−1 ⊲ [k−1, p ⊲ g−1])
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We have implemented the general formula for the B-tensor above in
GAP; the codes are in appendix A. For explicit calculations by humans,
the abundance of cocycle terms (six ω terms and three α terms gath-
ered in Ω plus four α terms hiding in conjugated projective characters)
and the tedious commutation conditions on group elements certainly
make the formulas somewhat unwieldy. We will now describe particu-
lar circumstances where these problems do not occur and the formula
simplifies drastically. The special cases will be very useful for the key
example we will treat in the following section.

Proposition 5.1. Suppose there is an abelian normal subgroup A ⊳ G
such that ω is inflated from the quotient G/A , and g, h ∈ A. Then

(5.7) B(g,χ1),(h,χ2),(k,χ3) = |k| ·
∑

x∈g
y∈h

χ1(p
−1 ⊲ [y, k])χ2(q

−1 ⊲ [k−1, x−1]).

where p⊲g = x, q ⊲h = y in the sum. Note also that χ1, χ2 are ordinary
characters in this case.

Proof. The conditions are tailored to ensure that Ω(x, y, z) = 1 in
5.2, since all values of ω where one argument is conjugate to g or h
are trivial. The same holds for the α terms used in (eq. (2.7)), since
commutators with one element from A also lie in A. Also, [[k, q ⊲h], p ⊲
g] = 1 for all q, p since q ⊲ h ∈ A, hence [k, q ⊲ h] ∈ A, and p ⊲ g ∈ A.
Finally [q ⊲ h−1, p ⊲ g] = 1 since q ⊲ h, p ⊲ g ∈ A which is abelian, and in
particular [[q ⊲ h−1, p ⊲ g], k] = 1. �

Corollary 5.2. Assume the hypotheses of the preceding corollary, and
in addition that there is a subgroup Q ⊂ CG(k) such that gQ = g and
hQ = h. This applies for example when G = A ⋊ Q is a semidirect
product of abelian groups. Then
(5.8)

B(g,χ1),(h,χ2),(k,χ3) =
|k||A|

|CQ(g)||CQ(h)|
·
∑

q∈Q

χ2(q ⊲ [h, k])χ1(q
−1 ⊲ [k−1, g−1]).
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Proof. We have bijections Q/CQ(g) ∋ p 7→ p ⊲ g ∈ g and Q/CQ(h) ∋

q 7→ q ⊲ h ∈ h, and therefore, abbreviating N = |CQ(g)||CQ(h)|,

B(g,χ1),(h,χ2),(k,χ3)

=
|k|

N
·
∑

p,q∈Q

χ1(p
−1 ⊲ [q ⊲ h, k])χ2(q

−1 ⊲ [k−1, p ⊲ g−1])

=
|k|

N
·
∑

p,q∈Q

χ1(p
−1q ⊲ [h, q−1 ⊲ k])χ2(q

−1p ⊲ [p−1 ⊲ k−1, g−1])

=
|k|

N
·
∑

p,q∈Q

χ1(p
−1q ⊲ [h, k])χ2(q

−1p ⊲ [k−1, g−1])

which gives the desired result after reparametrization. �

6. Twisted doubles of nonabelian groups of order pq

Let p, q be odd primes with p|q − 1. There is a unique nonabelian
group of order pq, and there are exactly p inequivalent twisted doubles
of that group; see [MS17a] and below. However, these p inequivalent
modular categories only afford three different sets of modular data. In
this section we will show that the T -matrix and the borromean tensor
do distinguish the p modular categories. We first tested this for the
case p = 5 and q = 11 using our GAP-implementation of (eq. (5.5)).
That is, we computed the values of T -matrix, S-matrix, and B-tensor
in this case, and verified that no bijection between the simples of two
distinct categories maps all three data to each other. Closer inspection
of the experimental data also helped us pick out the particular simples
to use in our borromean tensor calculations below. Thus, although no
computer help is necessary in the end to prove our results, machine
calculations were instrumental in our finding them. Note that the S-
matrix turns out not to be necessary in our example in the end; the
T -matrix and B-tensor suffice.

The nonabelian group of order pq where p and q are odd primes such
that p|q − 1 has the following presentation:

Z/qZ ⋊ Z/pZ ∼= 〈a, b|aq = bp = 1, bab−1 = an〉

The integer n ∈ Z/qZ must be chosen such that n 6≡ 1 mod q and
np ≡ 1 mod q, but the group does not depend on that choice. We
note

bkalb−k = an
kl [al, bk] = al(1−nk) [bk, al] = al(n

k−1)(6.1)
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The canonical surjection Z/qZ⋊Z/pZ → 〈b〉 ∼= Z/pZ induces an iso-
morphism between the cohomology groups H3(〈b〉,C×) → H3(Z/qZ⋊

Z/pZ,C×), where H3(〈b〉,C×) ∼= Z/pZ is generated by the following
cocycle ω:

ω(bi, bj , bk) := exp

(
2iπ

p2
([i]([j] + [k]− [j + k])

)

where [i] ∈ {0, . . . , p− 1} is such that [i] ≡ i( mod p).
The following is a complete list of representatives for the isomorphism

classes of simples of Z(Vecω
u

G ):

(1) (1, χ) where χ is an irreducible character of G,
(2) (al, χs

q) where l ∈ (Z/qZ)×/〈n〉, s ∈ Z/qZ, and χq is the gener-

ator of 〈̂a〉 ∼= Z/qZ given by

χq(a) = exp

(
2iπ

q

)
,

(3) (bk, χ̃r
p) where k ∈ Z/pZ×, r ∈ Z/pZ, and χ̃r

p is the αu
bk

-projective

character of CG(b
k) = 〈̂b〉 associated to χr

p, χp being the gener-

ator of 〈̂b〉 ∼= Z/pZ given by

χp(b) = exp

(
2iπ

p

)
.

That is χ̃r
p = χr

pµ
u
bk where αu

bk = dµu
bk . In the sequel, we will

write the simple as (bk, χr
p) instead of (bk, χ̃r

p).

Lemma 6.1. The T -matrix of Z(Vecω
u

G ) is given by the following:

(1) Θ(1, χ) = 1

(2) Θ(al, χs
q) = exp

(
2iπ
q
sl
)

(3) Θ(bk, χr
p) = exp

(
2iπ
p2
(pkr + k2u)

)
, and in particular

(4) Θ(bk, χr
p)

p = ζk
2u

p for ζp = exp(2iπ
p
).

Proof. For simples in Z(Vecω
u

G ) of the first type, it is obvious that the

corresponding twist Θ(1, χ) = χ(1)
χ(1)

= 1. For simples of the second type

(al, χs
q), one has αu

al = 1, and then the irreducible projective characters

of the centralizer 〈a〉 ∼= Z/qZ of al are the usual irreducible characters.
The twist is therefore given by

Θ(al, χr
q) =

χs
q(a

l)

χs
q(1)

= exp

(
2iπ

q
sl

)
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Finally, for simples of the last type (bk, χr
p), one has αu

bk = dµu
bk where

µu
bk(x) = exp

(
2iπu

p2
k[Π(x)]

)

and αu
bk

-projective characters of the centralizer 〈b〉 ∼= Z/qZ of bk are
usual irreducible characters twisted by µu

bk
. Therefore:

Θ(bk, χr
p) =

χr
q(b

k)µu
bk(b

k)

χr
q(1)µ

u
bk
(1)

= exp

(
2iπ

p2
(pkr + k2u)

)

�

Lemma 6.2. The B-tensor of the category Z(Vecω
u

Z/qZ⋊Z/pZ) with p and
q odd primes such that q|p− 1 and u ∈ {0, . . . p− 1} satisfies

(6.2) B(al,χs
q),(a

l ,χs
q),(b

k ,χr
p)
= pq

p−1∑

m=0

e(
2iπsl

q
(n−t−nt)(nm−n−m)); 2t ≡ k(p)

Proof. We apply corollary 5.2 with Q = 〈b〉 and A = 〈a〉. By eq. (5.8)
and eq. (6.1) we have

B(al ,χs
q),(a

l ,χs
q),(b

k ,χr
p)
= pq

p−1∑

m=0

χs
q(b

m ⊲ [al, bk])χs
q(b

−m ⊲ [b−k, a−l])

= pq

p−1∑

m=0

χs
q(a

l·nm(1−nk))χs
q(a

−l·n−m(n−k−1))

= pq

p−1∑

m=0

e(
2iπsl

q
(nm(1−nk)+n−m(1−n−k)).

For 2t ≡ k(p) we get

nm(1− nk) + n−m(1− n−k) ≡ nm(1− n2t) + n−m(1− n−2t)

= (nm+t − n−(m+t))(n−t − nt)

so reparametrization gives the desired expression. �

In [MS17a] it was shown that the p non-equivalent modular tensor
categories Z(Vecω

u

Z/qZ⋊Z/pZ) for u = 0, .., p− 1, are not distinguished by
their modular data. In fact there are only three different modular data
between these categories. By contrast:

Theorem 6.3. The T -matrix and B-tensor form a complete set of
invariants for the p non-equivalent modular categories Z(Vecω

u

Z/qZ⋊Z/pZ)

where p and q are odd primes such that p|q−1. More precisely, if there
is a map κ from the simple objects of Z(Vecω

u

Z/qZ⋊Z/pZ) to the simple
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objects of Z(Vecω
u′

Z/qZ⋊Z/pZ) satisfying Tκ(V ) = TV and Bκ(U),κ(V ),κ(W ) =
BUVW for all simples U, V,W of the former, then u = u′.

Proof. Let κ be such a map. We will use the notations (g, χ)u and
(g, χ)u′ to denote simple objects of the two categories under consid-
eration. The category corresponding to the trivial cocycle is easily
distinguished from the others by the T -matrix alone, so we can assume
u, u′ 6= 0. Let ls 6≡ 0( mod q). Then it is obvious from lemma 6.1 that
κ((al, χs

q)u) = (al
′

, χs′

q )u′ with sl ≡ s′l′ mod q. Also, part (4) of 6.1 im-

plies that κ((bk, χr
p)u) = (bk

′

, χr′

p )u′ for some k′ and r′ with k′2u′ ≡ k2u(
mod p).

Also

B(al,χs
q)u,(a

l,χs
q)u,(b

k,χr
p)u

= Bκ((al,χs
q)u),κ((a

l,χs
q)u),κ((b

k ,χr
p))

= B(al′ ,χs′
q )u′ ,(a

l′ ,χs′
q )u′ ,(b

k′ ,χr′
p )u′

So, with lemma 6.2 and 2t ≡ k( mod p), 2t′ ≡ k′( mod p), we get

(6.3)

p−1∑

m=0

(
e

2iπsl
q

)(nt−n−t)(nm−n−m)

=

p−1∑

m=0

(
e

2iπs′l′

q

)(nt′−n−t′)(nm−n−m)

.

Since this is a Q-linear relation between fewer than q powers of the

same primitive q-th root of unity e
2iπsl

q = e
2iπs′l′

q , we conclude that the
set

Mt := {(nt − n−t)(nm − n−m)|m = 0, . . . , p− 1} ⊂ Z/qZ

is equal to the analogous set Mt′ . We note that the p elements nm−n−m

are distinct: Indeed, assume nm−n−m = nj−n−j for 0 ≤ m, j ≤ p−1.
Then

0 = nm − nj + n−j − n−m = (n−j−m + 1)(nm − nj).

Now n−j−m + 1 6= 0 since n has odd order, and so nm = nj which
implies m = j. In particular

∑

x∈Mt

x2 =

p−1∑

m=0

(nt − n−t)2(n2m + n−2m − 2)

= (nt − n−t)2

(
p−1∑

m=0

n2m +

p−1∑

m=0

n−2m − 2p

)

= −2p(nt − n−t)2,
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since n2 and n−2 are primitive p-th roots of unity in Z/qZ and so the
sum over all their powers gives zero. By the same reasoning

∑

x∈Mt

x2 =
∑

x∈Mt′

x2 = −2p(nt′ − n−t′)2

Thus (nt − n−t)2 = (nt′ − n−t′)2, which implies nt − n−t = nt′ − n−t′ or
nt − n−t = n−t′ − nt′ . As we have seen, this implies t ≡ t′ or t ≡ −t′ in
Z/pZ. Therefore k2 = k′2 and we can conclude that u = u′. �

Remark 6.4. There is an action of the absolute Galois group of abelian
extensions of the rationals Γ := Gal(Qab/Q) on the set of simples of
any integral modular category; see [ENO05b, Appendix]. In the case
of Z(VecωG) it satisfies Sγ(i),γ(j) = γ2(Si,j) for any γ ∈ Γ, and also
Tγ(i),γ(i) = γ2(Tii) as shown in [DLN15]. If we analyze the proof in
[MS17a] that the twisted doubles of nonabelian groups of order pq
share only three different sets of modular data, we can conclude from
our result that the analogous property Bγ(i),γ(j),γ(k) = γ2(Bijk) is not
satisfied.

Appendix A. GAP codes

We give in this appendix the codes that we used to compute the S-
matrix and the Borromean tensor for the categories Z(VecωG). Prelimi-
nary codes that compute complex valued group cohomology, projective
characters of finite groups, etc., as well as the code that computes the
T -matrix, are the ones of [MS17b]. The function ZwG_S computes the
S-matrix and the function ZwG_B computes the Borromean tensor; both
those functions are taking as arguments a finite group G, a 3-cocycle
ω ∈∈ H3(G,C×), the simple objects of Z(VecωG) and a non-negative in-
teger e. More precisely, ω is given as its list of values in Z/eZ, where e
is the exponent of H3(G,C×) and the simple objects are couples (g, χ)
where g ∈ G and χ is a projective character given by its list of values
(in C) on the centralizer CG(g).

ZwG_S := function(G, w, Simples , e)

local ord , listG , alphag , aval , bval , lista ,

listb , s, a, b, g, simple1 , simple2 , x;

ord:= Size(G);

listG:= EnumeratorSorted(G);

alphag := function(g)

return function(x,y)

return Alpha_symb(G,w,listG[g])

(listG[x],listG[y]);
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end;

end;

aval:=[];

for simple1 in Simples do

a:=simple1!.class;

lista:= EnumeratorSorted(Centralizer(G,listG[a]));

bval:=[];

for simple2 in Simples do

b:= simple2!.class;

listb:= EnumeratorSorted(Centralizer(G,listG[b]));

s := 0;

for g in [1..ord] do

if not

Commm(Conjugation(listG[g],listG[a]),listG[b])

=One(G)

then continue;

fi;

s := s +

E(e)^(

alphag(a)( b, g)

- alphag(a)(g,Position(

listG ,Conjugation(listG[g]^-1, listG[b])))

)

* simple1!.chi[Position(

lista , Conjugation(listG[g]^-1, listG[b]))]

* simple2!.chi[Position(

listb , Conjugation(listG[g], listG[a]))];

od;

Add(bval ,

s

* Size(ConjugacyClass(G,listG[b]))

/ Size(Centralizer(G, listG[a]))

);

od;

Add(aval , bval);

od;

return aval;

end;

ZwG_B:=function(G,cocyclevalues ,Simples ,e)

local conjG ,listG ,posG ,alphag ,simple1 ,simple2 ,

simple3 ,a,b,c,chia ,chib ,chic ,lista ,listb ,
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listc ,tensor ,matrixb ,rowc ,sum ,g,h,ap ,bp ,

ap_inv ,bp_inv,c_inv ,cinv_hit_ap ,ap_hit_bp ,

bp_hit_c ,cinv_hit_apinv ,commm_cinv_apinv ,

hinv_hit_commca ,commm_bp_c ,

ginv_hit_commmbc ,commm_bpinv_ap;

listG:= EnumeratorSorted(G);

posG:=function(g)

return Position(listG ,g);

end;

alphag := function(g)

return function(x,y)

return Alpha_symb(G,cocyclevalues ,listG[g])

(listG[x],listG[y]);

end;

end;

tensor :=[];

for simple1 in Simples do

a:= simple1!.class;

lista:= EnumeratorSorted(Centralizer(G,listG[a]));

matrixb:=[];

for simple2 in Simples do

b:=simple2!.class;

listb:= EnumeratorSorted(Centralizer(G,listG[b]));

rowc :=[];

for simple3 in Simples do

c:=simple3!. class;

listc:= EnumeratorSorted(Centralizer(G,listG[c]));

sum:=0;

for g in [1.. Size(listG)] do

for h in [1..Size(listG)] do

ap:=posG(Conjugation(listG[g],listG[a]));

bp:=posG(Conjugation(listG[h],listG[b]));

ap_inv :=posG(listG[ap]^ -1);

bp_inv :=posG(listG[bp]^ -1);

c_inv:=posG(listG[c]^ -1);

cinv_hit_ap:=

posG(Conjugation(listG[c_inv],listG[ap]));

ap_hit_bp:=

posG(Conjugation(listG[ap],listG[bp]));

bp_hit_c:=

posG(Conjugation(listG[bp],listG[c]));

cinv_hit_apinv:=

posG(Conjugation(

listG[c_inv],listG[ap_inv ]));

commm_cinv_apinv:=
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posG(Commm(listG[c_inv],listG[ap_inv ]));

hinv_hit_commca:=

posG(Conjugation(

listG[h]^-1,listG[commm_cinv_apinv]));

commm_bp_c:=

posG(Commm(listG[bp],listG[c]));

ginv_hit_commmbc:=

posG(Conjugation(

listG[g]^-1,listG[commm_bp_c]));

commm_bpinv_ap:=

posG(Commm(listG[bp_inv],listG[ap]));

if not

(Commm(Commm(listG[bp_inv],listG[ap]),

listG[c])

=One(G)

and

Commm(Commm(listG[bp],listG[c]),

listG[ap])

=One(G) )

then continue;

else

sum:=sum + E(e) ^ (

cocyclevalues[ap_hit_bp][ap][c]

-cocyclevalues[ap_hit_bp][c][cinv_hit_ap]

+cocyclevalues[bp_hit_c][ ap_hit_bp]

[cinv_hit_ap]

-cocyclevalues[bp_hit_c][ cinv_hit_ap][bp]

+cocyclevalues[ap][bp_hit_c][bp]

-cocyclevalues[ap][bp][c]

-alphag( ap ) ( c , c_inv )

+alphag( ap ) ( bp_hit_c , c_inv )

-alphag( ap_hit_bp )

( cinv_hit_ap , cinv_hit_apinv )

+alphag( bp ) ( cinv_hit_apinv , ap )

-alphag( bp_hit_c ) ( bp , bp_inv )

+alphag( c ) ( bp_inv , ap_hit_bp )

+alphag( b ) ( commm_cinv_apinv , h )

-alphag( b ) ( h , hinv_hit_commca )

+alphag( a ) ( commm_bp_c , g )

-alphag( a ) ( g , ginv_hit_commmbc ) )

*simple1!.chi[

Position(lista ,listG[ginv_hit_commmbc] )]

*simple2!.chi[

Position(listb ,listG[hinv_hit_commca] )]

*simple3!.chi[
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Position(listc ,listG[commm_bpinv_ap] )] ;

fi;

od;

od;

sum:=sum *

( Size(ConjugacyClass(G,listG[c]))

/ ( Size(Centralizer(G,listG[a]))

* Size(Centralizer(G,listG[b])) ) );

Add(rowc ,sum);

od;

Add(matrixb ,rowc);

od;

Add(tensor,matrixb);

od;

return tensor;

end;

Finally, checking whether one or more matrices or “tensors” indexed
by a power of the same index set are identical up to a permutation of
the index set (i. e. simultaneous permutations of the matrix or tensor
indices) is in itself a tricky task. We include a function that does this
for T , S and B (based on an analogous function that we wrote for the
modular data) using some heuristic tricks to speed up the procedure.

Same_S_T_B:= function(S1 ,T1 ,B1,S2,T2,B2)

local l,P,lastbad ,n,i,j,A,Q,blocks,PS1 ,PS2 ,rev;

lastbad:=function(S1,T1 ,B1 ,S2 ,T2 ,B2,P,Q,l)

local j,k;

if P[l] in List([1..l-1],i->P[i]) then return true;

fi;

if T2[P[l]] <> T1[Q[l]] then return true ;

fi;

for k in [1..l] do

if S1[Q[k]][Q[l]]<>S2[P[k]][P[l]] then return true;

fi;

od;

for j in [1..l] do

for k in [1..l] do

if B1[Q[j]][Q[k]][Q[l]]<>B2[P[j]][P[k]][P[l]]

then return true;

fi;

od;

od;

return false;

end;

presorted:= function(S,T,B)
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local labels ,labelset ,perm ,n,blocks ,TS ,SS ,BS;

n:=Size(T);

labels :=List ([1..n],

i->[T[i],S[i][i],Collected(S[i])]);

labelset:=Set(labels );

perm :=[1..n];

SortParallel(labels,perm);

TS:=List(perm ,i->T[i]);

SS:=List(perm ,i->List(perm ,j->S[i][j]));

BS:=List(perm ,

i->List(perm ,

j->List(perm ,

k->B[i][j][k])));

blocks :=List(labelset ,

l->Filtered([1..n],j->labels[j]=l));

return [SS,TS,BS,perm ,blocks ,labels ];

end;

n:=Size(T1);

PS1:=presorted(S1,T1,B1);

PS2:=presorted(S2,T2,B2);

if PS1[2]<>PS2[2] then

return [false ,"not␣the␣same␣T"];

fi;

if List(PS1[6],x->x[2])<>List(PS2[6],x->x[2]) then

return [false ,"T␣and␣diag(S)␣don’t␣sort␣parallelly"];

fi;

if PS1[5]<>PS2[5]

then return [false ,"not␣the␣same␣blocks"];

fi;

if PS1[6]<>PS2[6]

then return [false ,"unsorted␣data␣don’t␣match"];

fi;

blocks :=PS1[5];

rev:=[];

S1:=PS1[1];

T1:=PS1[2];

B1:=PS1[3];

S2:=PS2[1];

T2:=PS2[2];

B2:=PS2[3];

for i in [1.. Size(blocks )] do

for j in [1..Size(blocks[i])] do

rev[blocks[i][j]]:=[i,j];

od;
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od;

nextinblock:=function(i)

if rev[i][2]= Size(blocks[rev[i][1]]) then return n+1;

fi;

return i+1;

end;

Q:=[];

for i in [1.. Maximum(List(blocks,Size))] do

A:=List(Filtered(blocks ,b->Size(b)>=i),b->b[i]);

Q:= Concatenation(Q,A);

od;

l:=1;

P:=[Q[1]];

while true do

if P[l]>n then

l:=l-1;

if l=0 then return false;

fi;

Remove(P);

P[l]:=nextinblock(P[l]);

continue;

fi;

if lastbad(S1 ,T1 ,B1 ,S2 ,T2 ,B2,P,Q,l) then

P[l]:=nextinblock(P[l]);

continue;

fi;

if l=n then return true;

fi;

l:=l+1;

P[l]:=blocks[rev[Q[l]][1]][1];

od;

end;
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